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Abstract

The influence maximization problem is an important one in social network analysis, with

applications from marketing to epidemiology. The task is to select some subset of the nodes

in the network which, when activated, will spread the activation to the greatest portion of

the rest of the network as quickly as possible. Since exact solutions are computationally

intractable greedy approximation algorithms have been developed. However, such methods

have only been tested on static social networks, or those in which the edges do not change

while diffusion is occurring on the network. This is despite the fact that many social networks

exhibit strongly dynamic behavior. Applying the heuristics used for static networks to dynamic

ones is not straight forward, since the metrics typically used to judge the influence of nodes

are not well defined when edges are changing. This paper examines the use of several potential

dynamic measures for use with greedy approximation algorithms. Both linear threshold and

independent cascade models of diffusion are used, and networks are formed using random,

preferential attachment and proximity-based paradigms.
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1 Introduction

Social networks are a very useful paradigm

for understanding a wide variety of prob-

lems from the spread of infectious diseases

to the diffusion of information and ideas

[Newman et al., 2006, Abrahamson and

Rosenkopf, 1997, Granovetter, 1973, 1983].

Techniques applicable to social networks

can also be useful for physical networks and

other graph-based problems, for instance lo-

cating sources of contamination in a water

supply [Habiba et al., 2008]. While these

problems have been widely studied in the

past, almost all efforts focus on static so-

cial networks. That is, networks in which

the ties between actors remain constant

throughout the period being studied.

For many situations this is a highly

unrealistic assumption. Students interact

with different peers when their class sched-

ules change or when they return home

for breaks; the social network of an adult

changes when they have children, take a

new job or relocate; the network of inter-

action among animals changes as they mi-

grate. Despite this there has been little

work done on the behavior of dynamic net-

works.

Part of the difficulty in addressing dy-

namic networks is that they are more diffi-

cult to measure than static networks. Stan-

dard measures of distance, centrality and

clustering break down when network ties

change.

For instance, dynamic networks were

shown to speed diffusion of innovation over

static networks, for both proximity-based

and random networks [Stonedahl et al.,

2008]. Despite this the authors admit they

do not yet have have a way of formalizing

the behavior of these dynamic networks in

more detail because they lack a well-defined

notion of distance, centrality or clustering

in the presence of network dynamism.

[Brandes, 2008] lists a variety of central-

ity measurements for networks. These in-

clude both refinements and generalizations

of the more standard notions of central-

ity. Also presented are algorithms to cal-

culate all of the measures presented. Bran-

des specifically mentions centrality mea-

sures for dynamic networks as one of two

major goals, mentioning that it has rele-

vance to clustering algorithms presented in

[Newman and Girvan, 2004].

A lot of the work on dynamic net-

works has dealt with computer networks,

especially ad-hoc wireless communications

networks [Wang and Crowcroft, 1992, Do,

2008]. Nonetheless, these domains have

different needs than social network analy-

sis. Wang, for instance, is mostly concerned

with traffic analysis within a network. So-

cial networks analysis rarely concerns itself

with the level of use on a link, rather it

focuses on whether links exist and whether

they are being utilized at all. (For instance,

a virus is either passed from one person to

another or it is not.)

[Leskovec et al., 2007] presents a study

of social networks, in this case blog citation

networks, which incorporates some sense of

temporality. The network in their model re-

mains static, but each link is weighted with

the weight representing how much time

passes between the appearance of a story
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on one blog and it being linked by the cit-

ing blog.

One of the most important problem in

social networks is influence maximization,

as it is a generalization underlying many

real-world applications, such as designing

viral marketing campaigns. The influence

maximization problem is attempting to se-

lect the subset of nodes in the social graph

which, when activated, will spread their

activation to the most other nodes in the

graph. Given a network G = (G1, . . . , GT )

which is dynamic over T time steps, choose

a set of vertices A0 with |A0| = k to seed

with activation which will maximize the to-

tal activation |AT | of the network at time

T .

In the context of viral marketing, one

might give free samples of a new product to

a select group of people thought to be highly

influential in the hopes that they will rec-

ommend it to their contacts, who in turn

will recommend it to theirs, hopefully caus-

ing a chain of recommendations to cascade

through the network, resulting in as many

people as possible having heard favorable

accounts of the new product.

The problem of influence maximiza-

tion has been widely studied in static net-

works [Kempe et al., 2003, Abrahamson and

Rosenkopf, 1997, Valente, 1995]. Because

the problem of selecting the optimal ini-

tial subset is NP -Hard, approximation al-

gorithms must be used. The standard ap-

proach is a greedy one, whereby each node

is measured and ranked by some centrality

metric. The highest ranking k nodes are

then selected for initial activation. Though

this method is extremely simple, it is also

very effective [Kempe et al., 2003].

Despite it’s effectiveness, this approach

has not been thoroughly applied to dynamic

networks, at least in part because of the

aforementioned lack of metrics to measure

the influence of a node in a dynamic setting.

One potential measure, called “temporal

path betweenness,” is proposed in [Habiba

et al., 2007]. Temporal path betweenness

relies on calculating the shortest temporal

paths, which are those paths through the

graph which are time respecting. By con-

sidering a dynamic network as the union of

the graphs representing the network at each

time step, and labeling the resulting multi-

graph’s edges with the time step in which

they are extant, a temporal path on the

multigraph is a path for which the labels of

each consecutive edge are increasing. The

temporal betweenness of a node is the frac-

tion of the total number of pairwise shortest

paths on which it appears.

Some variations on this theme are pos-

sible. The lengths of these temporal paths

can be defined either as the number of edges

comprised (“shortest link path”), or the to-

tal time elapsed along the path (“shortest

simple temporal path”). Each of these mea-

sures can also be used to calculate a corre-

sponding notion of centrality.

Habiba et al. have thus far applied

temporal path betweenness to problems of

maximizing and blocking spread in net-

works with good results [Habiba et al.,

2008, Habiba and Berger-Wolf, 2007]. In all

of these applications the authors use real-

world network data and the independent
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cascade model of diffusion.

Though promising, the only citations

thus far of Habiba et al’s techniques are in

ad hoc vehicular networks [Do, 2008]. (Do

presents their measures as being potentially

applicable, but does not seem to have used

them in the experiments presented.)

In this paper temporal path between-

ness centrality is applied to artificial dy-

namic networks of three different types to

asses it’s usefulness as a heuristic for greedy

influence maximization techniques. Addi-

tionally, the average degree of a node, a

weighted count of total neighbors, and a

novel notion of clustering coefficients in dy-

namic settings are all considered. Both the

independent cascade and linear threshold

models of network diffusion are used

2 Methods

2.1 Network Structure

In order to isolate the effects network struc-

ture may have on the dynamic metrics,

artificially generated networks are used.

Three different types of network dynamics

are used: random networks, scale-free net-

works, and proximity-based networks. In

all cases only the edges of the network are

added or removed; nodes remain through-

out the experiment. Note that the graphs

used are all undirected and unweighted.

After initializing the network according

to one of the following paradigms, the dy-

namics are allowed to run for 25 times steps.

After that period the network is measured

to asses the centrality of each node. The

k nodes with the highest centrality are se-

lected to seed the network with activity.

Activity is diffused through the network ac-

cording to either the Linear Threshold or

Independent Cascade models. While activ-

ity is diffusing the network structure contin-

ues being updated. After a predetermined

length of time activity ceases and the diffu-

sion across the network is measured.

2.1.1 Random Networks

Random networks are generated by ran-

domly selecting any two nodes in the graph

and adding an edge between them until

enough edges have been added to satisfy

the desired degree of edge density. At each

time step the graph is updated by remov-

ing some fixed proportion of edges and re-

placing them with a new edge so that the

number of total edges remains constant.

2.1.2 Scale-free Networks

Scale-free networks are generated in much

the same way as random networks. We be-

gin by selecting one node randomly and uni-

formly, but instead of selecting the node it

will be attached to using a uniform distri-

bution, as in the random networks above,

the neighboring node is selected with a

preferential attachment model. We use a

modification of the Barabási-Albert model

[Barabasi and Albert, 1999]. The proba-

bility that a node i will be selected as the

neighbor is given by

pi =
ki∑
j kj

(1)
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where kj is the number of neighbors of node

j. The modification of the Barabási-Albert

model arises because unlike BA, the num-

ber of nodes in our networks remains con-

stant. Thus rather than adding a new node

and using preferential attachment to select

it’s neighbor the first node is selected evenly

from among all the nodes in the graph.

Like the random networks described

above a certain proportion of all edges are

removed from the graph each time step and

replaced by the same number of newly gen-

erated edges. New edges are added using

the same preferential attachment rules as

were used to generate the initial network

configuration.

2.1.3 Proximity Networks

Proximity networks encapsulate a degree of

spatial interaction between the nodes, and

are modeled on the spatial proximity net-

works in [Stonedahl et al., 2008]. Each

node is considered to be a mobile agent on

a toroidal surface. At each time step the

agents update their positions using Brown-

ian acceleration. After updating nodes’ po-

sitions an edge is added to the graph for

every pair of nodes within some fixed dis-

tance of each other. This constant radius

is chosen such that the expected number

of edges in the graph averaged throughout

time is the same as the other two network

dynamics used.

2.2 Diffusion

We consider each individual node as be-

ing either active or inactive. Only the pro-

gressive case is considered here: nodes can

switch from being inactive to active, but

can not switch back to inactivity once be-

coming active. As mentioned previously,

both the Linear Threshold and Independent

Cascade models of diffusion across networks

were used.

The Linear Threshold Model has many

variations, but it originated with Gra-

novetter and Schelling [Granovetter, 1978,

Schelling, 1978]. Each node i is given a

threshold value of θ = 1
2 . This is the pro-

portion of i’s neighbors which must become

active for i to activate. Activation in the

Linear Threshold Model is deterministic.

At each time step all active nodes remain

active, and all inactive nodes calculate the

fraction of their neighbors which are active.

Any nodes with neighboring activity ex-

ceeding their threshold become active at the

end of the time step. Granovetter’s origi-

nal model gave each node it’s own threshold

uniformly samples from [0, 1]. Setting each

node’s threshold to an identical value as we

do gives similar results [Berger, 2001]

The second model of diffusion used is

the Independent Cascade Model [Golden-

berg et al., 2001]. When a node first be-

comes active it has the chance to probabilis-

tically activate each of it’s neighbors. Each

inactive neighbor will become active at the

end of the current time step with a probabil-

ity p = 1
3 . Whether or not a node spreads

it’s activation successfully it can make no

further attempts to activate its neighbors.

If a node n has more than one newly acti-

vated neighbor they are each given a chance

to spread activation to n. The process con-

5



tinues until no more activations can occur.

2.3 Measurements

As mentioned, various measurements were

used to choose the initial activation set. A

description of each follows.

2.3.1 Average Degree

The mean of a node’s degree in each time

step in the initialization period. Despite be-

ing a somewhat naive approach the degree

of a node is an effective heuristic in static

networks [Kempe et al., 2003]. It is a sim-

ple and obvious extension to generalize the

degree across the initialization period, and

should be useful as a baseline comparison

method.

2.3.2 Weighted Neighbor Count

Another simple measure being used for the

sake of comparison, it is a count of the num-

ber of nodes a given node was connected

to at any point during the initialization pe-

riod, weighted by the number of time steps

two nodes were connected.

We use δi,j,t to indicate whether an edge

exists between nodes i and j at time step t.

δi,j,t =

{
1 if (i, j) ∈ Et

0 otherwise
(2)

Then we let NCi(j) be the number of time

steps that nodes i and j were connected.

NCi(j) =
∑

t

δi,j,t (3)

We use this to calculate the weighted neigh-

bor count NCi of node i as follows:

NC(i) =
∑

j

NCi(j)αNCi(j) (4)

The intuition behind this measure is

that two nodes which are often connected

in a social network may have a greater like-

lihood of staying connected in the future,

thus a node which is well connected by this

metric may be likely to stay well connected.

This assumption may hold for the proximity

network dynamics, since it can be expected

that nodes in the same region of the spa-

tial environment are likely to remain close

to each other on average, and thus remain

connected. Because there is no mechanism

in the random and preferential attraction

networks to favor edge longevity it is likely

that weighted neighbor count will perform

relatively worse on these networks.

2.3.3 Temporal Betweenness Cen-

trality

Introduced by [Habiba et al., 2007], Tem-

poral Betweenness Centrality measures the

number of “shortest temporal paths” which

pass through a node. This is an abstrac-

tion of the standard betweenness centrality

metric to dynamic networks in order to cpa-

ture the notion that edges must exist in the

“right time” as well as the “right place” in

order to be effective at spreading activation.

(See discussion of shortest temporal paths

in the Introduction for more.)

Letting the number of shortest temporal

paths between nodes s and t be given by gst,

and the number of those paths which pass
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through node u be given by gst(u). The

temporal betweenness of node u is then de-

fined as

BTu =
∑

s 6=t6=u

gst(u)
gst

(5)

Note that path length is computed

based on the total time taken to traverse it

(at a rate of one edge per time step) rather

than the number of edges in the path. This

incorporates a notion of delay into the dis-

tance metric.

Calculating the shortest paths is accom-

plished by forming a new directed acyclic

graph based on the undirected, dynamic

graph representing the social network. For

every node n and every time step t a proxy

node nt is created in the D.A.G. which rep-

resents that node at that moment in time.

An edge is added from every node’s proxy

at time t to the same node’s proxy at time

t + 1. Traversing this edge represents re-

maining at the same node node for two con-

secutive time steps in the original graph.

Additionally, for every edge in the original

graph e = (u, v), e ∈ Et — where Et is the

set of edges extant at time t — an edge is

added to the D.A.G. from ut to vt+1 and

from vt to ut+1. This represents the ability

to move from either u to v or vice versa,

as well as the one time step delay that this

incurs.

By encapsulating the dynamic nature of

the graph in this newly constructed directed

acyclic graph we gain the ability to ignore

the temporality of the original graph and do

our calculations just as we would for a static

graph. (See [Brandes, 2008] for details on

efficient calculation of betweenness.)

2.3.4 Temporal Clustering Coeffi-

cient

The Temporal Clustering Coefficient is an

extension of the standard clustering coeffi-

cient, which measures how many of a node’s

neighbors are also neighbors of each other.

One could measure this for any one time

step of the network, but this would not cap-

ture any of the temporality of the network.

In order to account for the dynamism

of the network we extend the standard def-

inition to count any connections between

neighbors in the previous c time steps. That

is, of all of the current neighbors of node n,

how many times in the previous c time steps

do edges exist between them? This fig-

ure is divided by the total number of edges

that could have existed between this group,

which is given by 1
2c(k)(k − 1), where k is

the number of neighbors of n.

This definition accounts for situations

in which a node’s neighbors are not cur-

rently linked, but often are and have been

recently. Consider, for instance, building a

social network based on the conversations

of office workers. Measuring the standard

clustering coefficient on a Saturday would

yield very low results despite the fact that

for the previous five days the network was

densely connected. The temporal clustering

coefficient accounts for this sort situation.

Depending on the network structure

it may be optimal to select the most

highly clustered or the least highly clus-

tered nodes, so in all experiments we choose

an activation set using both. Highly clus-
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tered nodes may be desirable in some cir-

cumstances because diffusion can spread

through tight cluster very rapidly in the

first few time steps, quickly acting to in-

crease the activated portion of the network.

On the other hand, poorly clustered nodes

may be beneficial since a low clustering co-

efficient may indicate that they have ties to

many different neighborhoods in the graph,

which presents the chance to spread activa-

tion throughout the network.

2.4 Random

For purposes of baseline comparison, all

networks were also activated with an initial

set of randomly selected nodes.

3 Results

3.1 Linear Threshold Model

For experiments with the Linear Threshold

Model networks of 64 nodes were used. The

initialization period lasted 25 time steps,

the diffusion period lasted between 200 and

300 steps, and the threshold for activation

was set at θ = 1
2 for all nodes. Edge density

was set at 10% of all possible edges. One

hundred random trials for each combination

of network dynamics and centrality measure

were conducted and the results averaged.

For the first set of experiments, results

of which can be seen in Figure 1, the initial

seed group was 4 nodes and 10% of edges

were culled and replaced every time step.

There is very little differentiation between

the metrics used, but minimizing temporal

clustering is a clear loser. Early in the diffu-

sion period random selections are also poor,

but by later in the diffusion period it per-

forms as well as any other technique.

The random networks proved more re-

sistant to diffusion no matter what heuris-

tic was used. This is likely because no

particular nodes are likely to be particu-

larly central to the network since edges are

evenly distributed, in contrast to the pref-

erential attraction system. The best and

worst measures were both clustering coeffi-

cient, with the minimal clustering method

doing the best and maximal clustering do-

ing the worst. Average degree and temporal

betweenness tie for the next best results.

Neighbor count out performs random,

but does the worst other than maximal clus-

tering. A mentioned previously, there is

no reason to expect that a long-lived node

in a random graph will continue to persist,

so it is reasonable that the weighted neigh-

bor count performs poorly in this situation.

It performed better in the preferential at-

traction networks. This is likely because

while there is no mechanism to cause long-

lasting edges to remain, any edges removed

from influential nodes with a high degree

(and therefor likely to have a high weighted

neighbor count as well) have a better than

average chance of being added back in in

later time steps.

In proximity-based networks both max-

imal clustering coefficient has the highest

performance by a wide margin, followed

closely by minimal clustering. Random se-

lections and weighted neighbor count per-

form the worst. It is unclear why both

highly clustered and poorly clustered nodes
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would be good choices in this situation.

Figure 2 shows the effect that varying

the size of the initial activation set has on

the diffusion on preferential attraction net-

works. Other than the size of the activa-

tion seed, all other parameters remain the

same. Figure 2(a) shows the default of

|A0| = 4, while in Figure 2(b) |A0| = 8

and in Figure 2(c) |A0| = 16. (Note that

Figure 1(a) and Figure 2(a) represent the

same data.) As the size of the initial set

becomes larger the result of the different

metrics become more varied. In the first

case Average Degree, Neghbor Count and

Temporal Betweenness are all indistinguish-

able, but in the final case they are clearly

ordered. We hypothesize this is occurring

because the same nodes are ranked in the

top positions by each metric, and as a result

they are choosing the same initial activation

set. However, moving further down the var-

ious centrality rankings the lists that each

metric generates begin to become different,

which allows some metrics to out perform

others on larger seed sets.

Another set of experiments was done

varying the rate at which edges were re-

placed, but leaving all other paramters the

same. The results for preferential attrac-

tion networks can be seen in Figure 2. Fig-

ure 3(a) shows the default rate of 10% of

edges being culled and replaced each time

step, while in Figures 3(b) and 3(c) the

rate is 5% and 2.5%, respectively. (Note

again that Figure 1(a) and Figure 3(a) rep-

resent the same data.) As the rate at which

edges are replaced decreases and the net-

work becomes more static the results of

the metrics become more differentiated. In

the latter case, maximal clustering stands

out as worse than random selections, which

are in turn worse than minimal clustering.

The remaining three options are not signifi-

cantly different from each other. It is likely

that each metric’s results are more tightlty

grouped with higher turnover of the edges

because the resulting graphs are in essense

too dynamic. They change so quickly that

no observation of the initial 25 time steps

will tell one much about the state of the

graph after 100 or more time steps of diffu-

sion.

3.2 Independent Cascade

Model

For experiments with the Independent Cas-

cade Model networks of 64 nodes were used,

with an initial seed set of size 3 and an edge

density of 10%. The probability of activa-

tion spreading to an inactive node from an

active neighbor was 1
3 . The initialization

period lasted for 25 steps and the diffusion

period ran for 50 steps, though the networks

almost always stabilized before that. For

each set up 100 random trials of the simu-

lation were run and the results averaged.

Results for scale-free, random and prox-

imity networks can be seen in Figures 4(a),

4(b), and 4(c) respectively. Shown is the

proportion of the network activated at each

time step.

For scale-free networks the maximum

clustered nodes perform the worst. Min-

imally clustered nodes perform indistin-

guishably from a random selection. Av-
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erage degree, neighbor count and tempo-

ral betweenness are also indistinguishable

from each other. The only trend that can

be drawn from the random graphs is that

maximal clustering is the worst performer.

No other other deviated from the perfor-

mance of random selection. There was more

differentiation in the proximity-based net-

works. Again, maximal temporal clustering

was the worst performer, followed by min-

imal clustering. However, no metric out-

perfromed random selection. (Weighted

neighbor count does no worse than random

though.)

4 Discussion

No metric emerged as a clear winner. Av-

erage degree, temporal betweenness and

weighted neighbor count were consistently

the best measures, however there was lit-

tle differentiation between them. This may

be because the networks were changing too

rapidly for statistics computed on the ini-

tialization period to carry much informa-

tion about the network hundreds of time

steps later. Another possibility is that the

initial activation sets chosen by the different

measures had a high degree of overlap.

In general, choosing the nodes with the

lowest clustering coefficient outperformed

those with the highest clustering coeffi-

cient. Minimal clustering coefficient selec-

tion were mixed: in most scenarios they

outperformed random selections but not the

other metrics, but in a few situations they

performed the best of all methods.

Weighted neighbor count performed

better in preferential attraction networks

than in random or proximity-based net-

works. This is likely because while there is

no bias to keeping edges of highly-connected

nodes, when such nodes are removed there

is a higher probability that new edges will

soon be added back into that node,

Experiments up to this point were lim-

ited by computational resources, though

improvements continue to be made in pro-

cessing efficiency as the simulation code

base is refined. As efficiency improves it

would be worthwhile to study much larger

networks, with larger initial activation sets.

A larger real-world data set would also be

helpful.

There are a number of other extensions

to be made in the future. Refinements can

be made to the current network dynamics,

such as adding a more realistic movement

system to the proximity networks, or bias-

ing edge culling to favor the continued ex-

istence of long-lived edges. It would also

be interesting to look at an oscillating or

rhythmic network structure: one in which

there are predictable cycles of connectivity.

It may be worthwhile to change the Lin-

ear Threshold model to Granovetter’s orig-

inal formulation with each node having it’s

own threshold. There was not opportu-

nity to dig deeper into Independent Cas-

cade Models. At the very least it would be

worthwhile to study the effect of initial ac-

tivation set size with ICM diffusion.

Also it would be a good idea to use a

greedy algorithm that reevaluates the cen-

trality of each node after removing prior
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picks from the graph. This was not done

in this version due to computational time

limitations.

Some changes could be made to the met-

rics studied here, and some new metrics

could be introduced. Another potential

heuristic, Load Centrality, was defined by

[Goh et al., 2001]. Load centrality is very

similar to temporal betweenness centrality,

but may yield slightly different results. The

temporal clustering coefficient is admittedly

a bit crude at this point. It would be use-

ful to weight more recent connections be-

tween neighbors more heavily than connec-

tions further in the past.

It would also be good to examine the dif-

ferent sets being selected by each metric in

more detail. Specifically, are various mea-

sures ending up with similar performance

because they are equally good at selecting

activation sets, or because they are all se-

lecting the same activation sets?
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(a) Preferential attraction/scale-free

(b) Random

(c) Proximity

Figure 1: LTM results: proportion of nodes activated in 200 time steps. (Best viewed in color).
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(a) |A0| = 4 (200 time steps)

(b) |A0| = 8 (100 time steps)

(c) |A0| = 16 (50 time steps)

Figure 2: LTM results for scale-free networks with various sizes of the initial activation set. (Best
viewed in color).
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(a) Edge culling 10%

(b) Edge culling 5%

(c) Edge culling 2.5%

Figure 3: LTM results for scale-free networks with varying degree of edge dynamism. (Best viewed
in color).
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(a) Preferential attraction/scale-free

(b) Random

(c) Proximity

Figure 4: ICM results: proportion of nodes activated in 15 time steps. (Best viewed in color).
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