
Automatic XMTC to Cilk Translation

Alexandros Tzannes

December 4, 2007

Abstract

Parallel programming is known to be notoriously difficult! Be it hard-
ware or compiler limitations that dictate what a parallel programming
language supports or the fact that different applications benefit from dif-
ferent types of parallelism, no programming paradigm has emerged a clear
winner in the parallel arena. In this work we start building a bridge be-
tween two programming approaches, XMTC and Cilk, by providing an
efficient source-to-source translation from XMTC to Cilk.

1 Introduction

For at least 30 years there has been relentless work on computer parallelism for
general purpose or super-computing applications. The idea of getting multiple
tasks processed in parallel is an old idea but, maybe surprisingly, to this day,
there is no universally accepted model for parallel computation. So far all the
models that were proposed were either deemed too abstract (e.g., PRAM [3])
or exposed too many details to the programmer, making it a very hard task to
reason about correctness and performance of a parallel program (e.g. MPI [4]).
All the different approaches have strong proponents but none of them dominates.
For example shared-memory vs. message passing models have battled for a
long time with no definite winner. Our work focuses on the shared-memory
approach, not because we claim it to be universally superior, but because, in
light of the arrival of multicores where shared-memory is the natural choice as
it is supported in hardware, we believe that making the most of such readily
available hardware is crucial.

Cilk [5] is a multi-threaded shared-memory language. It extends C by adding
a small number of new keywords which makes it easy to learn. Moreover the
process of changing a Cilk program into a C program is a trivial mechanical
process. Cilk is build to run on systems that support POSIX threads. It is
not meant to run on networks of workstations although there has been some
work in that direction. The main strength of Cilk lies in its natural way of
expressing divide-and-conquer algorithms which are prevalent in AI (e.g., any
graph traversal).

In our opinion, the main limitation of Cilk is that the only primitive intro-
ducing parallelism, is calling and executing a function in a new thread. This

1

effectively creates one new thread, but in many cases the available amount of
parallelism is far larger. Assume for example that we would want to check if
any of ten thousand elements of an array satisfies a predicate. In Cilk the best
way to implement this is to follow a divide and conquer paradigm: recursively
spawn off two threads, one to check the left half of the array and one to check the
right half. A more natural way to code this would be to allow the programmer
to express all of the available parallelism: start simultaneously ten thousand
threads. This is where XMTC comes in.

In XMTC parallelism is introduced by a construct also called spawn but
which starts any number of threads specified by the programmer. The philos-
ophy of XMTC is that the programmer should express all the available paral-
lelism, and it is then the responsibility of the compiler and the runtime system to
run the program efficiently. This removes the burden of writing code following
constraints imposed by the hardware and improves productivity. Unfortunately
until this writing, XMTC code can only be run on a simulator of the XMT
architecture and an XMT FPGA [12]. Moreover the simulator is very slow
when run in cycle-accurate mode and the FPGA is mainly a proof of concept
and has limitations for practical programming (e.g., does not currently support
floating-point operations, has only (!) 64 cores, and runs at 75MHz).

This is where the XMTC to Cilk source-to-source transformation fits in. Our
tool allows programmers to write a program which is more naturally expressed in
XMTC in that language and run it on commodity hardware, without incurring
unreasonable overheads.

2 Background

2.1 Cilk

Cilk [5] has been developed at MIT for over a decade. It introduces parallelism
by allowing to call a function in a new thread (also called a future) and resuming
execution immediately after the call, without having to wait for the result of the
function. A way to explicitly wait on the results of all pending futures is also
provided. This “top-down” model starts with one thread and each active thread
can spawn at most one additional thread at each time-step. This is particularly
well suited to divide-and-conquer algorithms where the combine step needs to
combine two (or a small constant number) of partial results. Consider the
parallel summation algorithm where we have to add n values and we use a
binary tree. The initial values start at the leaves and the result will be stored
in the root. The computation proceeds in rounds, one for each level of the
balanced binary tree. At each level, all nodes in parallel read and add the
values of their two children, and store the result in themselves. We call the Cilk
model “top down” because for the parallel computation of summation (which
many parallel algorithms follow) the computation recursively descends the tree
from the root to the leaves, and when the recursion backtracks the values are
propagated towards the root.

2

2.2 XMTC

XMTC [2] is developed at the University of Maryland, College Park. It intro-
duces Single Program Multiple Data (SPMD) parallelism via the spawn con-
struct which takes as arguments the number of threads to start and the code
they should execute. After all the spawned threads have terminated, the exe-
cution continues at the statement after the spawn . In other words, there is an
implicit synchronization point at the end of the parallel code of the spawn state-
ment. Currently implementation (and hardware) limitations disallow the use of
function calls inside the parallel code, which excludes recursion in parallel-mode,
like Cilk does. The XMTC implementation of the summation algorithm starts
from the leaves and proceeds in rounds moving towards the root. We call this
model the “bottom-up” computation model. The disadvantage of this approach
for this particular problem is that each round has to finish before the next round
starts, even though some elements in the next level could already be computed
because both their children have already been computed (this can be coded in
XMTC but takes a bit more effort).

2.3 Example

In this section we will give a simple example of the transformation to illustrate
the source-to-source transformations that are needed.

In Listing 1 we see the XMTC code of a function that takes 2 arrays as
arguments and their size, and copies the first array to the second one. For each
element to be copied a thread is spawned. In Listing 2 we have the naive trans-
formation from the XMTC code. The code of the body of the spawn is closure
converted with the special dollar symbol acting as a parallel induction variable
replaced by an argument to the closure. We will refer to this transformation
as outlining, the reverse operation of inlining. This is a correct but naive way
to translate XMTC to Cilk because typically the XMTC threads are very fine
grained and the thread overheads in Cilk are substantially higher.

Listing 1: XMTC array copy
i n t arrayCopy (i n t A[] , i n t B [] , i n t s i z e) {

spawn (0 , s i z e −1) {
B[$] = A[$] ;

}
re turn 0 ;

}

In Listing 3 we see a less naive transformation. In this code NPROC takes
the value of the global Cilk environment variable Cilk active size which denotes
the number of available processor and is a runtime constant. So this transforma-
tion creates one clustered thread per active processor and each clustered thread

3

Listing 2: Cilk array copy (naive translation)
c i l k i n t arrayCopy (i n t A [] , i n t B [] , i n t s i z e) {

i n t i ;
f o r (i =0; i<s i z e ; i ++) {

spawn outl inedCode (A,B, i) ;
}
sync ;
r e turn 0 ;

}

c i l k void outl inedCode (i n t A [] , i n t B [] , i n t i) {
B[i] = A[i] ;

}

contains, in a for-loop, multiple thin threads (i.e., original XMTC threads).

Listing 3: Cilk array copy (clustered translation)
c i l k i n t arrayCopy (i n t A [] , i n t B [] , i n t s i z e) {

i n t i ;
i n t NPROC = C i l k a c t i v e s i z e ;
i n t a ; / / number o f th in threads per c l u s t e r e d thread
a = c e i l (s i z e /NPROC) ;
f o r (i =0; i<NPROC; i ++) {

spawn outl inedCode (A,B, i , a) ;
}
sync ;
r e turn 0 ;

}

c i l k void outl inedCode (i n t A [] , i n t B [] , i n t i , i n t s i z e) {
i n t L = i ∗a ;
i n t U = min{(i +1)∗a , s i z e) ;
i n t j ;
f o r (j=L ; j<U; j++)

B[j] = A[j] ;
r e turn 0 ;

}

3 Implementation

The source-to-source translation is implemented as a number of passes in CIL
[10] which we had to extend to allow support for XMTC. Fortunately extensions

4

for Cilk were not necessary. We proceed to describe the modifications we made
to the CIL infrastructure, then we present the outlining pass and finally discuss
the clustering pass.

CIL modifications The extensions needed to support the XMTC constructs
were relatively modest. First we needed a new type of statements for the spawn
statement. Adding it to the lexer and parser was relatively easy. What was
longer was extending the internal CIL data structures to allow for this new state-
ment kind and correctly transforming from the abstract syntax-tree structure
(Cabs) to the CIL data structures. The rest of the XMTC-specific constructs
were added through a library include with asm statements.

The second and more important modification, which set back the whole
project, was the default behavior of CIL to flatten variable declarations within
a function, and put them all at the top of the function. While correct for C
code, this transformation was incorrect for XMTC programs because variables
declared inside a spawn statement had different semantics: they are thread local
and each thread has its private copy. Moving such a declaration to the top of the
function makes it a shared variable. Changing this behavior involved modifying
CIL significantly and moving the declarations to the enclosing block instead of
the enclosing function.

Another modification we had to make was to prevent CIL from compiling
the resulting Cilk file using GCC, since its scripts were trying to do that auto-
matically, and there was no obvious option to prevent that. Additionally all of
the passes that came with CIL were turned off, since they were not aware of the
spawn construct and many of them would have not worked.

Outlining Pass Once CIL was in extended as described, the next step was
to implement the closure conversion pass. The first task is to determine which
variables are used in the parallel code and which of them are defined in the serial
part of the code and thus need to be passed as arguments. One exception to this
rule was global variables which are accessible in the outlined function anyways
and don’t need to be passed as arguments. One thing we are currently not doing
is checking whether these variables we are passing as arguments are updated
by the parallel code or not. If they are, we should pass them “by reference”.
This is a limitation but not an important one since arrays which are typically
updated in parallel XMTC code are passed by reference anyways.

After the arguments are determined, the outlined function is created and the
spawn statement is replaced by a for-loop that spawns serially all the parallel
threads and then waits for all of them to terminate. One thing to keep in mind
is that in Cilk there is an implicit sync just before the return statement of every
function, so in some cases it can be omitted.

Clustering We implemented a simple version of clustering that clusters all
the threads into NPROC threads. The first NPROC − 1 clustered threads

5

Listing 4: before clustering
spawn (lo , h i) {

CODE($)
}

Listing 5: after clustering
i n t T = C i l k a c t i v e s i z e ;
i n t a = c e i l ((hi−l o +1)/NPROC) ;
spawn (0 ,T−1) {

i n t L = l o + $∗a ;
i n t U = min (L+a , h i +1);
i n t i ;
f o r (i=L ; i<U; i ++) {

CODE(i)
}

}

Figure 1: Generic Clustering Transformation

get d#ThinThreads
NPROC e thin threads and the last clustered thread gets the remain-

ing thin threads. This creates a slight imbalance since the difference of thin
threads between the last clustered thread and the rest of them can be as large
as NPROC − 1. Alternatively we could have implemented the clustering in
a way to assure that any two clustered threads have the same number of thin
threads, give or take one. We chose the first because it introduces slightly less
overhead and we assume the number of processors to be relatively small com-
pared to the number of thin threads (so an NPROC − 1 imbalance is small).
In Figure 1 we show how the transformation is performed on a generic spawn
statement. Notice that since this is an XMTC to XMTC transformation it has
to happen before outlining.

4 Discussion

Clustering comes at a cost. First of all the amount of parallelism is reduced
since we are effectively reducing the number of threads. This can be an im-
portant drawback when the length of the threads is non uniform: if we have
NPROC threads and one of them is substantially longer than the rest, all but
one processors will remain idle while waiting for the long thread to terminate.
The advantage of having more short threads is that they can be dynamically
scheduled so as to keep most or all of the processors constantly busy, which
achieves load balancing.

For this project we will not worry about load balancing that much since we
will investigate embarrassingly parallel programs that are better expressed in

6

XMTC. In those programs the threads typically have few control structures in
the parallel mode (if statements and loops) that would make some threads run
substantially longer than others.

5 Experiments

All the experiments were embarrassingly parallel programs which are better
expressed in XMTC rather than in Cilk. The resulting Cilk programs (and serial
versions of the programs) were run on an Intel Core 2 Duo T7200 (2.00GHz,
4MB L2 Cache, 677MHz FSB) with 1GB of RAM. The amount of RAM is not
significant though since the datasets were small and when it was needed we ran
the program in a loop to increase the runtime. We run two sets of experiments,
the first with the default level of optimizations and the second one with the -O4
flag. The speedup was computed as the execution time of the serial program
over the execution time of the Cilk program produced by our tool, when run on
2 processors. The slowdown is the percentage of the difference of the runtime
between the Cilk program on one core and the serial program, over the runtime
of the serial program (Slowdown = 100 · TCilk1core−Tserial

Tserial
). All the execution

times are reported in seconds. As we will see the runtime of the clustered version
of our programs ran in almost the same time as the serial processor, when ran
on one processor. This happened because our clustering algorithm effectively
serializes all the execution when run on a single processor (i.e., only one thread
is spawned!).

Array Copy The first program was array copying. The XMTC program
spawns one thread per array element and copies that element. We run the
experiment for two sizes, 10,000 elements and 100,000 elements. Both were
wrapped around a loop that executed the array copying 100,000 times.

For the small data set we run our tool both with the clustering option turned
off (denoted by (nc)) and on. As expected, because the number of threads is
so large and their computation so trivial, without clustering the overhead of
spawning threads dominates. In fact on two cores the version without clustering
ran 55 times slower than with clustering. Moreover the execution times for one
and two cores for the unclustered versions were not much different. When the
execution on two cores was running, one core was active spawning threads and
the other was executing them at a much faster rate, staying idle most of the
time. This clearly happens because all the threads are spawned in a serial loop.
If we compared with a divide and conquer Cilk algorithm we would find that
both cores would be active (even though the performance would still be very
poor).

Also, when the -O4 level of optimizations was used, the program ran faster
on one core than on two. This is not surprising because of how the internal
scheduling of Cilk works: the initial thread spawns a great number of small
threads and the second processor tries to steal work from the bottom of the
stack of the initial thread. This thread stealing introduces overheads that in

7

the case of -O4 optimizations does not outweigh the benefit of running some of
the work on the second processor.

One other important thing to notice is that with clustering, the Cilk program
when ran on a single core ran less than 11% slower than the serial program
compiled with GCC. When we ran the same Cilk program on two cores we got
a speedup of 1.62 for the small dataset and 1.77 for the larger one.

When using optimization level -O4, we got a very small speedup for the
small dataset and a decent one for the larger one. One important point is that
the serial slowdown (Cilk code on one core vs. serial code) was less than 12%.

Array Copy Array Copy (-O4)
10K (×100K) 100K (×100K) 10K (×100K) 100K (×100K)

Serial 4.50 s 44.80 s 0.93 s 9.36 s
1 Core 4.80 s 49.40 s 1.04 s 10.3 s
2 Cores 2.77 s 25.27 s 0.83 s 5.66 s
Speedup 1.62 1.77 1.12 1.65
Slowdown(%) 6.67% 10.27% 11.94% 10.01%
1 Core (nc) 172.81 s – 41.68 s –
2 Cores (nc) 152.70 s – 43.42 s –

Matrix Multiplication This is a simple implementation of Matrix Multipli-
cation, where A[N][M] is multiplied to B[M][N] to give the result R[N][N].
There is no explicit or compiler-inserted blocking in the code, which is a tech-
niques commonly used for this problem to improve cache locality. The serial
code has three nested for loops. The XMTC code spawns N threads, one for
each row of the result array and each thread performs N ∗M multiplications.
Nested spawns are not supported at this time. If they were, the natural way to
write this program would be to spawn N2 threads, one for each element of the
array R. In that case each thread would perform M multiplications.

We run matrix multiplication on two datasets, one with (N, M) = (1024, 1024)
and one with (N, M) = (2048, 2048). Since we are multiplying integers we do
not bother initializing the arrays because the number of cycles for an integer
multiplication does not depend on the values of the operands.

There are a couple of interesting observations for this problem. First, clus-
tering does not affect the performance. This happens because each thread has
O(n2) work, in other words it is relatively long so the overhead for spawning
threads is but a small fraction of the computation time. Second, when we used
the -O4 level of optimizations we got a speedup of more than 2 for 2 cores and a
negative slowdown. After running the experiment several times, we concluded
this was within the error margin and do not hold any statistical confidence. The
only conclusion can be that the clustered and unclustered versions have similar
and near optimal performance.

8

Matrix Multiplication Matrix Multiplication (-O4)
1024×1024 2048×2048 1024×1024 2048×1024

Serial 7.70 s 62.19 s 5.55 s 44.66 s
1 Core 8.46 s 69.15 s 5.64 s 44.61 s
2 Cores 4.30 s 34.74 s 2.88 s 22.24 s
Speedup 1.79 1.79 1.92 2.01
Slowdown(%) 9.86% 11.19% 1.71% -0.11%
1 Core (nc) 8.59 s 69.52 s 5.56 s 44.05 s
2 Cores (nc) 4.37 s 34.90 s 2.81 s 22.17 s
Speedup (nc) 1.76 1.78 1.97 2.01
Slowdown% (nc) 11.53% 11.78% 0.16% -1.37%

Sparse Matrix Multiplication (MatVec In this program the input is a
sparse matrix and a vector and the result is a vector of their multiplication.
The sparse matrix is stored in a 1-D array (only the non-zero values). There are
also two auxiliary arrays. One has for each row of the sparse matrix the place
in the 1-D array which holds the first element of that row. A second auxiliary
array (which has the same size as the 1-D array of values), stores the column
number in the matrix that the corresponding element in the 1-D array holds.
The XMTC program spawns a thread per row of the sparse matrix. For this
problem we only have one dataset of 30,000 elements that we wrap in a loop
of 10,000 and 100,000 iterations. Unlike for the matrix multiplication, the data
is initialized in this problem (which makes the compilation take a long time
because it is initialized in the code).

Running the same dataset a different number of iterations didn’t give us any
surprise. The one with 10 more iterations take 10 times more time in all cases.
The things to notice here is that again clustering makes a very big difference.
The work performed by each thin thread is of the order of n (the size of the
vector) but multiplied by a constant which on average is quite smaller than
1. In other words threads are too short and clustering is very beneficial. Also
with the -O4 level of optimizations the slowdown went up and the speedup went
down (even though the absolute performance increased substantially).

MatVec MatVec (-O4)
30K(×10K) 30K(×100K) 30K(×10K) 30K(×100K)

Serial 11.23 s 112.22 s 5.19 s 51.97 s
1 Core 11.42 s 113.82 s 6.16 s 60.65 s
2 Cores 5.78 s 58.21 s 3.16 s 30.77 s
Speedup 1.94 1.93 1.64 1.69
Slowdown(%) 1.72% 1.42% 18.70% 16.71%
1 Core (nc) 60.85 s 610.60 s 17.26 s 175.65 s
2 Cores (nc) 61.42 s 614.09 s 18.60 s 186.10 s
Speedup (nc) 0.18 0.18 0.28 0.28
Slowdown% (nc) 441.83% 444.09% 232.72% 238.00%

9

discussion Our experiments show that for embarrassingly parallel programs,
translating them automatically from XMTC to Cilk can be done very efficiently
so as to actually get significant speedups relative to the serial programs. More-
over this is done in a modular way, such that the same executable can be run on
one, two, or more processors and take advantage of them (in all of our experi-
ments the results we got for 1 Core and 2 Cores came from the same executable).

6 Related Work

6.1 Source-to-source Tools

There are multiple source-to-source tools performing different types of tasks,
from program improvement [8], to atomicity for Java [6], to database query
translation [7], and many more. CIL [10] is a C intermediate language that has
a number of optimization passes that manipulate the program. At the end the
program is written back to C before it is processed by a compiler. There are
also a few tools that translate code from one programming language to another
[11, 1]. Our tool is unique in that it is the first XMTC to Cilk tool. Its purpose
is to demonstrate the value of adding parallel loops to a language that only
supports parallel function calls.

6.2 Thread Clustering

The only previous work we found on thread clustering was in the thesis of Dorit
Naishlos [9] on her work on the first XMTC compiler. The level of detail is more
advanced there but clustering is used as a compiler optimization for compiling
XMTC code for the XMT architecture. Clustering for our XMTC to Cilk tool
follows the same principles but the details are different: the number of processors
is small and not known at compile time, and the overhead of starting a thread
is significantly larger.

We found some recent work on thread scheduling on multiprocessors. They
also call it thread clustering but their goal is to assign a thread to a processor so
that it will find as much of the data it needs locally. This completely orthogonal
to what we do since we assume all of shared memory has the same latency.

In another work the authors advertise doing thread coarsening [13] which
sounds related to what we do, but in their paper they get some threads as input
and to satisfy a requirement of their computation model, they break them in
smaller threads at compile time. As with any static analysis, they are too
conservative, resulting in a large number of smaller threads, so they describe
optimizations for better analysis to break the threads into larger chunks. While
their motivation is the same as ours, namely to reduce thread overheads due to
too short threads, the two approaches are not related.

10

7 Future work

Implementation Because much time was spent changing CIL so it will sup-
port XMTC, many features were not implemented. First and foremost, nested
spawns in XMTC were not supported. This should be relatively easy to support
since Cilk supports nested parallelism. All that needs to be done is to extend
the outlining CIL pass to work in the case of syntactically nested spawns. The
second limitation of our implementation is that values cannot be passed by
reference to the outlined functions we create. This means that scalar shared
variables that reside on the stack (global variables do not fall in this category)
cannot be updated in the parallel code. Then we would also need to support
the rest of the XMTC statements (ps, psm, and sspawn). Doing that will in-
volve using locks in Cilk and would be an interesting challenge. Note however
that Cilk was designed to work without locks; some guarantees given about the
quality of the scheduling Cilk does, which is one of the major selling points of
Cilk, become void if locks are used in the code.

Experiments We should run similar experiments on more programs, some
including floating point operations, and some involving more irregular com-
putations, such as Breadth-First search. Moreover we should run these same
experiments on the XMT FPGA and the simulator to project what the speed
of a full blown XMT machine would be. This would not serve as evidence that
our implementation is good, but as evidence that the XMT architecture is well
suited for such problems. We would also like to take some of the programs
provided with Cilk, implement them in XMTC, use our tool to produce a Cilk
program and compare the two Cilk programs. We didn’t do that because all
of the Cilk example programs we found were heavily hand-optimized (blocking,
unrolling, etc) and there was not enough time to understand them and write an
XMTC hand-optimized counterpart.

8 Conclusions

We implemented a source-to-source translation of XMTC code to Cilk code
which took an XMTC program with fine-grained parallelism and created a Cilk
program with more coarse-grained threads. The execution times of the Cilk
program didn’t fall behind the serial by much on one processor and achieved
significant speedups on two processors. The results provide evidence that the
Cilk language has a powerful lightweight runtime system, and that the XMTC
language, which is better suited for some types of programs, can harness the
power of Cilk without incurring unreasonable overheads. An other way to look
at these results is that fine grained parallelism can be supported in Cilk by
adding a parallel loop such as the spawn statement of XMTC, and by imple-
menting a thread clustering optimization. In conclusion our work acts as a
strong proof that Cilk could support a powerful SPMD construct such as the
spawn construct of XMTC, providing near optimal performance, without any

11

programmer assistance.

References

[1] Albrecht, P. F., Garrison, P. E., Graham, S. L., Hyerle, R. H.,
Ip, P., and Krieg-Brückner, B. Source-to-source translation: Ada
to pascal and pascal to ada. In SIGPLAN ’80: Proceeding of the ACM-
SIGPLAN symposium on Ada programming language (New York, NY,
USA, 1980), ACM Press, pp. 183–193.

[2] Balkan, A. O., and Vishkin, U. Programmer’s manual for XMTC
language, XMTC compiler and XMT simulator. Tech. Rep. UMIACS-TR-
2005-45, UMIACS, 2006.

[3] Culler, D. E., Karp, R. M., Patterson, D. A., Sahay, A.,
Schauser, K. E., Santos, E., Subramonian, R., and von Eicken,
T. LogP: Towards a realistic model of parallel computation. In Principles
Practice of Parallel Programming (1993), pp. 1–12.

[4] Dongarra, J. J., Otto, S. W., Snir, M., and Walker, D. A message
passing standard for mpp and workstations. Commun. ACM 39, 7 (1996),
84–90.

[5] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementa-
tion of the Cilk-5 multithreaded language. 212–223.

[6] Hindman, B., and Grossman, D. Atomicity via source-to-source trans-
lation. In MSPC ’06: Proceedings of the 2006 workshop on Memory system
performance and correctness (New York, NY, USA, 2006), ACM Press,
pp. 82–91.

[7] Howells, D. I., Fiddian, N. J., and Gray, W. A. A source-to-
source meta-translation system for relational query languages. In VLDB
’87: Proceedings of the 13th International Conference on Very Large Data
Bases (San Francisco, CA, USA, 1987), Morgan Kaufmann Publishers Inc.,
pp. 227–234.

[8] Loveman, D. B. Program improvement by source-to-source transforma-
tion. J. ACM 24, 1 (1977), 121–145.

[9] Naishlos, D. Towards a first vertical prototyping of an extremely fine-
grained parallel programming approach. Master’s thesis, University of
Maryland, College Park, Computer Science Department, 2000.

[10] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W. Cil:
Intermediate language and tools for analysis and transformation of c pro-
grams. In CC ’02: Proceedings of the 11th International Conference on
Compiler Construction (London, UK, 2002), Springer-Verlag, pp. 213–228.

12

[11] Springen, N. L. A source-to-source translator from pascal to c. Tech.
rep., Austin, TX, USA, 1982.

[12] Wen, X., and Vishkin, U. PRAM-On-Chip: 1st commitment to sili-
con. In Proc. 19th Symp. on Parallel Algorithms and Architectures (SPAA)
(2007).

[13] Zoppetti, G. M., Agrawal, G., Pollock, L., Amaral, J. N., Tang,
X., and Gao, G. Automatic compiler techniques for thread coarsening
for multithreaded architectures. In ICS ’00: Proceedings of the 14th inter-
national conference on Supercomputing (New York, NY, USA, 2000), ACM
Press, pp. 306–315.

13

