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Abstract

We propose a novel, Abstract Meaning
Representation-based approach to identi-
fying molecular events/interactions in bio-
medical text. Our key contributions are:
(1) an empirical validation of our hypoth-
esis that an event is a subgraph of the
AMR graph, (2) a neural network-based
model that identifies such an event sub-
graph given an AMR, and (3) a distant
supervision based approach via which we
gather additional training data for our neu-
ral network-based model. We evaluate our
approach on the Genia Event extraction (a
subtask of BioNLP Shared task) dataset.

1 Introduction

The task of event extraction in the biomedical
domain corresponds to the systematic identifica-
tion of interactions between different biomolecule
entities in text. The biomedical community has
been working towards the goal of creating a cu-
rated knowledge base of biomolecule entity inter-
actions. The scientific literature in the biomedical
domain runs to millions of articles and is an excel-
lent source of such information. However, auto-
matically extracting information from text is chal-
lenging, because natural language expresses inter-
actions between entities in a highly heterogeneous
manner. Current approaches to this problem span
methods that use learnt patterns from annotated
text (Bui et al., 2013) to machine learning meth-
ods (Björne and Salakoski, 2013) that use syntac-
tic parses as features. We find that a semantic anal-
ysis of text that relies on Abstract Meaning Repre-
sentations (Banarescu et al., 2013) is highly useful
because it normalizes many lexical and syntactic
variations.

AMR is a rooted, directed acyclic graph (DAG)

Figure 1: AMR with sample event annotations for
sentence “This LPA-induced rapid phosphoryla-
tion of radixin was significantly suppressed in the
presence of C3 toxin, a potent inhibitor of Rho”

that captures the notion of who did what to whom
in text, in a way that sentences that have the same
basic meaning often have the same AMR. The
nodes in the graph map to words in the sentence
and the edges map to relations between the words.
AMR naturally captures hierarchical relations be-
tween entities in text making it favorable for com-
plex event detection. For example, consider the
following sentence from the biomedical litera-
ture: “This LPA-induced rapid phosphorylation of
radixin was significantly suppressed in the pres-
ence of C3 toxin, a potent inhibitor of Rho”. Fig-
ure 1 shows its Abstract Meaning Representation
(AMR). The subgraph rooted at phosphorylate-01
identifies the event E1 and the subgraph rooted at
induce-01 identifies the event E2 where

E1 = phosphorylation of radixin;
E2 = LPA induces E1.

We hypothesize that an event structure is a sub-
graph of a DAG structure like AMR and under this
assumption, we cast the event extraction task as
a graph identification problem. Our first con-
tribution is the testing of the above hypothesis



Type Primary Args.
Gene expression T(P)
Transcription T(P)
Localization T(P)
Protein catabolism T(P)
Binding T(P)+
Phosphorylation T(P/Ev), C(P/Ev)
Regulation T(P/Ev), C(P/Ev)
Positive regulation T(P/Ev), C(P/Ev)
Negative regulation T(P/Ev), C(P/Ev)

Table 1: Event types and their arguments

that an event structure is a subgraph of an AMR
graph. Given an AMR graph for a sentence (ob-
tained automatically using an AMR parser (Pust
et al., 2015)), we explain how an event can be de-
fined as a subgraph of the AMR graph. Under the
assumption that we can correctly identify such an
event subgraph from an AMR graph when it ex-
ists, we evaluate how good is our definition (Sec-
tion 2).

Our second contribution is a neural network-
based supervised model that is trained to identify
an event subgraph given an AMR analysis (Sec-
tion 3). We hypothesize that the path between
an interaction term and an entity term in an AMR
graph contains an important signal for identifying
the relation between them. For e.g. in figure 1
the path {‘induce-01’, ‘arg0’, ‘LPA’} suggests that
LPA is the cause of induce. However we need to
encapsulate this information in a form that gen-
eralizes well across different words. Word vec-
tors give us such non-sparse representations. We
translate the concepts in the path into word embed-
dings pre-trained on millions of biomedical text
and translate the edge labels in the path into one-
hot vector encodings. Using such a path represen-
tation, we develop two pipelined Recurrent Neural
Network (RNN) models: (a) to identify the inter-
action and its theme; and (b) to identify the cause,
if there exists one.

Training neural network based models require
large amount of data, and the dearth of annotated
data in the biomedical domain can make such su-
pervised learning difficult. The relation extraction
community has successfully shown the usefulness
of an indirect way of gathering annotated training
data called distant supervision (Mintz et al., 2009).
Traditionally distant supervision works on the as-
sumption that given a relation between two entities
in a knowledge base, a sentence in which the two
entities co-occur is likely to express this known re-

This LPA-induced rapid phosphorylation of radixin was sig-
nificantly suppressed in the presence of C3 toxin, a potent
inhibitor of Rho

T1 (Protein, LPA)
T2 (Protein, radixin)
T2 (Protein, C3)
T4 (Protein, Rho)
T5 (Phosphorylation, phosphorylate)
T6 (Positive regulation, induce)
T7 (Negative regulation, suppress)
T8 (Negative regulation, inhibit)
E1 (Type: T5, Theme: T2)
E2 (Type: T6, Theme: E1, Cause: T1)
E3 (Type: T7, Theme: E1)
E4 (Type: T8, Theme: T4, Cause: T3)

Table 2: Example event annotation. The protein
annotations T1- T4 are given as starting points.
The task is to identify the events E1-E4 with their
interaction type and arguments.

lation and hence can serve as training data for that
relation. However it has been found that training
data gathered using such a method can be noisy
(Takamatsu et al., 2012). Our third contribution
is a method based on AMR path heuristic to selec-
tively sample the sentences obtained using distant
supervision. We furthermore show its effective-
ness in training our RNN models for event extrac-
tion (Section 3).

We evaluate our event extraction model on the
BioNLP Shared Task dataset and show that our
RNN model coupled with additional training data
gathered using our distant supervision strategy can
achieve results comparable to the state-of-the-art
system even with an AMR parser of just 67% ac-
curacy.

2 AMR based event extraction model

2.1 Task description

The biomedical event extraction task in this work
is adopted from the Genia Event Extraction sub-
task of the well-known BioNLP shared task ((Kim
et al., 2009), (Kim et al., 2011), (Kim et al.,
2013)). Table 2 shows a sample event annotation
for the sentence in Figure 1. The protein anno-
tations T1- T4 are given as starting points. The
task is to identify the events E1-E4 with their inter-
action type and arguments. Table 1 describes the
various event types and the arguments they accept.
The first four event types require only unary theme
argument. The binding event can take a variable
number of theme arguments. The last four events



take a theme argument and, when expressed, also
a cause argument. Their theme or cause may in
turn be another event, creating a nested event (For
e.g. event E2 in Table 2).

2.2 Model description
We cast this event extraction problem as a sub-
graph identification problem. Given a sentence,
we first get the AMR graph for the sentence us-
ing an AMR parser. The parser output includes
alignments from concept node to word (or words)
in the sentence. Let P be the set of concept nodes
in the AMR aligned to the pre-annotated protein
mentions in the sentence. Let T be the set of con-
cept nodes aligned to the interaction terms in the
sentence. For training data, the interaction terms
are obtained from the event annotations. For test
data, the interaction terms include any term that
was annotated as an interaction term more than
once in the training data.

Theme identification: Every pair (pi, tj)
where pi ∈ P and tj ∈ T , is a candidate for an
event em defined as em: (Type: tj , Theme: pi)
where Type is one of the nine event types in Ta-
ble 1. If em can take other events as arguments
(last four event types in Table 1) and if the short-
est path between tj and pi includes an interaction
term tk, such that the pair (pi, tk) is an event en
in itself, then we define the event em instead as
em: (Type: tj , Theme: en). For e.g. in Figure 1,
the path between induce-01 and radixin includes
phosphorylate-01 which is an event in itself (E1).
Hence event E2 is defined with E1 as its theme (in
Table 2).

Cause identification: For events em: (Type:
tj: Theme: pi) that can take a cause argument,
we identify possible candidates for their cause by
again looking for all pairs (pl, tj) where pl ∈ P
and l 6= i and add cause to the event em as em:
(Type: tj , Theme: pi, Cause: pl). Since these
events can even take other events as their cause
argument, we identify additional candidates for
their cause by looking for all pairs (en, tj) where
en ∈ E and n 6= m and add cause to the event em
as em: (Type: tj , Theme: pi, Cause: en).

2.3 Upper bound using “event is a subgraph
of AMR” hypothesis

Before we learn to identify events from AMRs au-
tomatically, we test the validity of our hypothe-
sis. We assume that we can correctly identify an
event if it is a subgraph of the AMR. Table 3 shows

Event Type Recall Precision F1 F1 (SOA)
Gene expression 87.82 100.00 93.51

Transcription 65.31 100.00 79.01
Localization 86.80 100.00 92.93

Protein catabolism 90.00 100.00 94.74
==[SVT-TOTAL]== 82.48 100.00 90.04 76.59

Binding 67.83 95.83 79.43 42.88
Phosphorylation 60.62 80.14 69.03 65.37

Regulation 42.61 61.73 50.42
Positive regulation 41.93 65.43 51.11
Negative regulation 50.94 65.85 57.45
==[REG-TOTAL]== 45.16 64.33 53.00 38.41
==[ALL-TOTAL]== 65.98 85.44 74.18 50.97

Table 3: Upper bound on the dev set using our
“event is a subgraph of AMR” hypothesis

the result of this hypothesis on the dev set of the
BioNLP 2013 Shared Task dataset (described in
Section 5.1). The last column (F1 (SOA)) in the
table is the state-of-the-art F1 score (Hakala et al.,
2013) on the test set of the dataset. In case of
events that take only proteins as theme arguments,
an event is always a subgraph of the AMR unless
there is alignment error due to which the concept
nodes corresponding to either the interaction term
or the protein term are missing. Hence our preci-
sion is at a 100% and our recall goes down only
slightly. In case of the other event types, where
an event can take other events as arguments, an
event is correctly identified only if the the path be-
tween the pair (pi, tj) includes all its sub-events.
Therefore we lose on both precision and recall. In
addition to evaluating our hypothesis that an event
is a subgraph of an AMR graph, these results give
us following two important insights:

1. By using this hypothesis we have a set an up-
per bound of 74% for our learning model;

2. As the accuracy of automatic AMR parsers
improve, our model will perform better at the
event extraction task

3 Recurrent Neural Network based
learning model

In the previous section we testified our hypothesis
that an event is a subgraph of an AMR. The key
idea is that the path between the interaction term
and the entity term contains information about
how the event is structured. We build on this idea
to develop a supervised model using Recurrent
Neural Network (RNN) that can learn to identify
events using the words in the AMR path between
the interaction term and the entity term.



3.1 Motivation

The input to our problem is a sequence of words
(wi) interwound with edge labels (ej) of the form:
w1, e1, w2, e2, ..., en−1, wn that exists in the path
between an interaction term and an entity term
in an AMR graph. Due to large semantic varia-
tions that exists in naturally occurring texts, tradi-
tional feature based methods suffer from sparsity
issues while learning from such a sequence. Neu-
ral network based models provide a framework for
learning from non-sparse representations. Specifi-
cally, RNN is known to handle sequences of vari-
able length and capture long range dependencies
well. Since the input sequence in our case falls
into this category, we build our model using the
RNN framework.

3.2 Event identification

We model the event identification task as a two-
step process: Theme identification and Cause
identification. For simple events, this process in-
cludes only theme identification (since they don’t
have cause). We describe the two RNN models
corresponding to the two steps as follows:

3.2.1 Theme identification
Given a pair of interaction node (tj) and protein
node (pi), the task is to identify if there exists an
event with tj as the interaction and pi as the theme;
and if yes, what is the type of the event. We cast
this problem as a multi-class classification task
with label set as L : {NULL∪ Event types} where
Event types correspond to the nine event types de-
scribed in Table 1 and NULL corresponds to no
event. We train a RNN model for this task with the
input layer as the sequence of words interwound
with edge labels in the shortest path between pi
and tj in the AMR graph. We use a hidden layer
of size 100 and an output layer of the size of our
label set L. For e.g. in Figure 2, the sequence
{‘phosphorylate-01’, ‘arg1’, ‘radixin’} is the in-
put sequence and the event type Phosphorylation
is its label.

3.2.2 Cause identification
The last four event types in Table 1 can take pro-
teins or other events as cause argument. We cast
this problem as a binary classification task where
for an event we ask the question if a protein/event
is its cause argument or not for every protein and
every other event in that sentence. Let em be the
event identified as em : (Type : tj , Theme : pi)

Figure 2: Theme identification and Cause identifi-
cation stages

that can take a cause argument. Let C = P ∪ E
where P is the set of all other proteins in the AMR
graph (except pi) and E is the set of all identified
events (except em). For every ck ∈ C, we get
the shortest path between ck and tj and combine
it with the shortest path between pi and tj and use
the words and edges in this combined path as the
input layer of our second RNN model. We use
a hidden layer of size 100 and an output layer of
size one corresponding to the binary prediction of
whether ck is the cause of the event em or not.

3.3 Vector encodings for RNN
When initializing our model, we have two choices:
we can initialize the vectors in the input layer
randomly or we can initialize them with values
that reflect the meanings of the word types. It
has been seen that using pre-defined word embed-
dings improves the performance of RNN models
over random initializations ((Collobert and We-
ston, 2008); (Socher et al., 2011)). We initialize
the vectors corresponding to words in our input
layer with 100-dimensional vectors generated by a
word2vec (Mikolov et al., 2013) model trained on
over one million words from the PubMed central
article repository. We initialize the vectors corre-
sponding to the edge labels in our input layer into
one-hot vectors.

3.4 Event reconstruction
During test time, we first make predictions using
our RNN model for Theme identification. For ev-
ery pair (pi, tj) with a non-zero label l, we con-
struct events as follows: For label l correspond-
ing to interaction types that take only proteins
as theme arguments, we construct event as em :



(Type : tj , Theme : pi). For label l correspond-
ing to interaction types that can take another event
as its theme, we look at the path between tj and pi
in the AMR. If this path includes a pair (tk, pi) that
has a non-zero label, then we construct an event
en : (Type : tj , Theme : ep) where ep is the event
constructed from the pair (tk, pi). Otherwise, we
construct the event as en : (Type : tj , Theme :
pi).

For each of the predicted event em : (Type :
tj : Theme : pi) that can take a cause argument,
we run the second RNN model for its Cause iden-
tification. If there is a pair (pi, ck) which has a
positive label, then we assign ck as the cause of
the event em.

4 Distant supervision

An empirical evaluation of our RNN-based learn-
ing model (Section 5.4) shows that it can suffer
from low recall. Obtaining additional human an-
notated data for our complex event extraction task
can be very costly. This motivates us to develop an
approach that can gather more training data with
minimal supervision.

4.1 Motivation

Distant supervision as a learning paradigm was in-
troduced by (Mintz et al., 2009) for relation ex-
traction in general domain. Mintz et al (2009)
used Freebase to get a set of relation instances
and entity pairs participating in those relations, ex-
tracted all sentences containing those two entity
pairs from Wikipedia text and used these sentences
as their training data. The distant supervision as-
sumption is that if two entities participate in a re-
lation, any sentence that contain those two entities
might express that relation. This work and many
others showed that distant supervision technique
yields significant improvements in relation extrac-
tion.

Neural network models like RNN need to be
trained on substantial amounts of training data for
them to be able to generalize well. However due
to lack of labeled data in biomedical domain, most
work in relation extraction in this domain have
been restricted to purely supervised techniques. In
this work we cope with this problem by gathering
additional training data using distant supervision
from a knowledge base.

Figure 3: Distant Supervision

4.2 Methodology

Relation extraction using distant supervision re-
quires two things: 1) A knowledge base contain-
ing relations between proteins, and 2) A large cor-
pus of unannotated text that contain protein men-
tions. We use the BioPax (Biological Pathway
Exchange) database (Demir et al., 2010) as our
knowledge base of protein relations and we use the
PubMed central articles as our unannotated text
corpus. Given a database entry of the form (‘Pro-
tein1’, ‘Protein2’, ‘relation’), we extract all sen-
tences from the PubMed central articles in which
the two proteins co-occur. For example, Figure
3 shows some sample sentences extracted for the
database entry (’DAG’, ’PKC’, increases). The
first two sentences in the figure indeed express
the relation in the database but the third sentence
just mentions the two proteins in a comma sepa-
rated list. We observe that a lot of the extracted
sentences fall into the category of the third sen-
tence. Hence as a first step, we filter such instances
by tagging the sentence with their parts-of-speech
and removing those in which the two proteins are
separated only by nouns (or punctuations).

4.3 AMR path based selection

The traditional distant supervision approach says
that all the sentences extracted using the method
above can be used as additional training data un-
der the assumption that all sentences in which the
proteins co-occur express the relation mentioned
in the database. However this approach can often
lead to a lot of false positives (Takamatsu et al.,
2012). Hence we develop a novel selection tech-
nique using AMR path heuristic. We make the ob-
servation that given two protein nodes in an AMR,
if there is a relation r between the two then the
shortest path between the two protein nodes in the
AMR contains the interaction term expressing the



Event Type Biopax relation
Gene expression adds modification

Transcription adds modification
Localization adds modification

Protein catabolism adds modification
Binding binds

Phosphorylation adds modification
Regulation increases, increases activity

Positive regulation increases, increases activity
Negative regulation -

Table 4: Mapping between event types and Biopax
model relations

relation r.
For e.g. in Figure 4 shows the AMR for the

sentence “DAG is important for the activation of
PKC, which phosphorylates tyrosinase, and can
also be released...” that was extracted using the
database entry {‘DAG’, ‘PKC’, ‘increases’}. The
interaction term ‘activate’ suggesting the relation
‘increases’ exists in the shortest path between the
proteins DAG and PKC. Figure 5 shows AMR
for the sentence “The sun-network links TCF3
with ZYX and HOXA9 via NEDD9 and CREBBP,
respectively.” extracted for the pair (‘TCF3’,
‘HOXA9’, increases). There is no interaction term
suggesting the relation ‘increases’ in the shortest
path between the proteins TCF3 and HOXA9.

Table 4 shows the mapping we define between
the event types and the relations found in the en-
tries (‘Protein1’, ‘Protein2’, ‘relation’) that we
extracted from the Biopax model. In each sentence
extracted for the database entry (‘P1’, ‘P2’, ‘r’) ,
we check if the shortest path between the two pro-
tein nodes P1 and P2 in the AMR of the sentence
contains one of the interaction terms correspond-
ing to the event type mapped to the relation r. We
discard all those sentences that do not satisfy this
constraint.

4.4 Using data for RNN model

We use these selected sentences as additional
training data for our two RNN models as follows:

Theme identification: Let S be the sentence
extracted for the database entry (‘DAG’, ‘PKC’,
‘increases’) and let ‘activates′ be the interaction
term that exists in the shortest path between the
protein nodes. Since the database entry refers to
‘DAG’ as the cause and ‘PKC’ as the theme, we
assume these roles for the two proteins in the ex-
tracted sentence S as well. Therefore, we can now
use the path between the interaction term ‘acti-
vates’ and the theme ‘PKC’ as an input sequence

Figure 4: Interaction term ‘activate’ correspond-
ing to the relation ’increases’ exists in the shortest
path between DAG and PKC

Figure 5: No interaction term corresponding to the
relation ‘increases’ exists in the shortest path be-
tween TCF3 and HOXA9

for our model with the label corresponding to the
event type of the interaction term ’activates’.

Cause identification: In case of cause identifi-
cation instead of using the path between the inter-
action term and the theme entity, we use the short-
est path between the cause entity and the theme
entity via the interaction term and use this as an
input sequence to our model with a positive label.

5 Experiments

5.1 Dataset and task setting

The event extraction task described in this work
corresponds to the Task 1 of the Genia event ex-
traction task described as: detection of typed, text-
bound events and assignment of given proteins as
their primary arguments. We use the dataset made
available by the BioNLP Shared Task series (2009,



(RNN) model (RNN + DS) model EVEX
Event Type Recall Precision F1 Recall Precision F1 DS Sents F1

Gene expression 66.33 66.55 66.44 68.19 61.48 64.66 868
Transcription 55.10 28.57 37.63 57.14 26.92 36.60 807
Localization 36.55 63.72 46.45 38.07 85.06 52.60 96

Protein catabolism 73.33 84.62 78.57 60.00 94.74 73.47 7
==[SVT-TOTAL]== 57.82 60.86 57.27 56.35 68.05 57.60 76.59

Binding 53.85 67.08 59.74 53.65 69.07 60.39 139 42.88
Phosphorylation 49.21 53.75 51.38 73.45 45.55 56.23 3183 65.37

Regulation 16.30 29.18 20.92 26.07 21.00 23.26 2131
Positive regulation 25.98 35.16 29.88 37.41 29.17 32.78 4561
Negative regulation 23.17 30.50 26.33 22.97 29.44 25.81 0
==[REG-TOTAL]== 21.81 31.61 25.71 28.81 26.53 27.28 38.41
==[ALL-TOTAL]== 44.42 51.01 46.37 50.78 49.27 50.01 11792 50.97

Table 5: Comparison of results on 2013 dev set

2011 and 2013). We train a model on a combina-
tion of abstract collection (from 2009 edition) and
full text collection (from 2011 and 2013). We test
our model on the dev set of the 2013 edition (since
the gold annotation is publicly available only for
the dev set and not the test set).

5.2 Data prepraration
The dataset made available for the Shared Task is
in the form of sentences and event annotations as
shown in Table 2. We now explain how we con-
vert these event annotations into input and labels
for our multi-class classification task (for theme
identification) and binary classification task (for
cause identification)

Theme identification: We define the set T as
the set of interaction terms that was a part of some
event annotation for this sentence. We define the
set P as the set of all protein annotations for that
sentence. For every pair (tj , pi) where pi ∈ P
and tj ∈ T , we create a training data of the form
{w1, e1, w2, e2, ..., en−1, wn, label} where the in-
put sequence corresponds to the words interwound
with edge labels in shortest path between tj and
pi; and the label is the event types (from Ta-
ble 1) of the event em if there exists an event
em : (Type : tj , Theme : pi), NULL otherwise.
We create the testing data using the same method;
except that we don’t use event annotations for cre-
ating the set T but instead use all terms in the sen-
tence that was annotated as an interaction term in
the training data more than once.

Cause identification: For every pair (tj , pk)
where tj is part of some event annotation em :
(Type : tj , Theme : pi) of event type that can
take cause argument and pk ∈ P , we create a train-
ing data of the form {w1, e1, w2, e2, ..., en−1, wn,
label} where the input sequence corresponds to

the words interwound with edge labels in the
shortest path between pk and pi via tj ; and the
label is 1 if pk is the cause of the event em, 0 oth-
erwise.

5.3 RNN model setup
We implement our RNN model using the lasagne
(Dieleman et al., 2015) library. For the first RNN
model, we use softmax as our non-linear function
and optimize the categorical cross entropy loss us-
ing adam (Kingma and Ba, 2014). For the sec-
ond RNN model, we use sigmoid as our non-linear
function and optimize the binary loss using adam.
As for the hyper parameters, we set our dropout
rate to 0.5, batch size to 16 and number of epochs
to 10.

5.4 Results and discussion
Table 5 shows the results of our Recurrent Neural
Network based event extraction model. We com-
pare our results with the state-of-the-art event ex-
traction system EVEX (Hakala et al., 2013). We
report the Approximate Span/Approximate Re-
cursive metric in all our tables (described in the
Shared Task (Kim et al., 2013)). The columns to
the left (with column heading RNN) show the per-
formance of our model trained only on the offi-
cial training data. We obtain a good overall pre-
cision of 51% but suffer considerably with the re-
call (44.4%). The columns to the right (with col-
umn heading RNN+DS) show the performance of
our model trained on official training data plus the
additional training data we gather using our dis-
tant supervision strategy. The increase in the recall
from 44.4% to 50.78% shows the effectiveness of
our distant supervision strategy.

Overall our distant supervised model
(RNN+DS) performs comparable to the state-of-



the art result. Table 5 highlights some our key
results. The column DS Sents lists the number of
sentences extracted for each of the corresponding
event types using our distant supervision strategy.
For the event types Phosphorylation, Regulation
and Positive regulation, we extract a higher num-
ber of sentences compared to other event types.
This results in a large increase in recall compared
to our RNN model and proves the effectiveness of
our distant supervision approach.

6 Related work

The biomedical event extraction task described
in this work was first introduced in the BioNLP
Shared Task in 2009 (Kim et al., 2009). Exist-
ing approaches to this task include SVM ((Björne
and Salakoski, 2013)) other ML based approaches
((Riedel and McCallum, 2011), (Miwa et al.,
2010), (Miwa et al., 2012)). Methods like ((Liu
et al., 2013), (MacKinlay et al., 2013)) learn
subgraph patterns from the event annotations in
the training data and cast the event detection as
subgraph matching problem. Non-feature based
approaches like graph kernels compare syntactic
structures directly. ((Airola et al., 2008), (Bunescu
et al., 2005)). Rule based methods that either
use manually crafted rules or generate rules from
training data ((Cohen et al., 2009), (Kaljurand et
al., 2009), (Kilicoglu and Bergler, 2011), (Bui et
al., 2013)) have obtained high precision on these
tasks.

In our work, we take inspiration from the
Turk Event Extraction System (TEES) (Björne
and Salakoski, 2013) (the event extraction system
for EVEX) that has consistently been the top per-
former in these series of tasks. They represent
events using a graph format and break the event
extraction task into separate multi-class classifica-
tion tasks using SVM as their classifier. In our
work we take a step further by making use of a
deeper semantic representation as a starting point
and identifying subgraphs in the AMR graph.

AMR has been successfully used for deeper se-
mantic tasks like entity linking (Pan et al., 2015)
and abstractive summarization (Mihalcea et al.,
2015). Recently, there have been increasing ef-
forts for developing automatic AMR parsers sug-
gesting the availability of AMR parsers with bet-
ter accuracy in near future. Work by (Garg et al.,
2015) is the first one to make use of AMR repre-
sentation for extracting interactions from biomedi-

cal text. They use graph kernel methods to answer
the binary question of whether a given AMR sub-
graph expresses an interaction or not. Our work
departs from theirs in that they concentrate only on
binary interactions whereas we use AMR to iden-
tify complex nested events. Also, our approach ad-
ditionally makes use of distant supervision to cope
with the problem of limited annotated data.

Recurrent neural networks have proven to
be tremendously useful for language modeling
(Mikolov et al., 2010) and sequential modeling
(Schuster and Paliwal, 1997). By associating each
word with a distributed representation, RNN and
other neural network methods overcome the spar-
sity problem faced by many traditional feature
based approaches. Distant supervision techniques
have been successfully used before for relation ex-
traction (Mintz et al., 2009) in general domain.
Recent work by (Liu et al., 2014) uses minimal
supervision strategy for extracting relations par-
ticularly in biomedical texts. Our work departs
from theirs in that we introduce a novel AMR path
based heuristic to selectively sample the sentences
obtained from distant supervision.

7 Conclusion

In this work, we showed the effectiveness of using
a deep semantic representation based on Abstract
Meaning Representations for extracting complex
nested events expressed in biomedical text. We
hypothesized that an event structure is an AMR
subgraph and empirically validated our hypothe-
sis. For learning to extract such event subgraphs
from AMR automatically, we developed two Re-
current Neural Network based models: one for
identifying the theme, and the other for identi-
fying the cause of the event. To overcome the
dearth of manually annotated data in biomedical
domain, which explains the low recall of event ex-
traction systems, we trained our model on addi-
tional training data gathered automatically using
a selective distant supervision strategy. Our ex-
periments strongly suggest that AMR parsing im-
provements, which are expected given the youth
of this scientific field of inquiry, and the exploita-
tion of larger, manually curated Biopax-like mod-
els and collections of bio-molecular texts will be
easy to capitalize on catalysts for driving future
improvements in this task.
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