
A Parallel Hybrid Framework for Graph Processing

Ashwin Shivapuram, Somay Jain, Chirag Majithia, Virinchi Srinivas
ashwinsl@cs.umd.edu, somay@cs.umd.edu,

chiragm@terpmail.umd.edu, virinchi@cs.umd.edu

Abstract

Graphs are fundamental data structures that can capture relationship across different entities.
Graphs can be used to model complicated data in different domains like social networks, web graphs,
biological networks etc. Currently, the rate at which the data is being produced makes it very
common for us to observe graphs with millions of nodes and billions of edges. In order to process
these large graphs in an efficient fashion, we need to be able to exploit the inherent parallelism
present in the graph traversals to run various graph based algorithms.

In this paper, we explore the possibility to build a hybrid graph processing framework that uses
both parallel models - shared memory and message passing interface to efficiently execute various
graph traversal algorithms to a larger scale by parallelizing. By using this hybrid approach we were
able to achieve consistent and considerable speed-up of up to 9x over the serial implementation of
the algorithms.

1 Introduction
Graphs are a powerful abstraction for representing underlying relations in large unstructured datasets.

The wide applicability of graphs with applications in search engines, social networks, telecommunication
networks etc. has given a lot of interest in processing large graphs. In many of the graph algorithms
like Breadth First Search(BFS), Depth First Search(DFS) etc. we can simultaneously explore different
vertices independently. By exploiting this inherent parallelization we can enhance the performance of
these algorithms by simple parallelization strategies.

There exists a plethora of graph processing systems [1, 2, 3, 4, 5, 6]. In all these systems, each compute
node performs some computation and send/receives from its adjacent compute nodes. These systems
need to deal with race conditions. Ligra [7] presents a framework for graph processing using a shared
memory model. Shared memory algorithms tend to be much simpler when compared to message passing
based systems. Although, today’s servers can support more than a terabyte of memory in a single
multi-core machine, but not all hardware present in servers can accommodate terabytes of memory.
Even if it can, the shared memory bus becomes a performance bottleneck by using just shared memory
parallelization. Hence, taking this situation into consideration, we explore to build a graph processing
system which can be partitioned and split across various compute nodes so that the whole graph can
be distributed across many compute nodes. Further, within each compute node, we focus to exploit any
parallelism using a shared memory model.

In this paper, we are using MPI (Message Passing Interface) to communicate among different compute
nodes in the distributed system setting. We are also using OpenMP directives to exploit the paralleliza-
tion locally within a single compute node. In this paper, we present few of the graph algorithms like
Breadth First Search, Triangle Counting, Page Rank and Clustering Coefficient(CC) implemented using
the hybrid parallelization strategy involving both the message passing and shared memory parallelization
paradigms. Our results suggest that using this strategy provides considerable performance gain of up to
9x over the serial implementation of the graph algorithms.

2 Related Work
Pregel [1] introduced by Google and implemented in C/C++, is one of the first Bulk Synchronous

Protocol (BSP) implementations that is based on a "think like a vertex" computing paradigm. In each
iteration (superstep), each vertex performs some computation and pushes the result of each computation
to each of its neighbors along the edges. The system being based on BSP, collects messages which can

1

be seen only in the next iteration. Apache Giraph [5] and GPS [3] are open source implementations of
Pregel having some additional features. They provide a marginal improvement over Pregel.

Pegasus [6], uses Hadoop implementation of MapReduce in the distributed computing setting. GraphLab
[2] is a framework that relies on GAS (gather, apply, scatter) processing model which is a pull-based
model fundamentally different from the push-based models based on BSP. PowerGraph [4] is another
system which borrows ideas from both GraphLab and Pregel primarily suited for power-law graphs which
have a skewed degree distribution. [8, 9] are survey papers presenting the wide range of graph process-
ing systems that are present today. Nscale [10] is a state-of-the art approach in the context of graph
partitioning. They propose to pack subgraphs into minimum number of partitions while keeping the
load across different partitions. However, in this project we look to partition the graph into different
non-overlapping subgraphs as opposed to Nscale which extracts and loads subgraphs which are specified
as Datalog-based pattern queries to be extracted from the larger graph. Further, graph partitioning
happens to be a minor step in our project.

Ligra [7] is a graph processing framework which is specific for shared-memory architecture which
makes graph traversal algorithms easy to write. The framework relies on two simple primitives EdgeMap
and VertexMap for mapping over edges and vertices respectively. These simple routines can be applied to
various graph traversal algorithms that operate on a subset of vertices of the graph during each iteration.
We are different from the earlier mentioned systems in the sense that we look to attain efficiency within
one node using shared memory model and scalability across nodes using message passing by partitioning
the graph across multiple computing nodes.

3 Approach and Implementation
We propose an hybrid approach using both OpenMP and MPI to implement graph algorithms like

Breadth First Search (BFS), Page Rank, Counting Triangles and Clustering Coefficient(CC). While Ligra
[7] works well on a single compute node, it cannot be efficiently used in cases where the graph does not
fit in memory. In this paper, we propose to partition the graph between multiple compute nodes with
necessary replication of boundary nodes across partitions and use both MPI and OpenMP to implement
the algorithms. We use MPI for any communication with the neighboring compute nodes and OpenMP
to exploit any parallelism within a single compute node. We explain in detail the graph partitioning and
each of the algorithms next.

3.1 Graph Partitioning and Subgraph Distribution
The first step in our approach would be to partition the graph. We present our graph partitioning

approach in Algorithm 1.

Algorithm 1 Graph Partitioning Approach
1: procedure Partition(G, p) . Partitioning G=(V,E) into p partitions
2: Download and load the graph dataset G . We are using SNAP.
3: Preprocess the graph dataset to renumber the graph vertices from 0.
4: Partition the preprocessed graph dataset using METIS.
5: return node to partition map

Once we load the graph dataset, we preprocess the graph to renumber the vertex IDs to start from
0. Once the preprocessing is done we use METIS [11] to partition the graph into required number
of partitions. METIS uses a single computing node to partition the graph assigning each vertex to a
partition. METIS partitions the graph by minimizing the number of the edges that are cut across various
partitions. This is a better partitioning scheme than a naive assignment of n/p continuous vertices to
each partition, where n is the number of vertices and p is the number of partitions. Hence, we resort to
using METIS for graph partitioning which ensures proper balancing of nodes across different partitions.
Further, although ParMetis is much more efficient than Metis, we propose to use ParMetis for future
work; setting up using ParMetis is much more complex.

Once every node has been assigned to a unique partition, we logically construct the subgraph of each
partition by connecting all the edges among the vertices that are local to the given partition(compute
node). Further, we also add edges between vertices that are local to given processor and ghost(remote)
vertices. This constructs the subgraph that can be loaded on every partition either in parallel or the

2

root node performs the subgraph construction and distributes the subgraph pertaining to each processor.
Further, by adding edges among the ghost vertices in any constructed subgraph helps in significantly
reducing message passing overhead between different compute nodes. Only in the case of computing
Clustering Coefficient(CC), we load the subgraphs pertaining to each partition in parallel by different
compute nodes and we also connect the edges among the ghost(remote) vertices in this case. We explain
in detail the approach and implementation of each algorithm next.

3.2 Breadth First Search
In this paper, we implement a parallel version of BFS algorithm from scratch using MPI and OpenMP

as described in Algorithm 2. BFS can be run in parallel by processing the vertices at each level in parallel.
After we partition the graph using Algorithm 1, we read the partitioned graph from the MPI compute
node 0 (root node) and distribute the subgraphs to the other compute nodes.

Algorithm 2 Breadth First Search
1: procedure BFS(G, root, p) . Graph G=(V,E); root : root vertex
2: Load the p-partitioned Graph into p MPI nodes.
3: frontier ← neighbours of root
4: level← 1
5: Initialize visited array of booleans as false
6: visited[root]← true
7: distance[root]← 0
8: while frontier 6= null do
9: local← vertices in frontier owned by local node.

10: remote← vertices in frontier owned by remote nodes.
11: frontier ← null
12: for all r ∈ remote do
13: send r using MPI to its owner node.
14: end for
15: #pragma omp parallel for . OpenMP directive
16: for all l ∈ local do
17: if visited[l] == false then
18: frontier ← neighbours of l
19: distance[l]← level
20: visited[l]← true

21: end if
22: end for
23: for each partitions p do
24: remote[p]← neighbours received from p-th partition . Sent in line 13
25: #pragma omp parallel for . OpenMP directive
26: for all r ∈ remote[p] do
27: if visited[r] == false then
28: frontier ← neighbours of r
29: distance[r]← level
30: visited[r]← true

31: end if
32: end for
33: end for
34: level← level + 1

35: end while
36: return distance

While traversing the vertices at one level, the vertices for the next level are added to a queue -
frontier. The vertices in the frontier which belong to a different compute node are sent to the corre-
sponding compute nodes using asyncronous MPI send. In order to decrease time spent on waiting for
the receives from the remote compute nodes we process the locally owned vertices in the meantime. The
processing of locally owned vertices is furthur parallelized by using OpenMP directives. In the end, when

3

a compute node receives the list of vertices locally owned vertices from remote nodes, it adds them to
it’s own queue and continues the traversal. The compute nodes are synchronized at the end of each level
using MPI Barrier. This is continued on till all the vertices which can be reached by the root vertex are
visited and the distance to all the reachable vertices is returned.

3.3 Triangle Counting
A triangle in an undirected graph is a clique of size 3. The triangle count of a graph is an important

metric in graph analytics because it gives an intuitive measure of how clustered the graph is, and also
finds applications in a variety of areas such as social networks, spam detection, and link classification.

Similar to the BFS implementation, we are proposing an hybrid implementation of Triangle Counting
in a graph that uses both MPI and OpenMP to exploit the inherent parallelism present in the Triangle
Counting algorithm. The procedure is as described in Algorithm 3.

Algorithm 3 Triangle Counting
1: procedure Triangle Counting(G, p) . Graph G=(V,E)
2: Load the p-partitioned Graph into p MPI nodes.
3: G← Convert To Directed Graph(G) . using Algorithm 4
4: triangles← 0
5: for all v ∈ V [p] do . V[p] - Vertices belonging to p-th partition
6: local[v]← neighbours owned by local node.
7: remote[v]← neighbours owned by remote nodes.
8: for all r ∈ remote[v] do
9: Request adjacency list of r using MPI

10: end for
11: for all l ∈ local[v] do
12: triangles← triangles + Count Intersections(v, l) . using Algorithm 5
13: end for
14: for all r ∈ remote[v] do
15: Receive adjacency list of r using MPI
16: triangles← triangles + Count Intersections(v, r) . using Algorithm 5
17: end for
18: end for
19: triangles← MPI_reduceAll(triangles,MPI_SUM). . Adding all computed triangles
20: return triangles

As we can count the same triangle thrice, once from each of the three vertices which constitutes it,
the duplicate triangle counting is a repetitive and resource/time consuming process. In our approach
as we are splitting the graph into partitions, maintaining a visited map and synchronizing it across all
parallel nodes is a complex and time consuming task. Hence it becomes a bottleneck to the parallel
implementation of the algorithm and degrades the performance. So in order to alleviate these problems
we convert the graph into a desired directed graph using Algorithm 4.

In Algorithm 4 we are converting undirected edges into directed edges by retaining only one direction
of each edge. The direction retained is from the vertex with lower globalId to the vertex with higher
globalId and the vice-versa is removed. This implicitly makes the triangle visible only to the vertex
with the lowest globalId among the three vertices forming the triangle and hence resolves the duplicate
triangle counting issue.

Once we have generated the directed graph using the Algorithm 4, we can count the triangles which
share the edge (v, u) using Algorithm 5. This utilizes the OpenMP directives to parallelize the local
execution.

In Algorithm 3, for each vertex in a parition, we group its neighbors into locally and remotly owned
vertices. In order to maximize the performance, we request the adjacency list of the remotely owned
vertices using asynchronous send (MPI) before any computation begins. While we wait to receive the
adjacency lists from the remote nodes, we compute the triangles formed by the locally owned vertices
using Algorithm 5 which utilizes OpenMP. On receiving the adjacency list of the remotely owned vertices,
we use Algorithm 5 again to compute the triangles that share the remote vertex. Once all the vertices

4

Algorithm 4 Conversion to Directed Graph
1: procedure Convert to Directed Graph(G) . Graph G=(V,E)
2: for all v ∈ V do
3: for all u ∈ AdjList[v] do
4: AdjList[v]← adjacency list of vertex v
5: if u <= v then
6: Remove u from AdjList[v]

7: end if
8: end for
9: end for

10: return directed graph

Algorithm 5 Counting Intersections
1: procedure Count Intersections(v, u) . v - Base Vertex; u - Connected Vertex
2: AdjList[v] ← Adjacency list of vertex v
3: AdjList[u] ← Adjacency list of vertex u
4: count← 0
5: #pragma omp parallel for . OpenMP directive
6: for all x ∈ AdjList[v] do
7: if x ∈ AdjList[u] then
8: Increment count
9: end if

10: end for
11: return count

in the partition are processed, we use MPI reduction to sum all the triangles counted by each compute
node and returns the total number of triangles in the graph.

3.4 Page Rank
Page Rank of a node in a Graph G=(V,E) signifies its importance. It is an important measure used

in various applicants like search engines, social media analysis etc. We use an iterative algorithm to
compute the Pank Rank of all the nodes. The sketch of our implementation is as shown in Algorithm 6
which uses both MPI and OpenMP parallelization paradigms.

For any node v, the Page Rank is computed as follows:

pagerank(v) =
(1− d)

N
+ d

∑
n∈neighbor(v)

pagerank(n)

degree(n)
(1)

where, d is a damping factor set to 0.85. We can split Equation 1 as follows:

pagerank(v) = constant+ local(v) + remote(v) (2)

where,

constant =
(1− d)

N
(3)

local(v) = d
∑

n∈local−neighbor(v)

pagerank(n)

degree(n)
(4)

remote(v) = d
∑

n∈remote−neighbor(v)

pagerank(n)

degree(n)
(5)

Observe from Equation 2 that the page rank computation for any node has three parts. The first
part, constant (Equation 3) is a constant for all the nodes. The second part, local(v) (Equation 4) which
consists of local neighbors can be computed in the local compute node as all the values required are

5

available locally. The third part, remote(v) (Equation 5) consists of information that is to be fetched
from neighboring compute nodes where the remote vertices reside. In order to exploit parallelism, we first
request pagerank(n)

degree(n) from each non-local neighbor n using MPI’s asynchronous send. While we wait to
receive this information from other compute nodes, we can in parallel compute the constant (Equation 3)
and the local(v) (Equation 4) locally in every node using OpenMP. Finally, on receiving the information
from all the other compute nodes, we compute remote(v) (Equation 5) to complete one iteration of page
rank. We perform 10 iterations of page rank to achieve convergence. The details of the implementation
is as shown in Algorithm 6.

Algorithm 6 Page Rank
1: procedure Page Rank(G, p) . Graph G=(V,E)
2: Load the p-partitioned Graph into p MPI nodes.
3: for all v ∈ V [p] do . V[p] - Vertices belonging to p-th partition
4: local[v]← neighbours owned by local node.
5: remote[v]← neighbours owned by remote nodes.
6: for all l ∈ local[v] do
7: p[l]← 0 . Assign page rank of each local vertex to 0
8: iterations← 10 . Number of iterations of Page Rank
9: step← 0 . Current Iteration

10: while step < iterations do
11: for all r ∈ remote[v] do
12: Request p[r]

degree(r) using MPI

13: #pragma omp parallel for . OpenMP directive
14: for all l ∈ local[v] do . Constant value
15: constant[l]← 0.15

|V |
16: localsum[l]← 0

17: #pragma omp parallel for . OpenMP directive
18: for all l ∈ local[v] do . Local Computation
19: for all n ∈ neighbor(l) ∧ n is local do
20: localsum[l]← localsum[l] + p[n]

degree(n)

21: for all l ∈ local[v] do . Remote Computation
22: for all n ∈ neighbor(l) ∧ n is remote do
23: Receive p[n]

degree(n) from remote n.

24: localsum[l]← localsum[l] + p[n]
degree(n)

25: for all l ∈ local[v] do
26: p[l]← p[l] + constant[l] + 0.85× localsum[l]

27: step← step+ 1

28: page_rank ←MPI_Gather(p, root) . Gather all page ranks at root
29: return page_rank

3.5 Clustering Coefficient (CC)
Clustering coefficient (CC) is a measure of each node which represents how clustered its neighbor-

hood is. This measure is used extensively in social networks, biological networks to find the degree of
connectivity between neighbors of a given node.

For a given node v, we compute the CC as follows :

CC(v) =
Number of edges between neighbors of v(

N
2

) (6)

where N is the number of neighbors of v and the value of CC ranges between 0 and 1. We can observe
that CC indicates how densely or sparsely a neighborhood of a node is. Higher the value of CC, higher
is the neighborhood density.

As explained in subgraph distribution, we connect edges between remote vertices for implementing
this algorithm. This enables to perform computing CC of all local nodes within the local compute node

6

without any dependency on neighboring compute nodes. We exploit the parallelism of this local CC
computation in parallel using OpenMP. On completing the local computation, each compute node takes
a sum of the CC of all its local nodes. Using MPI ReduceAll, these values are sent to the MPI’s root
compute node. The fraction of sum of all acquired values from each compute node (sum of clustering
coefficient of every node in the graph) to the number of nodes in the graph results in the global clus-
tering coefficient. Detailed implementation of our Clustering Coefficient(CC) algorithm is as shown in
Algorithm 7 below.

Algorithm 7 Clustering Coefficient
1: procedure Clustering Coefficient (CC)(G, p) . Graph G=(V,E)
2: Load the p-partitioned Graph into p MPI nodes. . Perform in Parallel
3: for all v ∈ V [p] do . V[p] - Vertices belonging to p-th partition
4: local← nodes local to p
5: for all l ∈ local[v] do
6: cc[l]← 0 . Assign cc of each local vertex to 0

. Adding edges between remote vertices ensures no message passing
7: #pragma omp parallel for . OpenMP directive
8: for all l ∈ local do . Local Computation
9: num← 0

10: for all n1 ∈ neighbor(l) do
11: for all n2 ∈ neighbor(l) do
12: if edge(n1,n2) then
13: num← num+ 1

14: cc[l]← 2×num
degree(l)×(degree(l)−1)

15: cc←MPI_reduceAll(sum(cc),MPI_SUM) . Gather all local CC at root
16: globalCC ← cc

|V |
17: return globalCC

4 Datasets
A lot of real world graph datasets are freely available online 1, having thousands to millions of nodes

and edges from various domains such as social media, communication networks, road networks, etc.
Specifically, we have extracted four undirected networks whose statistics are shown in Table 1. In Table
1, note that |V |, |E| and CC refer to the number of vertices, edges and Average Clustering Coefficient
(CC) of the graph respectively. The diameter of the graph is defined as the longest shortest path. The
graphs show variance in their size, diameter and also the average clustering coefficient of the graph
which corresponds to the density of the graph. We observe that DBLP is the smallest graph ranging
from around 300,000 nodes and California road network is the largest graph having close to 2 million
nodes. Further, based on the CC value, we can observe that road-network graph is the most sparse while
DBLP is the most dense.

Dataset |V | |E| CC diameter
DBLP 317080 1049866 0.6324 21
Amazon 334863 925872 0.3967 44
YouTube 1134890 2987624 0.0808 20

California Road-network 1965206 2766607 0.0464 849

Table 1: Description of the graph databases used

1https://snap.stanford.edu/data/

7

5 Results

5.1 Experimental Results
We setup the experiments on UMD cluster deepthought2. As part of these experiments, we ran all

the four different graph algorithms we have explored in this paper in two different settings. One with
just the MPI and other by using OpenMP along with the MPI(hybrid) and we compare them against
the serial implementation. We ran the both MPI and hybrid parallel algorithms by varying the number
of computing resources provided as 2, 4, 8 and 16 nodes with one MPI process per compute node and
16 OpenMP threads per node.

In general we observe a execution time speed-up of up-to 9x across all the four algorithms. We can
also observe that the Road Network and YouTube datasets take longer running time when compared
to both Amazon and DBLP datasets, which is due to their graph size. Further, as we increase the
number of parallel nodes, the execution time is decreasing steadily indicating that the algorithm is able
to gain performance as more parallelism is introduced. This trend is visible across all datasets and
consequently using 16 MPI nodes provide the best performance gain among all. Further, depending
on the graph structure, we also observed a trend of decreasing performance or very slight increase in
performance when using OpenMP along with the MPI. We describe the reason as to why this happened
in the Challenges section below.

We present the running time of BFS algorithm in Table 2. The speedup of both parallel implemen-
tations (MPI and Hybrid) BFS algorithms over different datasets is shown in Figure 1. The speed-up of
parallel process is approximately 4.5 times with just 2 parallel MPI compute nodes (one process each in a
node) over all the datasets. We observe a good speedup attaining up to 7x over the larger YouTube and
Road Network datasets and up to 9x speed-ups over the relatively smaller Amazon and DBLP datasets.
As stated above, when using the OpenMP along with MPI, we see a trend of performance decrease. We
believe this is more observable in BFS because the relative work done in each iteration of the inner loop
of the BFS algorithm is very minimal and hence the overhead to merge the private lists maintained for
OpenMP threads was greater than the gain achieved.

Number of Processors Youtube Road Network Amazon DBLP
MPI Hybrid MPI Hybrid MPI Hybrid MPI Hybrid

Serial (1) 735 927 183 194
Parallel (2) 640 1278 885 1601 161 596 163 586
Parallel (4) 357 839 568 1309 87 380 95 399
Parallel (8) 210 651 273 1025 48 298 54 295
Parallel (16) 116 571 188 717 27 327 30 305

Table 2: Runtime (in milliseconds) for BFS (100 iterations) on Different Datasets

The running time for Triangle Counting (Table 3), Clustering Coefficient (Table 4) and Page Rank
(Table 5) also show performance gain when compared to their serial implementation. The speed-up
achieved by Triangle Counting, Clustering Coefficient and Page Rank are as shown in Figure 2, Figure
3 and Figure 4 respectively and we see a performance gain of up to 9x using just MPI(16 nodes) and we
see comparable performance when using OpenMP along with the MPI.

Number of Processors YouTube Road Network Amazon DBLP
MPI Hybrid MPI Hybrid MPI Hybrid MPI Hybrid

Serial (1) 312.18 2.11 2.66 5.59
Parallel (2) 367.56 363.58 1.65 1.79 2.08 1.89 3.87 3.88
Parallel (4) 361.92 359.26 0.93 1.05 1.02 1.1 2.5 2.35
Parallel (8) 224.2 222.62 0.68 0.99 0.63 0.66 1.39 1.35
Parallel (16) 223.37 215.3 0.53 0.38 0.37 0.36 0.91 0.74

Table 3: Runtime (in seconds) for Triangle Counting on Different Datasets

8

https://www.glue.umd.edu/hpcc/dt2.html

Figure 1: Speed up for BFS using MPI and Hybrid

Figure 2: Speed up for Triangle Counting using MPI and Hybrid

Number of Processors Youtube Road Network Amazon DBLP
MPI Hybrid MPI Hybrid MPI Hybrid MPI Hybrid

Serial (1) 307.04 2.31 2.86 5.47
Parallel (2) 437.51 523.08 2.66 2.35 2.29 2.23 4.49 4.43
Parallel (4) 419.16 415.9 1.35 1.26 1.38 1.34 2.86 2.64
Parallel (8) 266.93 324.55 0.69 0.66 0.88 0.74 1.68 1.36
Parallel (16) 263.39 288 0.45 0.49 0.44 0.46 1.1 0.78

Table 4: Runtime (in seconds) for Clustering Coefficient on Different Datasets

9

Figure 3: Speed up for Clustering Coefficient using MPI and Hybrid

Number of Processors Youtube Road Network Amazon DBLP
Serial (1) 10.4 5.95 2.89 4.7
Parallel (2) 8.3 3.47 1.4 2.14
Parallel (4) 5.06 1.85 1.43 1.51
Parallel (8) 4.42 1.04 1.05 1.26
Parallel (16) 4.42 0.63 1.09 1.2

Table 5: Runtime (in seconds) for Page Rank (10 iterations) using MPI on Different Datasets

Figure 4: Speed up for Page Rank (10 iterations) using MPI

5.2 Challenges
Though the hybrid strategy of using both message passing (MPI) and shared memory (OpenMP)

parallelization results in enhancing efficiency and scalability of algorithms, we faced few scenarios where

10

this hybrid parallel strategy did not perform as expected when compared to the corresponding serial
implementation on few algorithms. Some scenarios are as follows:

• Load balancing: Due to graph splitting strategies, sometimes only few of the compute nodes handle
bulk of the work. In these cases the message passing between the nodes become a bigger overhead
than the overall performance gain, which affects both MPI and hybrid implementations. This can
be seen in the case of YouTube graph where serial implementation performs better than the parallel
implementation on 2 and 4 threads per node in the case of Triangle Counting and CC (Table 3 and
Table 4).

• OpenMP critical sections: In some scenarios, like BFS, as we can see from Table 2 and Figure 1
the hybrid strategy was slower than just using MPI to parallelize the code. We believe the reason
for this negative trend is because the relative work done in each iteration of the loop was minimal
and adding OpenMP directives require critical sections such as merging lists, or adding to a list.

• OpenMP nested loops: In cases like triangle counting and clustering coefficient, the computation
for each vertex needs a nested loop to iterate over it’s neighbours and it’s neighbour’s neighbours.
Though these iterations can be done in parallel by adding OpenMP directives, these are nested
loops which require fork-join of OpenMP threads at every outer loop iteration.

6 Conclusion and Future Work
We are able to implement fast parallel graph algorithms like BFS, Triangle Counting, Page Rank

and Clustering Coefficient which have up to 9x speed-up over their serial counterparts using the hybrid
approach of both message passing (MPI) and shared memory (OpenMP) parallelization paradigms. In
future we should be able to extend the same hybrid parallelization approach to other graph algorithms
like Shortest Path, Spanning Tree etc. which also have inherent parallelization in their design.

As mentioned in the Challenges, the implementation approach used in this paper have considerable
performance dependency on the graph partitioning strategy as it does not take into account if every
compute node is equally sharing the work. So in future we can improve these graph algorithms by
enabling the load balancing among the compute nodes themselves so all the nodes are doing equal
amount of work. Also in this paper we are using METIS[11] library to partition the graph, while METIS
is an efficient tool to partition the graph, ParMetis(Parallel METIS) provides a performance gain over
METIS. In future we should be able to support the graph partitioning using ParMetis which can help
us in reducing the graph loading time.

References
[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel:

a system for large-scale graph processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 135–146.

[2] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein, “Graphlab: A
new framework for parallel machine learning,” arXiv preprint arXiv:1408.2041, 2014.

[3] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in Proceedings of the 25th Interna-
tional Conference on Scientific and Statistical Database Management. ACM, 2013, p. 22.

[4] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed graph-
parallel computation on natural graphs.” in OSDI, vol. 12, no. 1, 2012, p. 2.

[5] “Giraph : "http://giraph.apache.org",” 2012.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.
Berriman, J. Good et al., “Pegasus: A framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[7] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing framework for shared memory,”
in ACM Sigplan Notices, vol. 48, no. 8. ACM, 2013, pp. 135–146.

11

[8] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: a survey of vertex-centric
frameworks for large-scale distributed graph processing,” ACM Computing Surveys (CSUR), vol. 48,
no. 2, p. 25, 2015.

[9] O. Batarfi, R. El Shawi, A. G. Fayoumi, R. Nouri, A. Barnawi, S. Sakr et al., “Large scale graph
processing systems: survey and an experimental evaluation,” Cluster Computing, vol. 18, no. 3, pp.
1189–1213, 2015.

[10] A. Quamar, A. Deshpande, and J. Lin, “Nscale: neighborhood-centric large-scale graph analytics in
the cloud,” The VLDB Journal, vol. 25, no. 2, pp. 125–150, 2016.

[11] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular
graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

12

	Introduction
	Related Work
	Approach and Implementation
	Graph Partitioning and Subgraph Distribution
	Breadth First Search
	Triangle Counting
	Page Rank
	Clustering Coefficient (CC)

	Datasets
	Results
	Experimental Results
	Challenges

	Conclusion and Future Work

