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Abstract—Weighted signed networks (WSNs) are networks in
which edges are labeled with positive and negative weights.
WSNs can capture like/dislike, trust/distrust, and other social
relationships between people. In this paper, we consider the
problem of predicting the weights of edges in such networks.
We propose two novel measures of node behavior: the goodness
of a node intuitively captures how much this node is liked/trusted
by other nodes, while the fairness of a node captures how fair the
node is in rating other nodes’ likeability or trust level. We provide
axioms that these two notions need to satisfy and show that past
work does not meet these requirements for WSNs. We provide a
mutually recursive definition of these two concepts and prove that
they converge to a unique solution in linear time. We use the two
measures to predict the edge weight in WSNs. Furthermore, we
show that when compared against several individual algorithms
from both the signed and unsigned social network literature,
our fairness and goodness metrics almost always have the best
predictive power. We then use these as features in different
multiple regression models and show that we can predict edge
weights on 2 Bitcoin WSNs, an Epinions WSN, 2 WSNs derived
from Wikipedia, and a WSN derived from Twitter with more
accurate results than past work. Moreover, fairness and goodness
metrics form the most significant feature for prediction in most
(but not all) cases.

I. INTRODUCTION

A signed social network (SSN) is a network where edges
may be labeled as being “positive” or “negative”. For instance,
if a vertex u dislikes a vertex v, there may be an edge
with a “negative” edge label whereas if u likes v, the same
edge labeled would be “positive”. However, in the real-world,
people may like or dislike one another with varying levels of
intensity. Person A might dislike B a little bit, but dislike C
a lot more. Or person A may trust B a little bit, but trust
C a lot more. Or person A may disagree with B a little bit,
but disagree with C a lot more. All of these concepts (liking,
trusting, agreeing) are different and not necessarily symmetric,
yet they all can be captured via (directed) weighted signed
networks (WSNs).

A number of WSNs exist in the wild. For instance, we
found two Bitcoin exchanges (OTC and Alpha), 2 Wikipedia
networks, and an Epinions network which are explicit WSNs.
In addition, we show how Twitter data can be viewed as
a WSN. The meaning of positive and negative edges varies
from network to network. However, WSNs, like any network,
are incomplete. There may be like/dislike, trust/distrust or
agree/disagree relations between people which we don’t know
about or are yet to form. For instance, person P1 may
implicitly disagree with P2 on most things (e.g. if P1 mostly

disagrees with P3 who mostly agrees with P2) even though
they are not directly connected on Twitter. In this paper, we
will study the problem of predicting the weights of edges in
WSNs by examining data from all of the above networks.
Prediction of such weights is significant for many reasons.
For instance, we might wish to identify all people in a social
network who might strongly agree with or support a particular
topic (e.g. with a strength of over 0.8 on a weight scale that
goes from -1 to +1) even if they have not tweeted about that
topic, by seeing how much they like/agree or dislike/disagree
with others who may have done so. As an example, a politician
might look at such people as potential voters for him if he has
strength in that particular topic of interest. In the same vein, we
might wish to estimate how much a person P1 agrees/disagrees
with people who are already positive or negative about a
product (e.g. mobile phone carrier, airline) in order to quantify
if they are more likely to be target customers of the product.
Moreover, edge weight prediction may be useful to improve
traditional tasks in signed networks such as node ranking [1],
anomaly detection [2], [3], network analysis [4], [5], commu-
nity detection [6], information diffusion [7], [8] and sentiment
prediction [9], among others. Therefore, the prediction of edge
weights in WSNs can be advantageous in various tasks, both
when WSNs are explicit and implicit.

This paper focuses on the problem of predicting the weight
of edges in real-world WSN datasets for the first time. A
previous effort [10] studies WSNs without using naturally
occurring WSNs. In this paper, we define two novel metrics
of vertices that are unique to WSNs: fairness, to measure how
fair is a vertex in assessing other vertices, and goodness, to
measure how good do other vertices think this particular vertex
is. We provide axioms that such fairness/goodness functions
must satisfy and produce a specific definition of each that
satisfy the axioms. We then develop a Fairness-Goodness
Algorithm (FGA) that iteratively computes these two scores
simultaneously and prove that this process is guaranteed to
converge in linear time and moreover, that the fairness and
goodness of a vertex is uniquely defined.

Based on this, we are the first to provide an algorithm to
predict edge-weights in WSNs. By holding back data from 6
datasets, we are able to assess the accuracy of our methods
with a series of four experiments:
(i) Leave-One-Out Prediction: When we use a common set
of algorithms associated with SSNs (e.g. signed eigenvector
centrality [11], status theory [5], [12], triadic balance [13],
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Fig. 1. The proposed metrics – Fairness and Goodness – perform the best, by
having the lowest Root Mean Square Error and highest Pearson Correlation
Coefficient, for predicting edge weights when N% of edge weights are
removed from the network. The figure also shows that fairness and goodness
metrics are robust, as the prediction performance is stable with increasing N.

PageRank [14], Signed-HITS [1], Bias and Deserve [15]) as
well as the results of adaptations of past work on trust predic-
tion such as TidalTrust [16], EigenTrust [17], and MDS [10],
we show that our fairness and goodness metrics are almost
always the best when predicting the weight of an edge, one at
a time.
(ii) Leave N% Out Prediction. When we remove N% of
the edges from the network and try to predict them from each
of the individual features, we see that in all cases, fairness
and goodness metrics are the best. We show the performance
in case of one Bitcoin network in Figure 1. Here we see
that fairness and goodness has the lowest root mean square
error and the highest Pearson correlation coefficient, when
comparing the predicted edge weight and the true edge weight,
by varying the values of N . Furthermore, the performance is
stable, making the proposed metrics robust to network sparsity
(i.e. when varying fraction of the network is not entirely
visible to apps and users on Facebook, LinkedIn, etc.). Similar
results for the other networks are discussed in detail in the
Experiments section later (see Section VI).
(iii) Multiple Regression Prediction. When we use all of
the aforementioned existing algorithms and proposed metrics
for prediction in a supervised learning model using different
regression models, then the performance improves. The root
mean square error reduces to 0.22-0.32 and the Pearson
Correlation Coefficient for all removed edges ranges from
0.46-0.81 and is significantly higher than any past predictive
method. Most importantly, in this ensemble, fairness and
goodness metrics are the most important features in most of
the networks.
(iv) Multiple Regression with Leave N% Out. Here, we
again combine all algorithms to learn different regression
models while removing N% of the edges. This ensemble
outperforms the past techniques and is also robust, due to the
presence of the robust fairness and goodness metrics.

All the datasets and codes have been made available at
http://cs.umd.edu/˜srijan/wsn. The fairness and
goodness metrics have also been implemented in the SNAP
library [18] at http://snap.stanford.edu/snap/.

II. RELATED WORK

Edge Sign Prediction in SSNs. Several papers have devel-
oped features and models to predict the sign of an edge by
building upon balance and status theories [10], [19], [12], de-
veloping random-walk and trust-propagation algorithms [20],
[21], and using social interaction information for prediction
[22] (see [23] for a survey). Metric Multidimensional Scaling
(MDS) [10] assigns an m-dimensional position to vertices
in a SSN or WSN to minimize ‘stress’, based on extended
balance theory. It then uses the metric distance between two
vertices to predict the sign of an edge between them.

All of these papers predict edge sign in (unweighted) SSNs,
while we predict the weight of an edge along with its sign.
We compare with these past efforts and outperform them.
For instance, we compare with balance theory, status theory,
several random walk based centrality measures for WSNs
and MDS algorithm, and show that FGA outperforms them
predicting edge weights in WSNs (see Section VI for details).

Edge Weight Prediction in Social Networks. There is
substantial work on predicting edge weights in ordinary (un-
signed) social networks. Communication based features have
been shown to be very important in quantifying the edge
weights between users [24], [25], [26], [27], but since we
only have the WSN without any communication information,
we compare with non-communication based techniques. These
include baselines such as reciprocal edge weight [24] and
triadic balance and status measures [25], [28] (see Section VI
for details). Two popular unsupervised algorithms are Eigen-
Trust [17] and TidalTrust [16]. EigenTrust calculates a global
value of trust for each vertex by finding the left eigenvector
of a normalized trust matrix. TidalTrust calculates the trust
from a source to a sink, by recursively propagating trust via
the sink’s predecessors till it reaches the source. A very recent
work in this direction is trustingness and trustworthiness [29].
However, these papers deal with edge weight prediction in
unsigned social networks, while we look at the new problem of
predicting edge weights in WSNs. So in this paper, we suitably
adapt and compare with these techniques, and show that FGA
outperforms them.

III. PRELIMINARIES
A Weighted Signed Network (WSN) is a directed, weighted

graph G = (V,E,W ) where V is a set of users, E ⊆ V × V
is a set of edges, and W : E → [−1,+1] is a mapping that
assigns a value between -1 and +1 to each edge. W (u, v)
can be thought of as assigning a degree of “likes”, “agrees”
or “trust” score describing how much user u likes a user v.
Notations used in the paper are described in Table I.

Given WSN G = (V,E,W ) and a node u we define the
ego-in-network of u as the WSN ego-in(u) = (Vu, Eu,Wu)
where (i) Vu = {u} ∪ in(u), (ii) Eu = {(v, u)|v ∈ in(u)},
and (iii) Wu(v, u) = W (v, u), ∀(v, u) ∈ Eu. We say that
two nodes w1 and w2 have the identical ego-in-network iff
|in(w1)| = |in(w2)| and there exists a one-to-one mapping
h : in(w1) → in(w2) s.t. Ww1(v, w1) = Ww2(h(v), w2),
∀v ∈ in(w1). Similarly we can define the concept of ego-out-
network of u, denoted by ego-out(u).



TABLE I
TABLE OF NOTATION USED IN THE PAPER.

A Adjacency matrix of G=(V,E,W ), i.e. Auv=W (u, v)
A+ Adjacency matrix of the positive graph only
A− Adjacency matrix of the negative graph only
in(u) Set of nodes that preceed u
in+(u) Set of positive predecessors u
in−(u) Set of negative predecessors u
out(u) Set of nodes that succeed u
out+(u) Set of positive successors u
out−(u) Set of negative successors u
W+

in(u) Total positive in-weight, W+
in(u) =

∑
v∈in+(u)W (v, u)

W−in(u), W
+
out(u), and W−out(u) are similarly defined.

PCC Pearson correlation coefficient
p p-value of the correlation

IV. ALGORITHM: “FAIRNESS” AND “GOODNESS”

In this section, we develop two measures (fairness and
goodness) for each vertex in a WSN that will be used later
for predicting edge weights.

The fairness of a vertex is a measure of how fair or reliable
the vertex is in assigning ratings (like/dislike, agree/disagree,
trust/distrust) to other vertices. Intuitively, a ‘fair’ or ‘reliable’
rater should give a user the rating that it deserves, while an
‘unfair’ one would deviate from that value. Hence, the ratings
given by unfair raters should be given low importance, while
ratings given by fair raters should be considered important.
As an example, in real world networks such as the Bitcoin
networks, scammers create multiple accounts to increase their
own ratings and to reduce the ratings of benign users. To
prevent this, scammers should be given a low fairness score.

On the other hand, the goodness of a vertex speci-
fies how much other vertices like/dislike, agree/disagree, or
trust/distrust that vertex and what its true quality is. This is
the rating a totally fair vertex would give. Higher goodness
implies the vertex is more trustworthy in the network. Hence,
a ‘good’ or ‘trustworthy’ vertex would receive many high
positive ratings from fair vertices, while a ‘non-trustworthy’
vertex would receive high negative ratings from fair vertices.

However, given a WSN, we don’t know how fair and how
good each vertex is. From the description above, it is clear that
fairness and goodness metrics are dependent on each other.
Therefore, we define how to assign fairness and goodness
scores to each vertex in this section.
A. Prerequisites and Axioms

We start with two axioms that fairness and goodness metrics
should satisfy.

Axiom 1 (Goodness axiom): Let u1 and u2 be two vertices
having identical ego-in-networks, and let h be the 1-to-1
mapping between the two ego-in-networks. Then the Goodness
axiom states that vertices with higher fairness have higher
impact on the vertices they rate. Formally, if f(v) = f(h(v))
∀v ∈ in−(u1), and f(v) ≥ f(h(v)) ∀v ∈ in+(u1), then
g(u1) ≥ g(u2). Conversely, if f(v) = f(h(v)) ∀v ∈ in+(u1),
and f(v) ≥ f(h(v)) ∀v ∈ in−(u1), then g(u1) ≤ g(u2).

Axiom 2 (Fairness axiom): Let u1 and u2 be two vertices
having identical ego-out-networks, and let h be the 1-to-
1 mapping between the two ego-out-networks. The Fairness

TABLE II
COMPARISON OF FAIRNESS AND GOODNESS WITH TRADITIONAL

METRICS THAT PROVIDE TWO SCORES TO EACH VERTEX. WE SEE THAT
FAIRNESS AND GOODNESS HAS ALL THE DESIRED PROPERTIES.
Desired properties Fairness and Goodness Bias and Deserve HITS

Satisfies Axioms 1 and 2 3
Scalable in O(|E|) 3 3 3

Converges 3 3 3
Robust to network sparsity 3

axiom states that a vertex is more fair than another if it
gives ratings closer to the rating deserved by the recipient.
Formally, if |Wu1

(u1, k)−g(k)| ≤ |Wu2
(u2, h(k))−g(h(k))|

∀k ∈ out(u1), then f(u1) ≥ f(u2).
The Goodness axiom establishes dependence of goodness

on fairness, and the Fairness axiom established the dependence
of fairness on goodness.

Reasonable fairness and goodness measures should satisfy
the above two axioms. In addition, the method to compute
the fairness and goodness should have the following desirable
properties: it should (a) be scalable, i.e. it should be linear in
the number of edges in the network; (b) guarantee a solution,
i.e. it should always converge and find a solution; (c) be
accurate, i.e. it should be able to estimate the true quality
of each vertex; and (d) be robust, i.e. it should perform well
even when the network is not entirely visible.

B. Fairness and Goodness

We now provide two equations to compute the fairness
and goodness metrics in a mutually recursive manner. We
then show that they satisfy the axioms and have the desirable
properties.

g(v) =
1

|in(v)|
∑

u∈in(v)
f(u)×W (u, v) (1)

f(u) = 1− 1

|out(u)|
∑

v∈out(u)

|W (u, v)− g(v)|
R

(2)

Fairness scores always lie in the [0, 1] interval and goodness
scores lie in the [−1, 1] interval which is the domain of the
edge weights in our case. The maximum possible difference
between an edge weight and goodness score is the range of
difference, R = 2.1

In the goodness formula for a vertex v, the incoming edge
weights are weighted by the fairness of the vertices that
are rating it, so that ratings by fair vertices are considered
important. The average of these products over all predecessors
yields the goodness of v. When calculating fairness of a vertex
u, the smaller the difference between the actual edge weight
and the goodness of the recipient, the more fair the vertex.
Again, an average for all the ratings given by vertex u is used
to calculate the fairness of u.

Proposition 1: Fairness and goodness measures satisfy both
Axiom 1 and Axiom 2.
We prove the proposition formally in Appendix A.

Figure 3 shows the FGA algorithm to compute fairness and
goodness scores for each vertex in the network. By default,

1If edge weights and goodness range over [−`, `], then R = 2`.



(a)

n f(n) g(n)

a 0.86 0.77
b 0.85 0.33
c 0.96 0.60
d 0.34 0.87
e 0.88 0.48
f 0.26 -0.87
g 0.20 -0.87

(b)
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Fig. 2. (a) An example network to explain fairness and goodness. (b) Fairness and goodness scores for each vertex in the example network. In the OTC
network, the distribution of (c) fairness scores and (d) goodness scores. (e) Both fairness and goodness scores converge within 8 iterations in OTC network.

1: Input: A WSN G = (V,E,W )

2: Output: Fairness and Goodness scores for all vertices in V
3: Let f0(u) = 1 and g0(u) = 1, ∀u ∈ V
4: t = −1
5: do
6: t = t+ 1

7: gt+1(v) = 1
|in(v)|

∑
u∈in(v) f

t(u)×W (u, v), ∀v ∈ V

8: f t+1(u) = 1− 1
2|out(u)|

∑
v∈out(u) |W (u, v)−gt+1(v)|, ∀u ∈ V

9: while
∑

u∈V |f t+1(u)−f t(u)| > ε or
∑

u∈V |gt+1(u)−gt(u)| > ε

10: Return f t+1(u) and gt+1(u), ∀u ∈ V

Fig. 3. Fairness and Goodness Algorithm (FGA)

the fairness and goodness scores of all vertices is set to 1
and 1, respectively (line 3). In line 7, the goodness score
for each vertex is updated using the fairness scores from the
previous iteration. In line 8, the fairness scores are updated
using the newly updated goodness scores in the same iteration.
For instance, after the first iteration, the goodness of all the
vertices becomes their average in-degree. Both goodness and
fairness scores are mutually recursive and are updated till both
the scores converge (line 9). The algorithm converges when the
change between fairness and goodness scores in consecutive
iterations for all vertices is less than an error bound ε, which
we set to 0.001. The scores of fairness and goodness from the
last iteration are the final scores (line 10).

Example 1: Consider a sample weighted signed network in
Figure 2(a), that very well reflects the real world scenario.
Positive edges are shown in solid blue edges, negative ones
are shown as red dotted edges. Vertices a, b, c and e are fair
vertices, as their ratings are close to the other ratings that the
recipients get. This makes their rating close to the goodness
score of the vertex and this increases their fairness. Vertices
d, f and g have lower fairness score, as their ratings deviate
a lot from the goodness of their rating recipients. Looking at
the goodness scores, vertices a, b, c, d and e are good, with the
score of b being low positive as it receives edges of varying
edge weights, most of which are positive. Vertices f and g
have very negative goodness scores, as they get very negative
ratings from very fair vertices. This example very well reflects
the real world social networks, where majority of the vertices
(a, b, c and e) are fair and good. Vertex d is interesting, as it
is good but it is not fair. Vertices f and g are blatant trolls or
fraudsters that have low fairness and very negative goodness

scores. The scores of fairness and goodness for all the vertices
is reported in Figure 2(b). �

Figure 2(c) and 2(d) show the fairness and goodness distri-
bution for all the vertices in the OTC network. We see that
most vertices have very high fairness (90% above 0.8 score;
mean score = 0.94) meaning that most of the users are fair,
but some vertices are not. For goodness, most vertices have
low positive score (80% have score between 0 and 0.3), while
a considerable fraction are considered ‘not good’ (14% have
negative score, and 5% have goodness below -0.5). Similar
observations hold for other networks.

C. Predicted Edge Weight by Fairness and Goodness

The weight of the edge (u, v) as predicted by the fairness
and goodness is simply the the product f(u)×g(v). This way
the predicted edge weight depends on both the fairness of the
edge generator and the goodness of the edge recipient. We call
this the FxG score of the edge.

D. Algorithm Analysis

In this part, we prove the convergence, uniqueness and the
linear time complexity of the algorithm. For brevity, we state
them here, and all the proofs are shown in Appendix A.

Theorem 1 (Convergence Theorem): Let f t(u) be the
fairness of node u after iteration t of the algorithm in Figure 3,
and let f∞(u) be its final score. Then, the error is bounded by
|f∞(u)− f t(u)| ≤ 1

2t ∀u ∈ V . As t increases, the f t(u) con-
verges to f∞(u). Similarly, |g∞(v) − gt(v)| ≤ 1

2t−1 ∀v ∈ V .

Theorem 2 (Uniqueness Theorem): FGA algorithm pro-
duces a unique solution of fairness and goodness scores upon
convergence.

Proposition 2 (Linear Time Complexity of FGA): Let G =
(V,E,W ) be a weighted signed network and ε > 0. The time
complexity of the algorithm to compute fairness and goodness
(Figure 3) is O(|E|).
We show the proof in Appendix B [30].

Figure 2(e) shows the change in value of fairness and
goodness over each iteration for the case of OTC network.
We observe FGA quickly terminates in 8 iterations.

Given that the formulation of Fairness and Goodness sat-
isfies the axioms, converges to a unique score and has linear
running time complexity, it satisfies the desirable properties.
We will also show that this metric is accurate and robust in
Section VI.



TABLE III
WEIGHTED SIGNED NETWORKS (WSNS) USED IN THE PAPER.

Network Vertices Edges % Pos. Edges Description of network edges
Bitcoin-OTC 5,881 35,592 89% Degree of trust or distrust from Bitcoin user u to v
Bitcoin-Alpha 3,783 24,186 93% Degree of trust or distrust from Bitcoin user u to v
Wikipedia RfA 9,654 104,554 83.7% Degree of support or opposition in Wikipedia administrator elections by u to v

WikiSigned 341,646 5,625,022 83.02% Degree of agreement or disagreement from Wikipedia editor u to v
Epinions 195,805 4,835,208 95.34% Degree of trust or distrust from Epinions user u to v
Twitter 365,432 2,583,815 95.42% Degree of positive or negative sentiment from Twitter user u to v

E. Comparison to traditional metrics

We now compare the Fairness and Goodness metrics with
HITS [31] and Bias and Deserve [15]. Other centrality metrics,
such as PageRank, Signed EigenVector Centrality, and others,
assign only a single score to each vertex, and therefore are
not directly comparable to the proposed fairness and goodness
metrics.

Similarity and differences from HITS: Consider the special
case when all W (u, v) ∈ {0, 1}, i.e. when all edges are
unweighted and unsigned. Then the formulation of fairness
and goodness reduces to the following: for all edges (u,v),
W (u, v) = 1 and since g(v) < 1, |W (u, v) − g(v)| =
|1− g(v)| = 1− g(v). So,

g(v) = 1
|in(v)|

∑
u∈in(v) f(u)

and f(u) = 1− 1
|out(u)|

∑
v∈out(u) 1− g(v)

⇒ f(u) = 1
|out(u)|

∑
v∈out(u) g(v)

Note that in this special case of unweighted unsigned net-
works, fairness and goodness become very similar to the HITS
formulation, with a difference in how the normalization is
done. In HITS, normalization is done at the end of each
iteration, so that the hub and authority vectors are unit vectors.
In Equations 1 and 2, normalization is done for each vertex
by averaging over its in- and out-edges, on the right hand side
of the equation. This is done because when edge weights are
negative in case of WSNs, the unit vector normalization is not
valid. Since the original formulation of HITS is not defined
for either SSNs or WSNs, it does not satisfy the axioms.

Similarity and differences from Bias and Deserve: A vertex
u’s bias (BIAS) reflects the expected weight of an outgoing
edge to a random vertex, while its deserve (DES) reflects
the expected weight of an incoming edge from an unbiased
vertex [15]. As in the case of HITS, BIAS and DES are
iteratively computed as:

DESt+1(u) = 1
|in(u)|

∑
v∈in(u)[W (v, u)(1−Xt(v, u))]

BIASt+1(u) = 1
2|out(u)|

∑
v∈out(u)[W (u, v)−DESt(v)]

where Xt(v, u) = max(0, BIASt(v)×W (v, u)).
Proposition 3: Deserve satisfies Axiom 1 while bias does

not satisfy Axiom 2.
We show the proof in Appendix B [30].

V. REAL-WORLD DATA: WEIGHTED SIGNED NETWORKS

Table III summarizes the statistics of the six real world
weighted signed network (WSN) datasets used in this paper.
All these networks are directed, i.e. each edge (u, v) means
that user u is expressing an opinion about user v. Each edge
is associated with a weight W (u, v) representing the strength

of opinion. The weights for all the networks are scaled to lie
between −1 and 1. We explain the meaning of the sign and
strength of edges in each of the different networks below. The
datasets have been released on the project webpage [30].

Bitcoin networks. Bitcoin is a cryptocurrency that is used
to trade anonymously over the web. Due to anonymity, there
is counterparty risk [32], which has lead to the emergence of
several exchanges where Bitcoin users rate the level of trust
they have in other users. We created two datasets from two
such exchanges - Bitcoin-OTC (OTC for short) and Bitcoin-
Alpha2 (Alpha for short). Both these exchanges allow users to
rate others on a scale of -10 to +10 (excluding 0). According to
OTC’s guidelines, a rating of -10 should be given to fraudsters
while at the other end of the spectrum, +10 means “you trust
the person as you trust yourself”. The other rating values
have intermediate meanings. Therefore, these two exchanges
explicitly yield WSNs. We scale the edge weights to be
between -1 and 1.

Wikipedia RfA. Wikipedia Requests for Adminship (RfA)
network [9] is a signed network among Wikipedia users where
each edge (u, v) has a weight corresponding to the vote of
user u (-1 for negative, 0 for neutral, and 1 for positive)
towards user v to become an administrator. The dataset also
contains a short explanation for each vote. We build a WSN
from Wikipedia RfA network by weighting each edge with the
intensity of the sentiment expressed in its explanation. We used
an online VADER sentiment engine [33] to perform sentiment
analysis on the explanations. It gives a positive sentiment score
pos and a negative sentiment score neg to each explanation,
where −1 ≤ pos, neg ≤ +1. We assign the sentiment score
of the edge as pos− neg. The resulting network has weights
in the range [−1, 1].

WikiSigned. This WSN is between Wikipedia editors cre-
ated in [34], where an edge from editor u to another editor
v represents the trust or distrust u places in the edits made
by v. The trust and distrust is calculated from the number of
words from v’s edits that u retains, replaces or deletes, and
the number of edits u restores or reverts. The trust increases if
the words are retained and edits restored, but distrust increases
when words are replaced or deleted and edits reverted. The
edge weight is then calculated as the difference between trust
and distrust. The exact details are given in [34].

Epinions. We used the Extended Epinions dataset3 to build
a WSN as follows. In Epinions, each user u can rate the
helpfulness of a review by user v on a 1-5 scale. There is an

2http://www.bitcoin-otc.com and http://www.btcalpha.com
3http://www.trustlet.org/extended epinions.html



edge (u, v) from user u to user v if u expressed the helpfulness
of at least one of v’s reviews. We translated the helpfulness
scores to the interval [−1,+1] (a helpfulness score of 1, 2, 3,
4 and 5 are scaled to -1.0, -0.5, 0.0, 0.5 and 1.0, respectively),
and set w(u, v) to the average of the multiple helpfulness
scores from u to v.

Twitter. We created a WSN from the Twitter India Election
data reported in [35], [36] representing the average sentiment
of a user towards another. There may be many tweets from
u that mention v. For each of these tweets, we compute the
sentiment of the tweet by using VADER, as was done for
WikiRfA. The weight W (u, v) ∈ [−1, 1] of edge from u to v
is the average sentiment score of all tweets written by u that
mention v.

More complex measures can be used to define the weight
in the Twitter network, which could also include information
about whether u retweeted or favorited a tweet by v and
so forth. For simplicity, we use the sentiment of text as
it systematically generates positive and negative sentiments.
Moreover, the purpose of this paper is not to define how to
create WSN, but to take a WSN as input for edge weight
prediction. WSNs can also be created from Facebook, Tumblr,
and other types of social media, as well as e-commerce sites
such as Amazon, eBay (where the posts analyzed are reviews),
possibly with combination of sentiment analysis. In this paper,
we validate using the above defined six WSN datasets.

VI. SIGNED EDGE WEIGHT PREDICTION

In this section, we study the problem of predicting the
weight of a signed directed edge (u, v) in WSNs. There is
much work on predicting edge signs in signed networks —
however, we predict not only the sign of an edge, but also its
weight. We are addressing this problem on WSNs for the first
time. By conducting experiments on 6 real-world described in
Section V, we show that Fairness and Goodness outperforms
existing algorithms, is the most important feature overall in
multiple regression models, and is robust to sparsity.

Existing algorithms. As we discussed in the Related Work
section, there has been significant work in developing metrics
about signed social networks (SSNs), developing algorithms
for edge sign prediction in SSNs and edge weight prediction
in unsigned SNs. Since there is no work that addresses edge
weight prediction in WSNs, we first show that adaptations of
existing algorithms from these three fields are outperformed by
our fairness and goodness metrics. However, we will use these
past works as features in our multiple regression models, so all
of these past works do provide value. The existing algorithms
are:
• Reciprocal: The predicted weight for edge (u, v) is the

same as that of the reciprocal edge (v, u) (0 if there is no
reciprocal edge).
• Triadic balance: This is the average product of edge

weights for all incomplete triads that the edge (u, v) is a part
of. Incomplete triads are triads that would form involving edge
(u, v) after it is created. This definition of triadic balance is
derived directly from balance theory [13].

• Triadic status: This is the weight of the edge that is
predicted by a simple extension of status theory [5] with
edge weights using three rules. (i) In a transitive triad, the
predicted weight of the transitive edge is the sum of the two
non-transitive edge weights, and (ii) the predicted weight of a
non-transitive edge is the difference of the transitive and the
other non-transitive edge weights. (iii) In a cyclic triad, the
weight of the missing edge is the negative of the sum of other
two edge weights. Overall, the prediction by this baseline is
the average predicted weight over all incomplete triads that an
edge is a part of.
• Status theory: The prediction made by this measure is

the difference between the status of vertex u and vertex v,
defined as σ(u)−σ(v). The status σ(k) of vertex k is defined
as σ(k) = |W+

in(k)| − |W−in(k)| + |W−out(k)| − |W+
out(k)|.

Status [12] increases when receiving positive incoming edges
and generating negative outgoing edges to other vertices,
while decreases when receiving negative edges and generating
outgoing positive edges. Difference in status measures how
much ‘higher’ u’s status is compared to v’s. We extend the
measure trivially to include weights instead of only signs.
• PageRank: The difference between weighted PageRank

(wPR) value of vertex u and v, i.e. wPR(u) − wPR(v), is
the prediction made by this measure [14]. wPR is calculated
in the unsigned version of the network as:

wPR(k) =
1− δ
|V |

+ δ
∑

z∈in(k)

wPR(z)×W (z, k)

|out(z)|
.

• Signed Eigenvector Centrality: The difference between
signed eigenvector centrality (SEC) value of vertex u and
v, i.e. SEC(u) − SEC(v), is the prediction made by this
measure. The SEC of vertices in a WSN with adjacency matrix
A is the vector x that satisfies the equation Ax = λx, where
λ is the greatest eigenvalue [11].
• Signed-HITS: The prediction made by this model is the

authority score a(v) of vertex v computed by using a modified
version of HITS for signed network, called Signed-HITS [1].
Signed-HITS iteratively computes the hub and authority scores
separately on A+ and A−, using the equations:

h+(u) =
∑

v∈out+(u)

a+(v); a+(u) =
∑

v∈in+(u)

h+(v)

h−(u) =
∑

v∈out−(u)

a−(v); a−(u) =
∑

v∈in−(u)

h−(v)

and assigns, after convergence, the authority score a(u) =
a+(u)−a−(u) and hub score h(u) = h+(u)−h−(u) to each
vertex u. Again, we trivially extend the formula to include
edge weights.
• Bias and Deserve: This is the measure proposed in [15],

as discussed in Section IV. The deserve value DES(v) of the
vertex v is the prediction made by this algorithm.
• TidalTrust: We adapt the popular trust prediction model

TidalTrust [16] to work on WSNs. We calculate the predicted
trust values from u to v separately in the positive and negative
sub-networks, and then take the difference between them as
the feature for prediction.



TABLE IV
PERFORMANCE OF ALL COMPETITORS FOR SIGNED EDGE WEIGHT PREDICTION IN LEAVE-ONE-OUT SETTING. EACH CELL REPORTS (RMSE,PCC).

LOWER RMSE AND HIGHER PCC ARE DESIRABLE. FAIRNESS AND GOODNESS PERFORMS THE BEST.

Method OTC Alpha WikiRfA Twitter Epinions WikiSigned
Existing algorithms

Reciprocal (0.32, 0.46) (0.27, 0.47) (0.35, 0.04) (0.94, -0.11) (0.71, 0.24) (0.56, 0.04)
Triadic Balance (0.57, 0.38) (0.57, 0.25) (0.75, 0.20) (0.36, 0.22) (0.41, 0.49) (0.71, 0.62)
Triadic Status (0.65, 0.22) (0.65, 0.26) (0.69, 0.20) (0.44, 0.26) (0.97, 0.12) (0.68, 0.65)
Status Theory (1.03, 0.16) (0.97, -0.12) (1.19, 0.04) (1.90, 0.00) (1.55, -0.03) (1.33, -0.25)
PageRank (0.37, 0.07) (0.32, -0.02) (0.34, -0.04) (0.94, 0.00) (0.87, -0.16) (0.55, 0.19)
Signed Eigenvector Centrality (0.37, 0.17) (0.32, 0.23) (0.34, 0.11) (0.98, -0.09) (0.87, -0.20) (0.56, -0.01)
Signed-HITS (0.37, 0.34) (0.32, 0.25) (0.35, 0.22) (0.93, 0.29) (0.86, 0.38) (0.57, 0.17)
Bias and Deserve (0.36, 0.32) (0.31, 0.24) (0.23, 0.44) (0.30, 0.37) (0.38, 0.53) (0.47, 0.31)
TidalTrust (0.39, 0.38) (0.36, 0.22) (0.31, 0.24) (0.33, 0.39) (0.41, 0.44) (0.58, 0.44)
EigenTrust (0.37, 0.01) (0.33, 0.00) (0.35, 0.00) (0.94, 0.00) (0.87, 0.00) (0.55, 0.00)
MDS (0.35, 0.41) (0.31, 0.32) (0.33, 0.28) (0.41, 0.27) (0.42, 0.39) (0.58, 0.36)

Proposed algorithm
Goodness (0.32, 0.48) (0.27, 0.40) (0.23, 0.46) (0.30, 0.41) (0.32, 0.64) (0.47, 0.31)
Fairness × Goodness (FxG) (0.31, 0.49) (0.27, 0.41) (0.24, 0.45) (0.36, 0.41) (0.36, 0.65) (0.46, 0.40)

TABLE V
SUPERVISED CLASSIFICATION USING PREDICTION BY ALL ALGORITHMS DESCRIBED ABOVE AS FEATURES.

Method OTC Alpha WikiRfA Twitter Epinions WikiSigned
Linear Regression, LR(FxG+) (0.26, 0.66) (0.22, 0.62) (0.22, 0.50) (0.25, 0.46) (0.29, 0.67) (0.32, 0.75)
Ridge Regression, RR(FxG+) (0.26, 0.67) (0.23, 0.62) (0.22, 0.50) (0.26, 0.43) (0.29, 0.65) (0.29, 0.81)
Lasso, Lasso(FxG+) (0.27, 0.66) (0.23, 0.61) (0.23, 0.47) (0.26, 0.45) (0.30, 0.63) (0.30, 0.77)
ElasticNet, EN (FxG+) (0.27, 0.65) (0.24, 0.60) (0.23, 0.47) (0.26, 0.43) (0.29, 0.64) (0.29, 0.77)

TABLE VI
FEATURE IMPORTANCE USING UNIVARIATE LINEAR REGRESSION TEST. THE FEATURES ARE SORTED ACCORDING TO DECREASING ORDER OF

IMPORTANCE FOR EACH NETWORK INDIVIDUALLY. ALL P-VALUES ARE BELOW 0.0001.

OTC Alpha WikiRfA Twitter Epinions WikiSigned
Fairness × Goodness Reciprocal Goodness Fairness × Goodness Fairness × Goodness Triadic Status
Goodness Fairness × Goodness Fairness × Goodness Goodness Goodness Triadic Balance
Reciprocal Goodness Bias and Deserve TidalTrust Bias and Deserve TidalTrust
MDS MDS MDS Bias and Deserve Triadic Balance Fairness × Goodness
TidalTrust Signed-HITS TidalTrust Signed-HITS TidalTrust MDS

• EigenTrust: EigenTrust, ET, is another popular trust pre-
diction algorithm [17]. The prediction is the difference in the
predicted trust of the two vertices involved, ET (u)−ET (v).
•MDS: This is a recent algorithm proposed to work for trust

prediction on SSNs [10](details of the algorithm are provided
in Section II). The convergence model in MDS can only accept
edge weights in {-2,-1,+1,+2}, so we convert the weights of all
networks by scaling and rounding off to these values. The edge
weight is predicted as the distance between the embeddings
of the two vertices of the edge, as generated by MDS.

Prediction by Fairness and Goodness: Lastly, we have the
metrics we propose in this paper. We use the goodness score
g(v) of the vertex v, and the FxG score, f(u)× g(v) as two
separate predictions made using Fairness and Goodness.

Evaluation metrics. The performance of edge weight pre-
diction is measured using two standard metrics – Root Mean
Square Error, RMSE, between the actual edge weight and the
predicted weight (RMSE lies in the range of 0 to 2, since
edge weights are between -1 and +1; 0 is the best, 2 is the
worst), and Pearson Correlation Coefficient, PCC, (range is -1
to 1; random is 0). Both these measures characterize different
aspects of the prediction – RMSE quantifies how close the
prediction is to the true values on average, and PCC measures
the relative trend between the two.

Results. We perform a series of experiments to evaluate the
performance of various features for edge weight prediction.

Experiment 1: Leave One-Out Edge Weight Prediction: We
conduct a Leave-One-Out cross validation experiment, which
captures the scenario where a WSN exists and we want to find
the weight of a non-existent edge. In this experiment, one test
edge et is removed at a time and the task is to predict its edge
weight, given the rest of the network. Each algorithm makes its
prediction based on the remaining network. The RMSE and
PCC values are calculated for each et, and averaged. This is
an entirely unsupervised approach. Table IV shows the average
RMSE and PCC of each algorithm. We observe that FxG
is almost always the best method across all 6 datasets.

Experiment 2: Multiple Regression Models for Edge Weight
Prediction: This experiment builds a supervised learning
model by using each of the algorithms in Experiment 1 to
generate a feature. Each feature is the edge weight prediction
by that algorithm. The procedure used is the following: the
test edge et whose weight is to be predicted is removed from
the network. From the remaining edges, a second edge es
is removed at a time to generate the prediction using all
the algorithms. This step is done multiple times to generate
training examples, with the features being the predictions
and the label being the edge weight of es. The training is
done using 4 regression models (Linear Regression, Ridge
Regression, Lasso, and ElasticNet), and the learned model is
used to predict the edge weight of et. RMSE and PCC
values are calculated for this prediction. This entire process
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(i) Epinions
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Fig. 4. Fairness and Goodness metrics are highly robust to network sparsity. This plot shows the variation of RMSE (top) and PCC (bottom) for five networks
(the plot for OTC is in Figure 1), when a random subset of edges are removed from each network. Some measures are removed to enhance visibility. We
observe that over all networks, the fairness and goodness metrics perform the best individually as the percentage of edges removed increases. Linear Regression
performs the best overall, with fairness and goodness as the most important feature.

is repeated multiple times by sampling different et and the
performance metrics are averaged. The regression models are
named LR(FxG+) for Linear Regression, RR(FxG+) for Ridge
Regression, and so on, as it takes a feature vector that has
Fairness and Goodness predictions as features (and they are
the most important features as seen later).

Table V shows that predictive power improves significantly
for all networks, both in terms of RMSE and PCC, com-
pared to the unsupervised technique explained in the previous
experiment. We are able to predict edge weights with a
PCC ranging in 0.46-0.81, and the RMSE ranging in 0.22-
0.32 depending on the network studied. This is important, as
practitioners can directly take this model and apply it in real
world. In general, linear regression seems to give the best
results.

Table VI shows the 5 most important features (in order)
for each network obtained using the f_regression method
implemented in Scikit Learn for identifying the most important
features in regression models. The results are all statistically
significant (p < 0.0001). We observe that FxG is ranked #1
in 3 of the 6 networks, #2 in 2, and #4 in one. The Goodness
measure alone does slightly worse. No other measure comes
close.

Experiment 3: Effect of removing N% of edges: In this
experiment, we remove a larger fraction of edges by randomly
selecting N% of edges, compute features for the remaining
edges and then predict the weight of the removed edges
(similar to the process done in Experiment 1, but with more
edges removed as test edges). We vary the value of N ,
from 10 to 90% in steps of 10%, to observe the effect of
fraction of missing edges from the network. For each N ,
we randomly generate 100 networks and take the mean of
the results. Figure 1 shows the RMSE and PCC of each

feature in predicting the weight of the missing edges in the
OTC network, and Figure 4 shows them for the remaining
five networks. (The curve labeled linear regression will be
discussed in Experiment 4). We only show the important
curves to enhance visibility. We see that of all the features,
the one that generates the best prediction is the FxG
feature. We note that the confidence interval of performance
is very small in each case, so we don’t show it in the figure
for better clarity.

Moreover, this figure shows that FxG is very robust
to partial visibility of the network. For instance, part of
a network may be invisible to an application due to privacy
constraints (e.g. on Facebook and LinkedIn, we can only see
part of the network). In fact, as more edges are removed
from the network, FxG outperforms all other features used.
Interestingly, we observe that features that performed well in
Experiment 1 degrade more than FxG. For example, consider
the “Reciprocal” feature in the Alpha network - it degrades
rapidly as visibility of the network is reduced. Likewise, Bias
and Deserve, which is the closest competitor in most networks,
is not robust at all in terms of RMSE, as its performance
degrades quickly and by a large margin.

Experiment 4: Effect of removing N% of edges, with Mul-
tiple Regression: As in Experiment 2, we learn a supervised
learning model by training on networks with N% edges re-
moved, and testing to predict the edge weight of the remaining
edges. This is shown as the gray lines in Figure 4, which again
shows that by training on the given data, the performance for
edge weight prediction in WSNs improves (this line is omitted
from Figure 1 for OTC network for clarity, but the same is
observed there as well). The RMSE values are lower and
the PCC values are higher when the regression model is
used. This again implies large practical application to improve



WSN based services. The prediction is done using a linear
regression model and is called LR(FxG+) as before because
Fairness and Goodness metrics are the most important features.
This is especially true when higher percentage of edges are
removed from the networks. As previously, the importance of
features was calculated using f_regression method. Other
regression models also perform similarly.

VII. CONCLUSION

Our paper is the first to show how to predict edge weights
in weighted signed networks (WSNs) and has the following
contributions:
• Novel metrics: We proposed two vertex based metrics called
fairness and goodness to assess the reliability of a node in
rating others, and to assess how much the node is liked/trusted
by other nodes, respectively.
• Convergence and uniqueness: We show that fairness and
goodness converge to a unique value in time linear to the size
of the network.
• Effectiveness in Signed Edge Weight Prediction: We show
that fairness and goodness can be used to calculate unknown
weights in WSNs with higher precision than previous tech-
niques. In conjunction with other features defined for WSNs,
we show that our prediction engine is able to outperform past
methods (suitably enhanced).
• Robustness. We also show the robustness of the engine by
varying the size of the networks by showing that it performs
the best across all these networks.

All datasets and codes have been made available at [30].
The codes are also open-sourced in the SNAP library [18].
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APPENDIX A
FAIRNESS AND GOODNESS PROOFS

Proof for Proposition 1: Fairness and Goodness satisfy
Axiom 1 and Axiom 2.

Proof: Let us start by proving that Axiom 1 is satisfied by
goodness. Let u1 and u2 be two vertices having the identical
ego-in-network, and let h be the 1-to-1 mapping between the
two ego-in-networks. From definition of goodness, we have

g(u1)− g(u2) =
= 1
|in(u1)|

∑
v′∈in(u1)

f(v′) ·Wu1 (v
′, u1)+

− 1
|in(u2)|

∑
v′′∈in(u2)

f(v′′) ·Wu2 (v
′′, u2)

= 1
|in(u1)|

(∑
v′∈in+(u1)

(f(v′)− f(h(v′))) ·Wu1 (v
′, u1)+

+
∑

v′∈in−(u1)
(f(v′)− f(h(v′))) ·Wu1 (v

′, u1)
)

If f(v) = f(h(v)) ∀v ∈ in−(u1), and f(v) ≥ f(h(v))
∀v ∈ in+(u1), it follows that
g(u1)− g(u2) = 1

|in(u1)|
∑

v′∈in+(u1)
(f(v′)− f(h(v′)) ·Wu1 (u, v) + 0



Since f(v) ≥ f(h(v)) ∀v ∈ in+(u1), we have that∑
v′∈in+(u1)

(f(v′) − f(h(v′)) · Wu1
(u, v) ≥ 0, and, conse-

quently g(u1)− g(u2) ≥ 0 that implies g(u1) ≥ g(u2).
A symmetric proof can be done to show that, if f(v) =

f(h(v)) ∀v ∈ in+(u1), and f(v) ≥ f(h(v)) ∀v ∈ in−(u1),
then g(u1) ≤ g(u2).

Let us now prove that Axiom 2 is satisfied by fairness.
Let u1 and u2 be two vertices having the identical ego-out-
network, and let h′ be the 1-to-1 mapping between the two
ego-out-networks. From definition of fairness, we have that

f(u1)− f(u2) = − 1
|out(u1)|

∑
v∈out(u1)

|Wu1
(u1,v)−g(v)|

R
+

1
|out(u2)|

∑
v′∈out(u2)

|Wu2
(u2,v

′)−g(v′)|
R

=
1

|out(u1)|R
∑

v∈out(u1)
|Wu2 (u2, h

′(v))− g(h′(v))| − |Wu1 (u1, v)− g(v)|

Since |Wu1
(u1, v) − g(v)| ≤ |Wu2

(u2, h
′(v)) − g(h′(v))|

∀v ∈ out(u1), it follows that∑
v∈out(u1)

|Wu2 (u2, h
′(v))− g(h′(v))| − |Wu1 (u1, v)− g(v)| ≥ 0

and, consequently f(u1)− f(u2) ≥ 0 that implies f(u1) ≥
f(u2).

Proof for Theorem 1: Convergence of Fairness and Good-
ness scores

Proof: Let us prove convergence of fairness scores.
The theorem is proven by induction. Given the definition of

fairness and goodness, the fairness scores f∞(u) and f t+1(u)
can be recursively written as

f∞(u) = 1−
1

2|out(u)|
∑

v∈out(u)
|W (u, v)−

∑
k∈in(v)W (k, v)f∞(k)

|in(v)|
|

f t+1(u) = 1−
1

2|out(u)|
∑

v∈out(u)
|W (u, v)−

∑
k∈in(v)W (k, v)f t(k)

|in(v)|
|

Base case: t = 1. In the first iteration, we have

|f∞(u)− f1(u)| =

|
(

1
2|out(u)|

∑
v∈out(u) |W (u, v)−

∑
k∈in(v) W (k,v)f0(k)

|in(v)| |
)
−(

1
2|out(u)|

∑
v∈out(u) |W (u, v)−

∑
k∈in(v) W (k,v)f∞(k)

|in(v)| |
)
|

=⇒ |f∞(u)− f1(u)| =

| 1
2|out(u)|

∑
v∈out(u)

(
|W (u, v)−

∑
k∈in(v) W (k,v)f0(k)

|in(v)| |−

|W (u, v)−
∑

k∈in(v) W (k,v)f∞(k)

|in(v)| |
)
|

As |x| − |y| ≤ |x− y|, applying it to the two terms within the
summation, we have
=⇒ |f∞(u)− f1(u)| ≤

| 1
2|out(u)|

∑
v∈out(u)

(
|
∑

k∈in(v) W (k,v)f∞(k)

|in(v)| −
∑

k∈in(v) W (k,v)f0(k)

|in(v)| |
)
|

= 1
2|out(u)|

∑
v∈out(u)

(
|
∑

k∈in(v) W (k,v)(f∞(k)−f0(k))

|in(v)| |
)

As |x+ y| ≤ |x|+ |y|, we get

|f∞(u)− f1(u)| ≤ 1
2|out(u)|

∑
v∈out(u)

∑
k∈in(v) |W (k,v)(f∞(k)−f0(k))|

|in(v)|

At this point, as |x · y| ≤ |x| · |y|, we have

|W (k, v)(f∞(k)− f0(k))| ≤ |W (k, v)| · |f∞(k)− f0(k)|

We observe that |W (k, v)| ≤ 1 and, since f(k) ∈ [0, 1],
|f∞(k)− f0(k)| ≤ 1. Then, |W (k, v)| · |f∞(k)− f0(k)| ≤ 1.

Thus,
|f∞(u)− f1(u)| ≤

1
2|out(u)|

∑
v∈out(u)

∑
k∈in(v) |W (k,v)|·|(f∞(k)−f0(k))|

|in(v)| ≤
1

2|out(u)|
∑

v∈out(u)

∑
k∈in(v) 1

|in(v)| = 1
2|out(u)|

∑
v∈out(u) 1 = 1

2

=⇒ |f∞(u)− f1(u)| ≤ 1
2

Induction step. Let us assume by hypothesis that |f∞(u) −
f t(u)| ≤ 1

2t
. Then,

|f∞(u)− f t+1(u)| ≤
1

2|out(u)|
∑

v∈out(u)

(∑
k∈in(v) |W (k,v)|·|(f∞(k)−ft(k))|

|in(v)|

)
≤

1
2|out(u)|

∑
v∈out(u)

(
1

|in(v)|
∑

k∈in(v)
1
2t

)
≤

1
2|out(u)|

∑
v∈out(u)

(
1

|in(v)|
|in(v)|

2t

)
=

1
2|out(u)|

∑
v∈out(u)

1
2t

= 1
2t+1 → |f∞(u)− f t+1(u)| ≤ 1

2t+1

Therefore, |f∞(u) − f t(u)| ≤ 1
2t . This means that for

a fixed error bound, ε << 1, after a certain number t′ of
iterations, the fairness scores f t

′
of vertices become close

to f∞ and the algorithm converges. Please see the proof for
Proposition 2 for how the value of t′ depends on ε [30].

Due to lack of space, the proof for the convergence of
goodness scores is given in Appendix B [30].

Proof for Theorem 2: Uniqueness of Fairness and Goodness
scores.

Proof: Let us first prove that fairness scores are unique.
The proof for unique goodness scores follows.

Let the fairness scores not be unique. So, let u be the node
with maximum fairness difference, D (with D ≥ 0), between
its two possible scores f∞1 (u) and f∞2 (u)

D = |f∞1 (u)− f∞2 (u)| =
|
(

1
2|out(u)|

∑
v∈out(u) |W (u, v)−

∑
k∈in(v) W (k,v)f∞1 (k)

|in(v)| |
)
−(

1
2|out(u)|

∑
v∈out(u) |W (u, v)−

∑
k∈in(v) W (k,v)f∞2 (k)

|in(v)| |
)
|

= | 1
2|out(u)|

∑
v∈out(u)

((
|W (u, v)−

∑
k∈in(v) W (k,v)f∞1 (k)

|in(v)| |
)
−(

|W (u, v)−
∑

k∈in(v) W (k,v)f∞2 (k)

|in(v)| |
))
|

As |x| − |y| ≤ |x− y|, applying it to the two terms within the
summation, we have

D ≤ | 1
2|out(u)|

∑
v∈out(u)

∑
k∈in(v) |W (k,v)(f∞2 (k)−f∞1 (k))|

|in(v)| |

At this point, as |x · y| ≤ |x| · |y|, we can write

D ≤ | 1
2|out(u)|

∑
v∈out(u)

∑
k∈in(v) |W (k,v)|·|f∞2 (k)−f∞1 (k)|

|in(v)| | ≤

Now since |W (k, v)| ≤ 1 and |f∞2 (k) − f∞1 (k)| ≤ D, as D
is the maximum fairness difference, then

D ≤ | 1
2|out(u)|

∑
v∈out(u)

∑
k∈in(v) D

|in(v)| | =
| 1
2|out(u)|

∑
v∈out(u)

D·|in(u)|
|in(v)| | = |

1
2|out(u)|

∑
v∈out(u)D| =

D
2

Thus, by solving D ≤ D/2 and with the condition that
D ≥ 0, we obtain D = 0. Then, |f∞1 (u) − f∞2 (u)| = 0 and
the fairness score is unique for each node in the network.

Since fairness scores are unique, and goodness scores will
be fixed for fixed fairness scores, therefore, goodness score
for each vertex is also unique.


