
Overlap and Synergy in Testing Software Components
Across Loosely-Coupled Communities

Teng Long, Ilchul Yoon, Adam Porter, Alan Sussman and Atif Memon
UMIACS and Department of Computer Science, University of Maryland

{tlong, iyoon, aporter, als, atif}@cs.umd.edu

ABSTRACT
Component integration rather than from-scratch program-
ming increasingly defines software development. As a re-
sult software developers often playing diverse roles including
component provider – packaging a component for others to
use, component user – integrating other providers’ compo-
nents into their software, and component tester – ensuring
that other providers’ components work as part of an inte-
grated system. In this paper, we explore the conjecture that
we can better utilize testing resources by focusing not just on
individual component-based systems, but on groups of sys-
tems that form what we refer to as loosely-coupled software
development communities, meaning a set of independently-
managed systems that use many of the same components.
Using components from two different open source develop-
ment communities that share a variety of common infras-
tructure components, such as compilers, math libraries, data
management packages, communication frameworks and sim-
ulation models, we demonstrate that such communities do
in fact exist, and that there are significant overlaps and syn-
ergies in their testing efforts.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
component-based software, test coverage, test automation;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—software portability, software configura-
tions

General Terms
component dependency graphs

Keywords
component-based software, software integration

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA 2012 Minneapolis, MN USA
Copyright ACM ...$10.00.

Component integration rather than start-from-scratch pro-
gramming increasingly defines software development. As a
result, developers are spending increasing amounts of time
and effort assembling, coordinating and verifying the inter-
actions of ever-larger numbers of independently provided
components over which developers have limited control. To
address this trend, numerous research groups are studying
and developing methods, tools and techniques to support
large-scale, component-based software engineering [4, 14, 15,
16]. The results of these efforts are appearing in specialized
symposia and workshops(See [1] and [2]).

In this paper, we expand on this existing research by fo-
cusing not just on individual component-based systems, but
on groups of systems that form what we refer to as loosely-
coupled software development communities – i.e., indepen-
dently managed software systems that use many of the same
components. We conjecture that such communities are quite
common, forming naturally where functional requirements,
hardware and/or industry standards lead software develop-
ers to draw on common infrastructure components.

Today such loosely-coupled software development groups
work largely in isolation from each other. We believe how-
ever that there are significant overlaps in the work they do
to customize, integrate, and test the components they use.
We also believe that these groups could act in synergistic
ways to share effort and knowledge in ways that improve
components common among the groups.

As a first step in exploring our conjecture that there ex-
ist communities that share common components and that
significant work could be saved by sharing test effort across
these groups, we conduct an initial study focused on two
communities. The first community includesAPR (the Apache
Portable Runtime), a system-independent runtime library,
and four components (flood, managelogs, serf and subver-
sion) that utilize APR for network communication purposes.
The second contains MPICH2, an implementation of the
Message Passing Interface standard [9, 22] for high perfor-
mance computing, and five components that depend on it
(FreePooma, PETSc, ParMETIS, SLEPc and TAO), all of
which can be built on MPICH2 to use its message passing ca-
pabilities. We use the project-provided test suites for these
components to show that there are overlaps (1) in how the
test cases for these components exercise the full component
assemblies, (2) in the code these test cases cover, and (3)
in the bugs they detect. We leverage our previous work on
component dependency graphs (CDGs) [27, 28] that gives us
a formal foundation for studying component-based systems
and communities. In particular, it enables us to represent

1

component provider-user relationships, and to produce op-
erators for computing overlaps and synergies in how compo-
nents get exercised and used.
Through a set of studies on the subject components and

their test cases, we obtain the following preliminary findings:

1. Often the users of a component build and test it on
a broader set of configurations than the component’s
provider does;

2. When a base component is used by another compo-
nent, testing the new component induces significant
code coverage in the base component;

3. When a base component is used by another compo-
nent, testing the new component can invoke functions
in the base component with a broader set of parameter
values than were tested by the base component’s own
tests;

4. When a base component is used by another compo-
nent, faults in the base component are often discover-
able by testing the new system alone;

5. Even if a new system indirectly uses a component (i.e.
through directly using yet another component), faults
in the base component are still likely to be discovered
via testing the other component alone;

Our work makes several initial contributions including:

1. Modeling of loosely-coupled communities based on com-
ponent dependency graphs (CDGs);

2. Formal definitions of criteria to quantify overlaps and
synergies in testing software components assemblies;

3. Careful examination, testing and evaluation of mul-
tiple components from two different communities, as
well as analyses of their testing overlap and synergies,
using several criteria that we propose.

The rest of the paper is organized as follows. We intro-
duce our previous work on modeling of component-based
systems and component dependency graphs, and extend the
dependency relationship to model component assemblies in
Section 2. In Section 3 we formally define some terms to
quantitively model how components are exercised by others
in a component assembly. Section 4 describes objectives,
metrics and experimental settings of our empirical study,
Section 5 presents and analyzes results obtained during the
empirical study, Section 6 surveys related work and in Sec-
tion 7 we conclude with a brief discussion and future work.

2. MODELING COMPONENT ASSEMBLIES
We model the component provider/user/tester relation-

ships using a formal representation of component assem-
blies that we developed in prior work. Our formal repre-
sentation has two parts: a directed acyclic graph called the
Component Dependency Graph (CDG) and a set of Anno-
tations. As illustrated in the example in Figure 1, a CDG
specifies inter-component dependencies by connecting com-
ponents with AND and XOR relationships. For example,
component A in the example CDG depends on component D
and exactly one of either B or C (captured via an XOR node

Version Annotations

Constraints

 (ver(C) == C2) (ver(E) E3)

Component Versions

A A1

B B1, B2, B3

C C1, C2

D D1, D2, D3

E E1, E2, E3, E4

F F1, F2, F3, F4, F5

G G1

*

+ D

B C

*

E

*

F

*

G

A

Figure 1: An Example System Model

represented by +). Annotations include version identifiers for
components, and constraints between components, written
in first-order logic.

We have developed several testing techniques to cover this
model [27, 28, 26]. One specific coverage criterion, relevant
to our work here, is based on the observation that the ability
to successfully test a component c is strongly influenced by
the components on which c directly depends. In CDG terms,
a component c directly depends on a set of components,
DD, such that for every component, DDi ∈ DD, there ex-
ists a path, not containing any other component node, from
the node encoding c to the node encoding DDi. From this
definition, we can obtain relationships, called DD-instances,
between versions of each component and versions of all other
components on which it directly depends. We call this cri-
terion DD-coverage.

We now extend the dependency relationships in the CDG
and DD-coverage for our current work, which includes both
build testing and functional testing. We say that compo-
nent a directly uses component b if a directly depends (as
defined above) on b. Component a indirectly uses compo-
nent f if there exists at least one component b such that
a directly uses b, and b either directly or indirectly uses f .
The number of components on the shortest directed path
between two components is defined as the distance between
those two components. Finally, a component provider makes
a component available for others to use. In Figure 1 each
of the components B, C, D, E, F , and G are provided for
use; component A directly uses B, C, and D; component D
directly uses F , which directly uses G; both B and C di-
rectly use E, which directly uses G; components B, C, and
D indirectly use G. And A indirectly use E, F , and G.

3. MODELING HOW COMPONENTS ARE
EXERCISED

Starting with the definitions in Section 2, we now develop
several formal terms to quantitatively study how compo-
nents get exercised by other components in a component
assembly.

Definition Induced Coverage: Assume component a di-
rectly or indirectly uses component b, and a has a test suite
Ta. In a system where a is successfully built on b, when run-
ning a’s test suite, Ta, the fraction of b’s coverage elements
(lines, branches, function, parameter value, faults, etc.) that

2

get covered is called b’s induced coverage from a , rep-
resented as Ca

b .

To demonstrate the concept of induced coverage, we take
the sub-CDG from Figure 1 that contains components A, B,
C and E as an example, and focus on line coverage. Suppose
each component has a test suite, correspondingly named TA,
TB , TC , and TE , and that there are 10 lines in E’s source
code. When running the four test suites, different lines of E
get covered. Suppose lines 1, 2, 4, 5 get covered by TA, lines
3, 4, 5, 6, 8 get covered by TB , lines 5, 6, 9, 10 get covered by
TC , and lines 3, 4, 5, 7, 10 get covered by TE . The induced
line coverage from these components to component E can
be shown as in Figure 2. Each column represents a line
in E’s source code, and each row shows the corresponding
coverage. A filled blank means the line is covered, and a
blank one means that it is not.

Definition Union of Induced Coverage: When both com-
ponents a and b use c, the union of their induced coverage
to c (Ca

c ∪Cb
c) is defined as the fraction of c’s elements that

is covered by either a or b.

Definition Intersection of Induced Coverage: When both
components a and b use c, the intersection of their induced
coverage to c (Ca

c ∩ Cb
c) is defined as the fraction of c’s

elements that is in both a and b’s induced coverage to c.

Definition Difference of Induced Coverage: When both
components a and b use c, the difference of a and b’s in-
duced coverage to c (Ca

c − Cb
c) is defined as the fraction of

c’s elements that is in a but not b’s induced coverage to c.

CB
E ∪CC

E , CB
E ∩ CC

E and CB
E −CC

E are also demonstrated
in Figure 2.

A

B

C

E

â
B

 U âC

â
B

 @�â
C

â
B

 - â
C

1 2 3 4 5 6 7 8 9 10

E E

E E

E E

Figure 2: Induced Coverage Example

4. EMPIRICAL STUDY
Our vision of community-based testing is based in large

part on our conjecture that there is actionable structure to
the testing efforts of community members. For example, we
believe that there are significant overlaps in the way com-
ponents shared by multiple users are tested. If true, then
in theory such duplicate work could be avoided by exchang-
ing of testing results with no loss of testing effectiveness.
We also believe that different component users test shared
components in unique ways, so the aggregate testing of the
entire community is often broader than that done by indi-
vidual component providers.
We now conduct an initial empirical study, attempting to

formalize and quantify some of these issues in the context

of a few real communities that share a number of compo-
nents. We selected these specific communities because each
component in the community has its own build and func-
tional tests. Our analyses involve executing the test cases
and studying how various execution metrics overlaps across
community members, and also show that some community
members’ efforts are not duplicated, so they can provide
added synergies of test value.

4.1 Research Questions
More specifically, we are interested in answering the fol-

lowing research questions:

RQ1: Overlap: To what extent do community members du-
plicate test effort?

RQ2: Synergies: To what extent does testing by compo-
nent users go beyond that done by the components’
providers?

RQ3: Usage Distance Effects: Do overlap and synergy mea-
sures change as usage distance grows?

To answer these research questions, we first develop con-
crete metrics to quantify the informal concepts of “overlap”
and “synergy”. We treat build and functional testing sepa-
rately due to the disjoint nature of their test artifacts – the
former uses build scripts whereas the latter uses functional
tests.

4.2 Metrics
For build testing, we compare the set of configurations,

an ensemble of components and their versions, on which a
component provider tested a component, to the set of con-
figurations on which component users tested the same com-
ponent. More specifically, for a component Cj , we define
ψ(Ci, Cj) as the set of configurations of Cj build tested by
the developer/tester of component Ci. Note that ψ(A,A)
is valid – it represents the set of configurations on which
component A is build tested by the developer of A. Having
conveniently defined ψ to return a set, we can now use the
usual set intersection operation ∩ to study the overlaps in
build testing; and set union ∪ to study the synergies in build
testing by multiple testers.

For functional testing, we use several criteria to measure
the overlaps and synergies among functional test cases. In
particular, we use code (line and branch) coverage, param-
eter value coverage, and faults detected. Without loss of
generality, we use a matrix representation for code cover-
age and faults detected. For parameter value coverage, we
record all values observed for each numeric parameter.

More formally, given a test suite TS(Ci) for a component
Ci that invokes a set of functions F of component Cj , we
record the following artifacts:

• A code coverage matrix that, for each test case in TS(Ci),
records the number of times a coverage element (line
and branch) in Cj was covered.

• Parameter values, a list of values, one element for each
numeric parameter of a function f ∈ F .

• A fault matrix that records whether each test case in
TS(Ci) passed or failed, and the fault detected.

Given these artifacts, we compute several metrics: (1)
induced code coverage for line and branch from testing a
base component and its users, (2) ranges of parameter values
passed to functions of a base component when running the

3

flood

*

*

*

manage logs

*

*

ser f

*

*

subvers ion

*

n e o n BerkeleyDB

*

apr_util

*

*

ap ropenss l sql i te3 zlib

GNU Compiler

Ubuntu

Figure 3: APR CDG

FreePooma

*

*

*

SLEPc

*

*

TAO

*

ParMetis

*

PETSc

*

python

lapack

*

MPICH2blas

GNU Compiler

*

ubun tu

Figure 4: MPICH2 CDG

test cases of its user components, and (3) number of faults
detected in a base component by running the test cases of
its user components.

4.3 Subject Components
We chose to study two widely-used open source software

components: APR and MPICH2. APR1 (Apache Portable
Runtime) is widely used in the web services community, for
instance, by components such as the Apache HTTP server
and the Subversion version control system. MPICH22, from
the high performance computing (HPC) community, is an
implementation of the Message Passing Interface(MPI) stan-
dard that is used to implement scientific applications on
many high performance and parallel computing platforms.
We further identified several user components of APR and

MPICH2 – i.e, the components use (or, depend on) APR
and MPICH2. In this study, the user components of APR
include flood, a profile-driven HTTP load tester that collects
important performance metrics for websites, managelogs, a
log processing program used with Apache’s piped logfile
feature, serf, a C-based HTTP client library that provides
high performance network operation with minimum resource
usage, and subversion, a widely used version control sys-
tem. The user components of MPICH2 include FreePooma,
a C++ library that supports element-wise data-parallel and
stencil-based physics computations using single or multiple
processors, PETSc, a suite of data structures and routines
for the scalable (parallel) solution of partial differential equa-
tions, and ParMETIS, a parallel library that implements
many algorithms for partitioning unstructured graphs and
meshes.
SLEPc, a library for solving large-scale sparse eigenvalue

problems on parallel computers, and TAO, a library for
large-scale optimization problems, are user components of
the PETSc component, and therefore they indirectly use
MPICH2. Figure 3 and 4 show the CDGs for APR and
MPICH2, respectively. In the CDGs, we highlighted the
components we focus on in this study.

4.4 Experimental Operation
APR and MPICH2 provide their own test cases and for

1http://apr.apache.org
2http://www.mcs.anl.gov/research/projects/mpich2

this study we execute the test cases for each component,
measuring how the test cases happened to cover APR and
MPICH2 using each of the metrics described in Section 4.2.
Our goal was to better understand 1) how the testing of
a given higher-level component in a CDG induces coverage
in lower-level components it uses, and 2) how that induced
coverage compares to that obtained when the lower-level
component was tested with its own test cases.

For MPICH2 we further broke down the test data by us-
age distance – i.e., higher-level components that directly use
MPICH2 are differentiated from higher-level components that
indirectly use MPICH2 because there are intermediate com-
ponents in the CDG between the top level component and
MPICH2. We did this specifically for fault detection, aiming
to see if and how testing behaviors changed as the distance
between the user components and MPICH2 increases.

All experiments and measurements are conducted on vir-
tual machines with 1GB RAM and a single core CPU sim-
ulated by Oracle VirtualBox 4.1.6. Components are built
using the GNU compilers version 4.4.3 (which includes gcc,
g++ and gfortran), and coverage information is collected
by lcov 1.9. Code coverage information is collected for two
operating systems: Ubuntu 10.04.3 32bit and FreeBSD 8.2
32bit. Since we have observed very similar code coverage on
both systems, we conducted experiments to collect param-
eter value coverage and fault detection only on the Ubuntu
platform.

5. DATA AND ANALYSIS
Based on our model of component assemblies defined in

Section 2 and the metrics in Section 4.2, we analyzed data
obtained from component development documentation and
test artifacts from our empirical study to understand the
overlap and synergies of shared test effort in loosely-coupled
communities. In Section 5.1 we first identify configurations
on which subject components were build-tested by compo-
nent providers and users, then we discuss the possibility of
broadening the set of tested configurations and saving test
effort by sharing build test results in communities. In Sec-
tion 5.2 we analyze the coverage information collected by
running functional tests of subject components and also user
components of the subject components.

5.1 Build Testing
For each component Cj in the CDGs in Figures 3 and 4,

we first investigated ψ(Ci, Cj) – i.e., we examined configu-
rations build-tested by component providers and also config-
urations tested by component users. This was accomplished
by carefully inspecting documents provided by component
providers (e.g., HTML documents, Wiki pages, user manu-
als, installation guides). In some cases, component providers
do not clearly specify configurations on which their com-
ponents build successfully. (e.g., component providers can
simply list prerequisite components.) When we do not have
sufficient information to determine working configurations,
we examined files such as Makefile to find relevant informa-
tion. Table 1 lists rough information on configurations on
which subject components can be built successfully.

From Table 1 we saw that none of the components are
regularly build-tested on more than a handful of configu-
rations. Although build tests for several components are
performed systematically using automatic build tools such
as buildbot or scripts for dedicated machines (e.g., subver-

4

Component OS (tested by providers) Prerequisite components Remarks
APR UNIX variants, Windows, Netware C compiler

MAC OS X, OS/2
flood Linux, Solaris APR, C compiler known to work on FreeBSD
managelogs Linux APR, C compiler tested with apr 0.9, 1.3
serf UNIX variants APR, C compiler
Subversion Linux, FreeBSD, Windows, APR, C compiler, use buildbot for build test

OpenBSD, MAC OS X, Solaris SQLite, libz
MPICH2 Linux, Cygwin, AIX (on IBM Blue Gene/P) C, C++, Fortran compilers nightly build test for GNU, Intel,

MAC OS X, Solaris PGI, Absoft compilers
PETSc AIX, Linux, Cygwin, FreeBSD, C, C++, Fortran compilers nightly build test for platforms

Solaris, MAC OS X MPI library
FreePooma AIX, Linux, Solaris MPI library, C++ compiler
ParMETIS Linux MPI library, C compiler
TAO Cygwin, MAC OS X, Linux, FreeBSD PETSc, C++ compiler

AIX, Solaris, UNICOS(on Cray T3E)
SLEPc Linux C, C++, Fortran compilers

PETSc

Table 1: Configurations tested by developers

sion, MPICH2 and PETSc), the configurations are mostly
focused on recent versions of operating systems and the re-
quired components.3 One reason is that developers usually
choose to focus their limited resources on testing their com-
ponents with recent versions of required components, under
the belief that users’ configurations must be updated to use
recent versions of require components. However, this is not
necessarily true.
We also observed that successful component builds were

often tested on a wider set of configurations by component
users than by component providers. For example, subversion
is build-tested on top of virtual machines hosting different
operating systems, as listed in Table 1. Since subversion re-
quires APR, developers have to first build APR successfully
for the configurations, and some of those configurations are
not explicitly tested by the APR developers. For example,
build test results from the subversion developers can be used
to increase the set of configurations for which building APR
is known to be successful.
Even though the number of configurations tested by com-

ponent users is sometimes small, that information could be
still valuable if the configurations do not commonly appear
in the community. For example, PETSc is tested on the
AIX operating system, which is not tested by the nightly
build system for MPICH2. Although the PETSc develop-
ers do not test PETSc for all configurations where MPICH2
can be built, the test results can be useful to inform other
users of the configuration set where MPICH2 is known to
build successfully. In addition, the versions of components
used in the configurations to test PETSc are not always the
same as the ones used by the component developers. For
example, the GNU C compiler version used by the MPICH2
developers is different from the version used by the PETSc
developers. Test results from the PETSc developers can
therefore provide useful information to the MPICH2 devel-
opers, because success in building a component can depend
on the versions of the required components.

5.2 Line/Branch Coverage
This analysis of functional testing examined how line and

3Note that in the table we only show operating systems and
compiler languages for the configurations and did not specify
compiler vendors or versions.

...

1969
936

2188
951

386
288

Line:
Branch:

â
A

â
*

â�Uâ

A

A

AA
* A

â�- âAA
* A

(a) Ubuntu

...

1334
590

1992
835

593
372

â
A

â
*

â�Uâ

Line:
Branch:

A

A

AA
* A

â�- âAA
* A

(b) FreeBSD

Figure 5: Induced Coverage of APR

branch coverage changed depending on which component’s
tests were being run. Table 2 shows induced coverage of
APR and MPICH2 as measured by the lcov tool, on two
OS platforms. The “Indirect Test” columns show the union
of induced coverage from all the test suites of their direct
users, while the “Self Test” columns show coverage from
just APR’s or MPICH2’s own test suites. “Joint” show the
union of induced coverage from all components, while “Ex-
tra” shows the difference between induced coverage of APR
and MPICH2 from their direct users and their own tests.
Figures 5 and 6 show the actual number of lines/branches
in the induced coverage of both components on two oper-
ating systems. CA

A and CM
M are the induced coverage from

APR and MPICH2’s own tests, while C∗

A and C∗

M refer to
the union of coverage induced from all direct users of the
base component in the subject systems.

5

APR
Indirect Test Self Test Joint Extra
branch line branch line branch line branch line

Ubuntu 27.5 36.5 41.9 58.9 48.3 64.4 6.4 5.5
FreeBSD 28.1 36.6 33.2 47.1 41.9 55.5 8.7 8.4

MPICH2
Indirect Test Self Test Joint Extra
branch line branch line branch line branch line

Ubuntu 10.6 15.3 39.1 47.8 39.3. 48.0 0.2 0.2
FreeBSD 10.4 15.2 39.2 47.2 39.5 47.5 0.3 0.3

Table 2: Induced Coverage of APR and MPICH2(%)

APR
One Two Three Four

branch line branch line branch line branch line

Ubuntu 16.05 18.23 6.75 9.05 1.51 3.50 3.20 5.68
FreeBSD 16.36 18.42 7.04 9.06 1.54 3.48 3.19 5.64

MPICH2
One Two Three

branch line branch line branch line

Ubuntu 2.70 3.15 6.11 8.61 1.80 3.54
FreeBSD 2.82 3.12 5.75 8.55 1.82 3.53

Table 3: Induced Coverage Distribution of APR and MPICH2’s users (%)

...

19548

13828

9009

5013

126

103

Line:
Branch:

â
M

â
*

â��Uâ��

M

M

MM
* M

â��-â��MM
* M

(a) Ubuntu

...

19305
14006

8957
4872

150
128

Line:
Branch:

â
M

â
*

â��Uâ��

M

M

MM
* M

â��-â��MM
* M

(b) FreeBSD

Figure 6: Induced Coverage of MPICH2

The results of this analysis show that the user components
together achieved substantial coverage, but not as much cov-
erage as the test suites of the base components did. How-
ever, the user components provided at least some additional
coverage not achieved by the base components’ tests. The
extra coverage for MPICH2 is small, because MPICH2 is an
implementation of a industry standard with a standard set
of well-documented and widely-used API, and as a result
has a very thorough test suite.

Our second analysis examined how the overall coverage
achieved by testing multiple user components broke down
by the component that was doing the testing, i.e., by which
component’s tests were being run. Table 3 shows the fraction
of APR’s and MPICH2’s code that are covered by one, two,
three or four of the upper level components, respectively, for
branch and line coverage on two different platforms.

The results of this analysis suggest that for the APR ex-
ample while there was some overlap in coverage from dif-
ferent users of APR, the tests of different users tended to
cover APR’s functionality in different ways. More specifi-
cally, among all the lines or branches covered by the test
suites of the users of APR, about half of them were covered
by the tests of only one component. For MPICH2, since it
is an implementation of the MPI standard, there are a set
of functions that are used by almost all MPI programs, such
as MPI init and MPI finalize. Thus we observed more
overlap of coverage among user components of MPICH2,
compared to the overlap between user components of APR.
However, there was still around 20% of induced coverage
from the users that were covered by only one user’s tests,
which again shows that different users have different ways
of using the base component.

Since we got very similar results on both the freeBSD and
Ubuntu platforms, we only considered the Ubuntu for the
subsequent studies.

5.3 Parameter Value Coverage

6

APR flood svn serf managelogs Joint

of value range-extended parameters 13 38 11 11 62
Total # of numeric parameters 62 85 59 35 123

MPICH PETSc FreePooma ParMETIS SLEPc TAO Joint

of value range-extended parameters 13 1 10 3 18 26
Total # of numeric parameters 247 55 269 140 246 302

Table 4: Parameter values passed from user component tests are sometimes outside the range of values tested
by the test suites for base components.

To analyze values of individual parameters passed to func-
tions in base components (i.e., APR and MPICH2), we in-
strumented all functions of APR and MPICH2 if they have
at least one numeric parameter. We then ran the test suites
of APR and MPICH2, and also the test suites of their users
(See Figures 3 and 4). We collected the information about
the parameter values passed into the instrumented func-
tions, to see how the patterns of such values differed across
the various test suites.
We observed that the test cases for user components often

invoked functions in APR and MPICH2 (the base compo-
nents) with values outside the range of values covered by
the base component developers’ test suites. In Table 4, for
each base component, we show the total number of numeric
parameters in the functions invoked while running test cases
for the user components, and also show the number of pa-
rameters for which values tested by the user components
were outside the range of values covered by the test suites
of the base components. The rightmost column (Joint) in
the figure shows the total number of parameters tested by
at least one user component.
For the APR component, 180 numeric parameters were

covered by running both the test suites of APR and its user
components. Among the parameters, 123 were covered by
running only the test suites of user components, and param-
eter value ranges were extended for 62 parameters. That is,
for the range-extended parameters, there was at least one
value that is greater than the maximum value (or, smaller
than the minimum value) covered by APR’s own test cases.
It is noteworthy that 14 parameters were not covered by
any test case of APR but were tested by the test cases of
one or more user components. For the MPICH2 compo-
nent, 302 out of 762 numeric parameters were covered by
the user components and the value ranges were extended
for 26 parameters. For MPICH2 there was no parameter
this is covered by testing user components but not covered
by the tests of the base component. Again, that is because
MPICH2 contains many test cases to check compliance of
the implementation to the MPI standard.
These results imply that boundary values for some param-

eters were not considered when base component developers
created their test cases, or that user component developers
used incorrect or unexpected parameter values. We do not
currently have information on the relationship between the
correctness of the functions and specific parameter values
used in user components’ test cases, and also we do not as-
sume that extended value ranges from user components are
better in quality than the value range of base components.
However, our results suggest that base component develop-
ers can learn more about the actual uses of their components

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

M
P

IC
_Isend_ft/count

M
P

IC
_Isend/count

H
Y

D
_pm

ci_w
ait_for_com

pletion/tim
eout

M
P

ID
_R

ecv_init/rank

stdoe_cb/buflen

M
P

ID
_R

ecv_init/datatype

M
P

ID
I_C

H
3U

_R
ecvq_F

D
U

_or_A
E

P
/tag

nt_m
em

cpy/len

M
P

ID
_nem

_lm
t_R

ndvS
end/data_sz

M
P

ID
_S

tartall/count

H
Y

D
_uiu_stderr_cb/buflen

M
P

ID
_S

end/tag

M
P

ID
_S

end_init/datatype

M
P

ID
_S

end_init/tag

M
P

ID
_Isend/tag

M
P

ID
_R

ecv_init/tag

H
Y

D
_uiu_stdout_cb/buflen

M
P

ID
_Irecv/tag

M
P

ID
_S

end_init/rank

M
P

ID
_R

ecv/tag

M
P

ID
I_Isend_self/tag

M
P

IC
_Irecv/count

M
P

ID
_R

ecv_init/count

M
P

ID
_G

et_processor_nam
e/nam

elen

M
P

IC
_Irecv_ft/count

P
ar

am
et

er
 V

al
ue

s

Parameter Value Distribution

mpich
freepooma

parmetis
petsc
slepc

tao

Figure 8: MPICH2 Parameter Value Distribution

if they are provided with parameter value information from
user components. Such information could be used to reduce
developer efforts to create test cases, if developers and users
in a community share information about parameter value
coverage.

Table 4 shows the number of value range-extended pa-
rameters, but that information by itself does not say that a
broader set of test values is used by user components than
by the base component test suite. For example, an user
component may test a base component function with only
one value outside the value range covered by the test suite
of the base component. Therefore to look in more details at
the actual parameter values covered by the base component
test suites and by the user components’ test suites, we show
the distribution of parameter values covered by individual
subject components in Figures 7 and 8.4

In the figures, the x-axis is pairs of function-name/parameter-
name in the base components, while the y-axis is the values
passed into the function from running the test suites of the
base and user components. For presentation purposes, we
only showed parameters for which value coverage was ex-
tended by user components. The y-axis is log-scale because
of the wide range of parameter values, so we also do not
show parameters values less than or equal to 0. In each
graph, the parameter values covered by the base component

4We omitted 5 APR parameters that represents the time
data type, and 1 MPICH2 parameter that is the ‘argc’ pa-
rameter of a program that uses MPICH2.

7

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

serr/status*****

apr_atom
ic_xchg32/val

apr_pstrndup/n

apr_pm
em

dup/n*****

apr_gethostnam
e/len*****

m
ake_array_core/elt_size

im
pl_pollset_poll/tim

eout

apr_allocator_m
ax_free_set/in_size*****

apr_strftim
e/m

ax

apr_cpystrn/dst_size

apr_file_lock/type

apr_file_transfer_contents/to_perm
s

setptr/pos

apr_hash_get/klen

apr_array_m
ake/elt_size

apr_off_t_toa/n

apr_proc_detach/daem
onize*****

apr_m
m

ap_create/size

apr_unix_perm
s2m

ode/perm
s

fill_out_finfo/w
anted

apr_file_attrs_set/attributes*****

get_revent/event

apr_signal/signo

apr_socket_sendv/nvec*****

find_entry/klen

apr_poll/tim
eout

call_resolver/port

apr_pollset_poll/tim
eout

apr_fnm
atch/flags

apr_atom
ic_cas32/w

ith

apr_allocator_alloc/size*****

apr_file_attrs_set/attr_m
ask*****

apr_m
m

ap_offset/offset

apr_palloc/in_size

apr_pstrm
em

dup/n*****

apr_file_w
rite_full/nbytes

apr_sockaddr_info_get/port

apr_hash_set/klen

apr_procattr_detach_set/detach*****

apr_pstrcatv/nvec*****

apr_array_m
ake/nelts

apr_file_perm
s_set/perm

s*****

apr_file_read_full/nbytes

m
ake_array_core/nelts

apr_stat/w
anted

apr_ltoa/n*****

apr_getopt_init/argc

apr_dir_m
ake_recursive/perm

conv_10/num

apr_filepath_get/flags

apr_file_append/perm
s

allocator_alloc/in_size

apr_socket_listen/backlog

apr_generate_random
_bytes/length

alloc_array/m
ax

apr_socket_tim
eout_set/t

P
ar

am
et

er
 V

al
ue

s
Parameter Value Distribution

apr
flood

managelogs
serf
svn

Figure 7: APR Parameter Value Distribution

are aligned to a vertical grid line, and values covered by user
components are depicted on the right side of the line in the
order shown in the graph legend.
In the figures, we observe that user components often test

functions in the base components with a larger set of pa-
rameter values. For the APR component, svn tested many
APR functions with diverse values, compared to the values
tested by APR’s test suites. For example, the APR test
suite used only -1 and 5 as the values of the klen parame-
ter for the function apr hash get, but the svn test suite used
35 different values between -1 and 56, including 0. For the
MPICH2 component, we see that the MPICH2 test suites
test itself uses many parameter values. This is not surpris-
ing, because, as previously noted, MPICH2 developers must
do rigorous testing to ensure compliance with the MPI stan-
dard. While it is true that the number of different parameter
values tested does not always increase overall test quality,
sharing test results from component users with component
developers can help the developers identify faults, especially
if specific parameter values are associated with the faults.
We also observe that there are APR functions tested by

only user components. In Figure 7, such function-parameter
pairs are indicated by appending“*****”to the x-axis labels.
For example, the function apr pmemdup in the APR com-
ponent is not tested by the APR test suite, although the
function is invoked with many values by the test suites of
flood, serf, and svn.
Furthermore, we found that different user components in-

voke different functions of a base component. For example,
the managelogs component heavily invoked the APR func-
tion apr file write full but the function is not invoked from
serf. That is, we conjecture that parameter value distri-
bution can provide useful information about the actual us-
age patterns of the base component by other components.
If component users in a community are willing to share
parameter value distribution information with component
providers, both sides will be rewarded, because providers
can use the information to improve the quality of their com-
ponents and users will end up using more thoroughly tested
components.

5.4 Fault Detection

By now we have observed significant induced coverage to
the base components from testing their users, including both
code coverage and parameter value range coverage. Even-
tually we want to ask: will such coverage help detect faults
within the components? To answer this question, we seeded
faults to one base component, and observed whether such
faults were detected when running the test suites of both the
component that contained the seeded faults and the compo-
nent(s) that directly or indirectly used it.

Given that a significant number of faults must be seeded
and tested individually to ensure the validity of our study,
and that each round of testing for all components may be
very time consuming (as long as an hour for each fault in our
study), our subject system for this analysis was limited to a
sub-CDG from Figure 4. The sub-CDG included MPICH2
as the base component, PETSc as a component that directly
uses MPICH2, and TAO and SLEPc as components that
indirectly use MPICH2 through PETSc. Since MPICH2 is
a parallel computing library, two categories of faults were
seeded to simulate real-world faults, which were:

1. operator faults: a change of an operator in the source
code, including both arithmetic operators (’+’, ’-’, ’*’
and ’/’) and comparison operators (’>’, ’<’, ’ !=’, ’>=’,
’<=’ and ’==’).

2. constant faults: a change of a constant value defined
in macros in the source code. Non-zero constants are
changed to zero, and vice versa.

In order to choose the locations to seed faults in an un-
biased way, first we found all lines in the source code of
MPICH2 that were covered by at least one of the four sub-
ject components. Then for each such opportunity, we ran-
domly generated a probability value between 0 and 1. When
the probability exceeded a given threshold, we chose that
line to seed a fault. Since there were far more opportunities
for operator faults than constant faults, we used different
thresholds for the two fault categories. In our study, there
were 6516 opportunities to seed operator faults, and 16 op-
portunities to seed constant faults. To generate a reasonable
number of faults that covers both categories effectively, the
probability threshold was set as 0.985 for operator faults,

8

...

15 9 63

MPICH2

PETSc

TAO

SLEPc

Figure 9: Test results from all components
on 112 faults seeded into the MPICH2 source
code.

and 0.0 for constant faults. We included all opportunities
for constant faults given that their total number was very
small. As a result, 96 opportunities for operator faults and
all 16 opportunities for constant faults were chosen.
The testing results are shown in Figure 9. Each four boxes

in a column represents the test results for the four compo-
nents built on/from the source code of MPICH2 which has a
single fault seeded. A filled box means the fault is detected
by testing the corresponding component, while a blank box
means the fault is not detected. Table 5 presents a summary
of the results. Several observations can be made from the
results:

1. Among all 112 faults seeded, 87 of them were detected
by MPICH2’s own test suite, 24 of them were detected
by testing its direct user (PETSc), and 24 of them were
detected by testing its indirect users (TAO & SLEPc).

2. All faults detected by direct users were also detected
by indirect users.

3. All faults detected by users were also covered by the
test suite of the base component.

The first observation shows that testing MPICH2’s users
alone can detect about 20% of all seeded faults. Remember
all faults were seeded in the code that were covered by at
least one component. Considering the fact that testing users
alone are covering about 15.6% lines of MPICH2’s source
code, while the joint of all components’ induced line coverage
is 48.0% (refer to Table 2), The probability that a fault is
seeded in the code covered by users is about 30%. Thus
the result of fault detection is roughly consistent with code
coverage.
The second observation implies that faults are unlikely to

be hidden by distance in the CDG. In other words, faults in
a base component are still discoverable by testing users that
are far in the CDG from the component.
Though no new faults are detected by users comparing

to MPICH2’s own tests, The third observation itself is not
hard to explain. From Table 2 we can see that only 0.2%
of MPICH2’s code is covered exclusively by its users, while
its own tests are covering 47.8% lines. Thus the probability
that a fault is seeded in the code which is exclusively covered
by users is about 0.004. When choosing around 100 faults
uniformly among the code covered by either component, it
is fully possible that no faults are seeded in such portion of
MPICH2.
However, it is worth mentioning that we are only testing

one of MPICH2’s direct users and two indirect users for fault

detection. In the real-world high performance community,
far more components are using MPICH2, and we can expect
more code to be covered exclusively by its users. In future
work we will include more subject components and estimate
the possibility of detecting new faults by users.

5.5 Threats to Validity
Like any other experiment, this empirical study has limi-

tations that one should consider when evaluating its results
and conclusions. The primary threats to validity for this
study are external, involving subject and process representa-
tiveness. We chose APR, most of whose users are lightweight
network applications, and MPICH2, whose users are mostly
scientific computing libraries and applications. Those two
categories of components do not necessarily represent the
features of all loosely-coupled communities. Also, we test all
components using their published default test suites, most
of which are unit tests, and some of them are very limited
(e.g., those for PETSc and SLEPc). More intensive testing
with wider coverage is likely by the component developers.

Threats to internal validity includes factors that affect
testing components without the developers’ knowledge. It
is the nature of component-based systems that their func-
tionality is affected by how their base components were con-
figured and built, as well as the compilers they used and
operating systems they were built on. To limit this threat,
we tried to use the same set of tools and base components,
with the same versions, to build MPICH2 and APR on both
Ubuntu and FreeBSD.

Last, threats to validity may exist when we chose the three
metrics. Code coverage is not the only measurement of ef-
fectiveness of testing, a broader parameter value range does
not necessarily lead to more thorough testing, and the re-
sults of detecting seeded faults cannot fully simulate fault
coverage in real-world development.

6. RELATED WORK
Our work focuses on component-based software systems.

The components are owned and developed by loosely-coupled
developer teams, so overall control over the components is
distributed. Testing of product line architectures has simi-
larities to our work. Those architectures provide designs for
families of related applications that share common compo-
nents; these are exactly the types of applications that we are
targeting [21, 11, 13]. The difference between product lines
and our notion of loosely coupled self-organizing software
development communities is that the component structures
and architecture are imposed in a top-down manner in prod-
uct lines, whereas our work evolves a bottom-up structure.
Product line components are owned by one organization, so
there is central control. Most often, any information repos-
itories for these components are centralized, making their
management simpler.

Many popular projects distribute regression test suites
that end-users run to evaluate installation success. Well-
known examples include GNU GCC [12], CPAN [5], and
Mozilla [24]. Users can, but frequently do not, return the
test results to project staff. Even when results are returned,
however, the testing process is often undocumented and un-
systematic. Developers therefore have no record of what was
tested, how it was tested, or what the results were, resulting
in the loss of crucial information.

Auto-build scoreboards monitor multiple sites that build/test

9

Faults Seeded Base PETSc TAO & SLEPc Joint Extra

Operator Faults 96 75 21 21 75 0
Constant Faults 16 12 3 3 3 0

All Faults 112 87 24 24 87 0

Table 5: Summary of Fault Detection Results

a software system on various hardware, operating system,
and compiler platforms. The Mozilla Tinderbox [25] and
ACE+TAO Virtual Scoreboard [8] are examples of auto-
build scoreboards that track end-user build results across
various volunteered platforms. Bugs are reported via the
Bugzilla issue tracking system [23], which provides inter-
bug dependency recording and integration with automated
software configuration management systems, such as CVS or
Subversion. While these systems help to document multiple
build processes, deciding what to put under system control
and how to do it is left to users.
Online crash reporting systems, such as the Netscape Qual-

ity Feedback Agent [19] and Microsoft XP Error Report-
ing [18], gather system state at a central location when
fielded systems crash, simplifying user participation by au-
tomating parts of the problem reporting process. Orso et
al. [20] developed GAMMA to collect partial runtime in-
formation from multiple fielded instances of a software sys-
tem. GAMMA allows users to conduct a variety of different
analyses, but is limited to tasks for which capturing low-
level profiling information is appropriate. One limitation of
these approaches is their limited scope, i.e., they capture
only a small fraction of interesting behavioral information.
Moreover, they are reactive, meaning the reports are only
generated after systems crash, rather than proactive in at-
tempting to detect, identify, and remedy problems before
users encounter them.
Distributed continuous QA environments are designed to

support the design, implementation, and execution of re-
mote data analysis techniques such as the ones described
above. For example, Dart [17, 7] and CruiseControl [6] are
continuous integration servers that initiate build and test
processes whenever repository check-ins occur. Users install
clients that automatically check out software from a remote
repository, build it, execute the tests, and submit the re-
sults to the Dart server. A major limitation of Dart and
CruiseControl, however, is that the underlying QA process
is hard-wired, i.e., other QA processes or other implementa-
tions of the build and test process are not easily supported.
Although these projects can provide some insight into

fielded component behavior, they have significant limita-
tions. For example, many existing approaches are reactive
and have limited scope (e.g., they can be used only when
software crashes or focus only on a single, narrow task),
whereas effective measurement and analysis support needs
to be much broader and more proactive, seeking to col-
lect and analyze important information continuously, before
problems occur. Prior approaches also limit developer con-
trol over the measurement and analysis process. Although
developers may be able to decide what aspects of their soft-
ware to examine, some usage contexts are evaluated multiple
times, whereas others are not evaluated at all.
Although we are, to our knowledge, the first to investi-

gate the idea of loosely-coupled communities and their po-

tential synergies, other researchers have begun to examine
the notion of self-organizing software development teams.
For example, as social media gain increasing popularity,
researchers have started to discuss the impact that social
media has on software development, especially on enabling
new ways for software teams to form and work together [3].
Leveraging the tools enabled by social media, individual de-
velopers can self-organize within and across organizational
boundaries; software development communities may emerge
centered around new technologies, common processes and
target markets. Social media will also allow companies con-
sisting of individuals to conceive of, design, develop, and
deploy successful and profitable product lines.

7. CONCLUSIONS
This work is driven by our research conjecture – that in the

context of loosely-coupled software development communi-
ties it may be profitable to optimize testing processes across
multiple projects, rather than within individual projects as
is generally done today.

To begin exploring this speculative idea, we have con-
ducted an initial study of two open source software develop-
ment communities. Overall the results of these various anal-
yses suggest that the test cases designed and run by com-
ponent users can be individually less comprehensive than
those designed and run by component providers, but in some
cases can exhibit new behaviors not covered by the original
provider’s test cases. Although preliminary, this finding is
interesting and justifies experimenting with other existing
testing techniques. One example of such a technique is carv-
ing [10], which could be used to extract test cases, specific
to a lower-level component from the test cases designed for
a higher-level component that uses the lower-level one. In
addition, we have found that testing done at different levels
in a CDG by different components for the same base com-
ponent appear to be complementary. It remains to be seen,
however, whether and how those differences might or might
not dissipate as more higher-level components are added to
a community. That is, as the number of higher-level com-
ponents using a given lower-level component increases, the
combined higher level test cases may begin to behave in the
aggregate like a high quality test suite for the lower-level
component. Finally, these preliminary results suggest that
test results from the higher level components might provide
useful feedback for understanding usage patterns or opera-
tional profiles from a component user’s perspective. Com-
ponent developers could use this feedback to improve their
own test suites.

In our future work we will investigate the benefits of shar-
ing test artifacts across additional software development com-
munities, both for build testing and for various types of func-
tional testing. We also plan to build testing tools and data
repository infrastructure, and modify existing testing tools,
to enable both component providers and users to benefit

10

from all their testing efforts. The overall goal is to enable
leveraging all the testing efforts within a community to im-
prove the quality of their components.

8. REFERENCES
[1] CBSE ’11: Proceedings of the 14th international ACM

Sigsoft symposium on Component based software
engineering, New York, NY, USA, 2011. ACM.
5941101.

[2] WCOP ’11: Proceedings of the 16th international
workshop on Component-oriented programming, New
York, NY, USA, 2011. ACM. 5941101.

[3] A. Begel, R. DeLine, and T. Zimmermann. Social
media for software engineering. In Proceedings of the
FSE/SDP Workshop on the Future of Software
Engineering Research, November 2010.

[4] A. Brown and K. Wallnau. The current state of cbse.
Software, IEEE, 15(5):37 –46, sep/oct 1998.

[5] Comprehensive Perl Archive Network (CPAN).
http://www.cpan.org, 2010.

[6] Cruisecontrol. http://cruisecontrol.sourceforge.net/,
2010.

[7] Dart: Tests, reports, and dashboards.
http://public.kitware.com/dart/HTML/index.shtml,
2011.

[8] Doc group virtual scoreboard.
http://www.dre.vanderbilt.edu/scoreboard/.

[9] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A
message passing standard for MPP and workstations.
Commun. ACM, 39(7):84–90, July 1996.

[10] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and
J. Dokulil. Carving differential unit test cases from
system test cases. In SIGSOFT FSE’06, pages
253–264, 2006.

[11] E. Engström and P. Runeson. Software product line
testing - a systematic mapping study. Inf. Softw.
Technol., 53:2–13, January 2011.

[12] GNU GCC. http://gcc.gnu.org, 2010.

[13] M. F. Johansen, O. Haugen, and F. Fleurey. A survey
of empirics of strategies for software product line
testing. IEEE International Conference on Software
Testing Verification and Validation, pages 266–269,
2011.

[14] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Perform. Eval., 67:634–658, August 2010.

[15] S. Mahmood, R. Lai, and Y. Kim. Survey of
component-based software development. Software,
IET, 1(2):57 –66, april 2007.

[16] S. Mahmood, R. Lai, Y. Soo Kim, J. Hong Kim,
S. Cheon Park, and H. Suk Oh. A survey of
component based system quality assurance and
assessment. Inf. Softw. Technol., 47:693–707, July
2005.

[17] A. M. Memon, I. Banerjee, N. Hashmi, and
A. Nagarajan. DART: A framework for regression
testing nightly/daily builds of GUI applications. In
Proceedings of the International Conference on
Software Maintenance 2003, September 2003.

[18] Microsoft XP Error Reporting.
http://support.microsoft.com/?kbid=310414, 2010.

[19] Netscape Quality Feedback Agent.
http://www.mozilla.org/quality/qfa.html, 2010.

[20] A. Orso, D. Liang, M. J. Harrold, and R. Lipton.
Gamma system: Continuous evolution of software
after deployment. In Proceedings of the International
Symposium on Software Testing and Analysis, pages
65–69. ACM Press, 2002.

[21] K. Pohl and A. Metzger. Software product line
testing. Commun. ACM, 49:78–81, December 2006.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and
J. Dongarra. MPI–The Complete Reference, Second
Edition. Scientific and Engineering Computation
Series. MIT Press, 1998.

[23] The Mozilla Organization. bugs.
www.mozilla.org/bugs/, 1998.

[24] The Mozilla Organization. Mozilla. www.mozilla.org/,
1998.

[25] Tinderbox. http://www.mozilla.org/tinderbox.html,
2010.

[26] I.-C. Yoon, A. Sussman, A. Memon, and A. Porter.
Towards incremental component compatibility testing.
In Proceedings of 14th International ACM SIGSOFT
Symposium on Component Based Software
Engineering (CBSE-2011). ACM Press, June 2011.

[27] I.-C. Yoon, A. Sussman, A. M. Memon, and A. Porter.
Direct-dependency-based software compatibility
testing. In ASE ’07: Proceedings of the 22nd IEEE
international conference on Automated software
engineering, Washington, DC, USA, 2007. IEEE
Computer Society.

[28] I.-C. Yoon, A. Sussman, A. M. Memon, and A. Porter.
Effective and scalable software compatibility testing.
In ISSTA ’08: Proceedings of the International
Symposium on Software Testing and Analysis,
Washington DC, USA, 2008. IEEE Computer Society.

11

