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Abstract

This work investigates the benefits of model checking upon contact networks, a
model of disease transmission through a population. Many such models are prob-
abilistic in design, and thus a model checker framework that supports randomness
is important. We demonstrate how to characterize a disease as it is spread in
terms of the portions of the population that it affects, as well as how to evaluate
and explore preventative and controlled measures to limit the disease’s effects. For
the purposes of this work, we focus upon several different vaccination strategies.
We also explore the sensitivity of our framework that involves using a probabilistic
model checker has to changes in the underlying disease transmission model; we
show that many desirable properties and traits that one might want to include
are easily representable using our approaches.

1 Introduction

Advances in epidemiology, the study of factors affecting health and illness of populations,
can be directly beneficial to human society. A large subfield of epidemiological research
focuses upon the prevention and control of disease propagation through a population.
In particular, they are concerned with:

• Outbreak investigation

• Modeling

• Data collection and analysis

Developing an accurate and appropriate model for the purpose of investigating and pre-
dicting disease outbreaks is actively being pursued. If a disease were predicted to become
rampant in the near future, one would like to determine the proper cause of action to
avoid or otherwise reduce the impact the disease would have upon the population under
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study. If one is studying records of an already passed disease’s progression through a
population, a natural concern may be as to how/where the disease originated.

In this work we consider the usefulness of applying existing model checking based
approaches to problems posed by epidemiology, specifically those focusing on disease
prevention and control. Traditional model checking algorithms work over determinis-
tic structures, whereas so-called probabilistic model checking relaxes the determinism
assumption to allow for models with uncertainty, or probabilistic behavior [5]. Both
traditional and probabilistic model checkers, once given an acceptable model, will take
queries regarding the model and rephrase them as specifications or properties of the
model. The model checkers will then verify if these properties are satisfied by the
model, and if so, the query receives a “yes” answer, otherwise it receives “no.” This
output can be rephrased to support more detailed responses, such as a system trace
or other information that may be useful to the inquirer. In this work we demonstrate
how to encode pertinent epidemiological problems, which often include random behav-
ior, into an acceptable format for a probabilistic model checker, and execute queries on
top of these encoded models to gain insight into the original epidemiological problem.
We explore how disease prevention techniques such as vaccination can be investigated
through our model checking framework, and discuss the flexibility of our approach by
considering the impact that changing the underlying epidemiological model would have
upon our encoding.

2 Background

We present here a study of different areas of research in both the epidemiological and
model checking realms. We will demonstrate how model checking techniques can be
used to concisely represent many questions of interest regarding disease prevention and
control.

2.1 Compartmental Models of Epidemiology

One basic but well-characterized model of the spread of disease through a population
is known as the Susceptible, Infectious, and Recovered Model, commonly referred to
as the SIR model. The SIR model for a specific disease assumes that there are three
distinct divisions of a given population of N people, specifically at some time instance
t they are:

• S (t) - The number of people who are susceptible (have not yet been infected) to
the disease at time instance t.

• I (t) - The number of people who are actively infected and can spread the disease
to members of the susceptible population at time instance t.
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• R (t) - The number of people who were infected but have now recovered from the
disease by time instance t.

Because these three sub-populations form a partition of the overall population, we
have that

∀t, S + I + R = N.

This model assumes a unidirectional progression of the population, namely each member
of the populations follows the flow diagram:

Susceptible→ Infectious→ Recovered

The SIR model is thus more well-suited for diseases to which members of the population
cannot be re-infected (perhaps due to such factors as an inherent resistance built up
during a recovery period, such as is the case with most flu strains). It is easy to
extend or adjust the model to allow for alternative disease patterns. Such models of
this sort are termed compartmental models, due to their subdividing of the population
into characteristic groups. Some other common compartmental models are described in
Table 1.

Model Name Flow Diagram

SIR Susceptible→ Infectious→ Recovered

SEIR Susceptible→ Exposed→ Infectious→ Recovered

SIS Susceptible←→ Infectious

Table 1: Common compartmental models of disease spread in a population. The
exposed population models a latency in becoming infected and becoming infectious.

In addition to the modeling of the population partitions, compartmental models also
include rules about how members of the population transition from state to state. A
common approach is to take the time component t to be a continuous variable, and
assume that each edge of the flow diagram has a transition rate associated with it.
Such rates are represented as ordinary differentiable equations (ODEs), which allow
for compact transition rules. For example, given constants β, ν, one can represent the
change in sub-populations of the SIR model as follows:

dS (t)

dt
= −β · I (t) · S (t)

dI (t)

dt
= β · I (t) · S (t)− ν · I (t)

dR (t)

dt
= ν · I (t)
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where β is the average contact rate per unit time and ν is the recovery rate per unit time.
It can be observed that these differentials sum to 0, as the SIR model assumes a fixed
population, and thus these three differential equations regarding the sub-populations
with the added constraint is equivalent to simply two differential equations on the tran-
sition edges of the SIR model:

d (S → I)

dt
= β · I (t) · S (t)

d (I → R)

dt
= ν · I (t)

The assumption of a fixed population makes SIR-like models well-suited for relatively
short-term time spans, such as a few days, weeks or months. Any longer and the
model can become inappropriate due to excessive error in estimating the population.
Again, variants exist that incorporate births and deaths into the population, of special
importance may be deaths caused by the disease itself. With the above equations
governing the population dynamics, one can visualize the dynamics of a population
conforming to the SIR model. Figure 1 shows an example with β = ν = 1, and all of
the population begins healthily except for one infected person, who proceeds to spread
the disease to the rest of the population as per the SIR relationships.

Figure 1: Dynamics of a SIR-modeled population over time. The green curve, marked
S, is the percentage of the total population at a given time instance that are susceptible.
The red curve, marked I, is the percentage that are infected and the blue curve, marked
R, is the percentage that have recovered.

One major advantage to a compartmental model such as SIR is the relatively low
number of parameters needed to represent the model; SIR in particular requires only two:
β and ν, and then can model a given population where the values of S, I, and R (and
consequently N) are known at some time instant. However, the oversimplification of
compartmental models may warrant some criticism. The differential equations assume
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homogeneous (i.i.d.) contact between all members of the population, which in many
scenarios and scales, is an incorrect assumption. More complex models may be desired,
which we will now consider.

2.2 Contact Networks

To address the oversimplification of the contact systems that compartmental models
carry with them, one can turn to an alternative scheme known as contact networks [6].
Taking in one sense the other extreme, a contact network treats each person’s role in
a population as distinct (a heterogeneous population), and tracks properties of each
individual. We can formally define a contact network.

Definition 1 A contact network is a directed graph graph G = (V, E) with edge weights
where:

• Each node v ∈ V (G) represents a person. Each v has a state assigned to it
representing its current disease status (such as, but not limited to, susceptible,
infectious, or recovered).

• An edge (v1 → v2) ∈ E (G) represents interactions between v1 and v2 (interactions
need not be mutual).

• Edge weights represent relative strengths of interactions.

Figure 2: An example contact network. Edge weights are omitted for clarity, and we
use undirected edges here to symbolic mutual interactions. The colors of the nodes
represent their current disease state.

Thus a contact network encapsulates each individual’s distinct role in the larger
population. An example visualization is shown in Figure 2. The interactions considered
are usually those that are conducive to the spread of the particular disease in question
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(e.g. sharing of a cup may be used for colds, but not sexually transmitted diseases). On
top of such a network, we can again impose a per-person state transition such as was
seen for the SIR model, namely S → I → R. Given such a contact network, various
types of transmission models have been proposed. A common theme assumes discrete
time steps [7], and defines the probability of one infectious node infecting its susceptible
neighbor, given that it is infected for τ time units, is

pi,j = 1− (1− ri→j)
τ ,

where ri→j is the edge weight along edge (i→ j). If a continuous time scale is used, this
can be extended to

pi,j = 1− exp {−ri→jτ} .

The edge weights provide another level of heterogeneity past the graph structure; in
particular the susceptibility of an individual varies from individual to individual (here
based upon the neighboring nodes, and the relative edge weights) [6]. While certainly a
more detailed and flexible model, such specific interactions may not be available. Fur-
thermore, such a detailed model requires a large number of parameters. The structure
of the network must be specified, as does the weights on each edge. This may lead to
computational challenges when scaling up the population under question.

To address these issues, one can take an intermediate approach, where a node instead
represents a set of people that are expected to behave homogeneously, and imposes a
contact network between such meta-nodes. Disease behavior inside such a meta-node
can degenerate to less complex models, such as SIR. Epigrass [3], a tool intended for
studying the spread of disease over networks, uses a similar model in considering bus
routes over a set of regions in Brazil. Figure 3 shows an example transformation from
geographic region to contact network.

Figure 3: Example dataset used by Epigrass, to construct a contact network modeling
contacts made on bus routes.
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2.3 Probabilistic Model Checking

Once we have a particular chosen model for disease spread over a population, be it
as simple as an SIR model, or utilizing a more complex approach such as a contact
network, a natural question to ask is “What sorts of characteristics can we model?”
Perhaps more to the point, we’d like our model to be able to answer questions that
are relevant to the inspection and understanding of disease spread. In particular, as
mentioned in Section 1, we might be interested in questions related to prevent and/or
control disease. Such questions may be:

1. “At time instance t, what fraction of the total population is infected?”

2. “Allowing the disease to run its full course, what fraction of the total population
becomes infected?”

3. “Will person p (or group of people g) become infected within t time units of the
onset of the disease?”

If we consider the second question above, it might seem strange at first, because in
both the common SIR model and contact networks, it is quite possible that the entire
population will become infected (and then recover) exactly once. However, this brings
us to the issue of disease prevention. We have previously assumed that the population is
initially entirely in the “susceptible” state (except for one infected individual). However,
the introduction of such things as vaccinations to our model would result in individuals
being initialized to be in the “recovered” state. Of course, some models (including
formulations of contact networks as mentioned above) are probabilistic and will not
always given the same answer for deterministic questions of this sort. We can relax our
queries somewhat by rephrasing them with a probabilistic flavor:

1. “At time instance t, what is the likelihood that the fraction of the total population
is infected is at least c?”

2. “Allowing the disease to run its full course, what is the likelihood that the fraction
of the total population becomes infected is at least c??”

3. “What is the likelihood that person p (or group of people g) becomes infected
within t time units of the onset of the disease?”

The realm of model checking allows us to pose questions of the sort above, both
probabilistic and non-probabilistic. Research in temporal logics allow us to make asser-
tions over some existing state-machine-like construct as well as handle a notion of time.
There are many flavors of temporal logic, one pertinent one is known as Continuous
Stochastic Logic, or CSL [1]. CSL deals with models that both work over continuous
time and involve uncertainty in the queries and the model, as above. tCTL, another
form of temporal logic, handles continuous time but no uncertainty. We will focus on
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CSL here; the syntax and semantics for tCTL are similar. We first define the formal
structure that a CSL statement works over, a Continuous Time Markov Chain (CTMC),
which can be thought of a continuous time version of a labeled state machine:

Definition 2 A continuous time Markov Chain M is a 4-tuple (S,A, Λ, l) with compo-
nents defined as follows:

• S = {s1, s2, . . . , sn} is a finite set of states.

• A is a finite set of atomic propositions.

• Λ : S × S → R is the transition rate matrix.

• l : S 7→ 2A is the labeling function.

Λ has the following properties:

• Off-diagonal entries are non-negative.

• The diagonal elements λj,j = −(
∑

i6=j λj,i).

• When at state sj, in time dt we can transition to state sk (for k 6= j) with proba-
bility λj,kdt.

The atomic propositions correspond to a set of labels that each state may have.
Thus, we can conceive a continuous transition from state to state such that at any fixed
time point t, we have a set of properties (atomic propositions) satisfied, corresponding
to what state we are currently in. Similar structures exist to correspond with tCTL.
Now, given our notion of a CTMC, we can formally define the CSL temporal logic.

Definition 3 A CSL formula Φ defined over a CTMC M is one of the form

Φ ::= true | a | Φ ∧ Φ | ¬Φ | S./p (Φ) | P./p (ϕ)

ϕ ::= XΦ | ΦUΦ | ΦU≤tΦ

where a ∈ A, p ∈ [0, 1], t ∈ R>0, and ./∈ {≤, =,≥} Each Φ is also called a state-
formula, and each ϕ is called a path-formula.

The interested reader is invited to consult Baier et al.[2] for a full description of the
CSL semantics. A CSL formula can represent the queries listed above:

• “At time instance t, what is the likelihood that the fraction of the total population
is infected is at least c?”

→ P≥?

(
true U≤t (I/N > c)

)
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• “Allowing the disease to run its full course, what is the likelihood that the fraction
of the total population becomes infected is at least c?”

→ S≥? (I/N > c)

• “What is the likelihood that person p (or group of people g) becomes infected
within t time units of the onset of the disease?”

→ P≥?

(
true U≤t (p is infected)

)
Here a question mark (?) appears in the formulae in the location of whatever value

we wish to find; in the case of the third example, we wish to find the corresponding
probability. That is to say, rather than just verifying whether or not the CSL formula
is satisfied or not, we also wish to find a satisfying value for the unspecified variable. In
most cases, the underlying algorithms used for the model checking need not change at all.
In the next section, we discuss a tool called PRISM that incorporates this functionality
natively. The atomic propositions can be encoded to allow numerical values, not just
boolean expressions, as is done here (which allows us to refer to the number of infected
people I or total number N, for example).

3 Methodology

We demonstrate how to perform a set of queries over a chosen disease model. The
chosen model is first encoded as a CTMC, and then the queries are written as CSL
formulae, which are run on the CTMC models. We use PRISM [4], an available tool for
performing this probabilistic model checking.

3.1 Our Disease Model

Similar to Epigrass, we adopt an intermediate model that lies between a true per-
individual contact network and a homogeneous SIR model. Specifically, we have a
contact network with meta-nodes where each node represents a portion of the popu-
lation that can be considered homogeneous. Each individual meta-node is modeled to
function as its own population, so an SIR model exists for each meta-node. Further-
more, edges between meta-nodes indicate points of contact between populations. These
edges facilitate the transfer of disease from one meta-node to another. We take here a
simplifying assumption that for two populations A and B, the likelihood of any given
member a ∈ A coming into contact with member b ∈ B is the same as any other member
b′ ∈ B, and vice-versa. Formally, we have for a given meta-node u (same as the SIR
transmission rules),
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d (Su → Iu)

dt
= β · Iu (t) · Su (t) (1)

d (Iu → Ru)

dt
= ν · Iu (t) (2)

and for an edge (u→ v) between meta-nodes with edge weight ru→v:

d (Sv → Iv)

dt
= β · ru→v ·

Iu (t)

popu

· Sv (t)

popv

(3)

This final rule is similar to the SIR rule for infecting susceptible members of the
population; except that the infectious members come from population u and the suscep-
tible members are in population v. It should be noted that much like the SIR model, we
assume that for any given population (meta-node), the members are fixed. This means
what while we can simulate individuals between populations interacting, they remain in
their respective groups. Much as before with the SIR model, one could design a model
involving changing populations, if needed.

3.2 PRISM - A Tool for Probabilistic Model Checking

As briefly mentioned earlier, we use PRISM, a tool for performing probabilistic model
checking, including the checking of CSL formulae over CTMCs. PRISM utilizes its own
language for encoding state-machine-like structures such as CTMCs. The language is
fairly simple; code samples are given in Figure 4 and Figure 5. These modules are
templates for each node and edge, and we ground these templates out for each node and
edge that we have in our network. The variables rate I rate R correspond to the β
and ν parameters from Section 2.1, which are constant over all nodes and edges of the
graph. Guard conditions are placed on each action that can take place, to ensure the
proper circumstances (for example, the infection rule should only trigger if there is at
least one person who is infected and who can become infected). With this in mind, it
should be easy to see the direct encoding of Equations (1) - (3), and how to modify the
rules if we choose to change the disease transmission model.

Following the encoding of the nodes and edges, we also utilize the cost/reward struc-
tures available in PRISM. These simplify the eventual CSL formulas that we formulate.
PRISM supports a system of rewards that are awarded when certain states are encoun-
tered or conditions are met. For our purposes, we utilize the reward feature to access
information about the model’s state that is interesting to us, in particular each node’s
breakdown of susceptible, infectious, and recovered members. This is accomplished with
the simple reward structure presented in Figure 6. In this figure, we create a reward
which is here named “I i,” which takes the value Ii

popi
, the fraction of node i’s popula-

tion that is infectious. We can similarly create rewards S i and R i for each node i in
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const int pop_i = 120;

global S_i : [0..pop_i] init 100;

global I_i : [0..pop_i] init 10;

global R_i : [0..pop_i] init 10;

module node_i

// infection within node i

[] (S_i > 0) & (I_i > 0) ->

(rate_I*(I_i)*(S_i/pop_i)) : (S_i’=S_i-1)&(I_i’=I_i+1);

// recovery within node i

[] (I_i > 0) ->

(rate_R*I_i) : (I_i’=I_i-1)&(R_i’=R_i+1);

endmodule

Figure 4: PRISM code for a node of the contact network.

// edge weight

const double trans_u_v = 2;

module edge_u_v

// models pop_u infecting pop_v

[] (S_v > 0) & (I_u > 0) ->

(rate_I*trans_u_v*(I_u/pop_u)*(S_v/pop_v)) :

(S_v’=S_v-1)&(I_v’=I_v+1);

endmodule

Figure 5: PRISM code for an edge of the contact network.

rewards "I_i" true : I_i / pop_i; endrewards

Figure 6: PRISM code for creating a reward for the existing model.

the graph. Reward queries, a PRISM extension of CSL, can then be used to compute
the expected value of this reward at a specified time instance. For example, the query
R{"I_i"}=? [I = T] asks “what is the expected fraction of node i that is infected at
the instantaneous time T?” In this sample query, the standalone symbol I is part of the
PRISM reward query structure, standing for “instantaneous,” and should not be taken
to be have anything to do with the infectious portion of the population. Following the
creation of such reward structures, we can effectively profile the expected outcome of
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any population in the network model, or by creating rewards summing all the nodes’
statistics, produce an aggregate summary akin to Figure 1.

3.3 PRISM’s Verification Approach

PRISM is termed a probabilistic model checker. As discussed in Section 1, this implies
that verification is performed on top of a model that incorporates some random behavior.
The method of verification is left open. Many traditional approaches seek to answer
queries exactly, meaning that with complete certainty the answer that they return is
correct. However, this oftentimes leads to issues in computational complexity. Efficient
data structures such as binary decision diagrams (BDDs) allow drastic speed-ups in
many cases, but do not solve the problem in general. An alternative approach instead
tries to output an approximate solution, which gives a high probability guarantee of
being correct rather than full confidence. PRISM uses such an approach, through a
combination of analysis of the underlying model and a sampling of random execution
traces.

4 Experimentation

Given the formulations of the models we have from Section 3, we have constructed a
model with 7 populations (meta-nodes) and use SIR to model disease spread inside each
node, as discussed in Section 3.1. A visualization of the contact network used is shown in
Figure 7. We then discuss using vaccination as a disease prevention/control mechanism.

4.1 Disease Progression, No Prevention

The first and simplest initialization that we consider is when all but one person in the
overall population is susceptible, and one individual is chosen to be infectious. Here, we
select node “a” to begin with one infectious person. We present results in the form of a
time series set of data, showing snapshots of the population as the disease propagates.
To obtain the values needed to produce this data, we use the reward-based queries dis-
cussed in Section 3.2 to obtain approximations to the expected values of the population
breakdowns. Figure 8 shows several key points during the disease progression. A series
of graph visualizations of our model at different time point accompany the plot, which
allows us a more distributed view of the population’s health at a particular point in
time.

4.2 Disease Prevention - Vaccination

Following the work done above in modelling the progression of disease, we can also
consider the impacts of taking preventative or responsive measures at the disease onset.
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Figure 7: The contact network being modeled. Each node represents a different popu-
lation which interact with other populations as determined by the edge set. Node size
is relative to the total population contained in that node.

This would typically be done to limit the number of total infected population or perhaps
the total number of infection people of a target type (such as pregnant women, or young
children, etc). There are a number of ways that one could consider doing this, we focus
on a common tactic - vaccination. Vaccination impacts our model by shifting a portion
of the initial populations to the safe “recovered” state whereby they will not be able to
infect or become infected. Total vaccination will, in theory, prevent any outbreak from
occurring. However, vaccination on such a large scale is costly and usually impractical
fiscally. One naive approach is to uniformly vaccinate a fraction of the entire population
indiscriminately. However, one might expect that a better solution is possible, and
indeed, vaccinating specific, critical points of a population can be a viable tactic, such
as more fully targeting the neighbors of a diseased node in the contact network [8].
While leaving other nodes “open to disease” so to speak by administering little to no
vaccination, this nevertheless can effectively prevent disease spread due to the spreading
nature of disease. In particular, the definition of a “contact” between populations here
is crucial and must be well-suited for the disease under study. The issue of finding such
critical points in more complex models is oftentimes non-trivial given more complex
network.

It is very easy for our model to express an alteration such as vaccination; the initial
population distribution changes from being all susceptible to containing some recovered
members, and the queries and simulations are performed the exact same way. The
question of “key” points in a population is more clear in our contact network formulation
as well; we might wish to vaccinate all nodes that serve as bridges (formally that have
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Figure 8: Progression of disease in non-vaccinated case. Overall fractions of the popu-
lation that are susceptible, infectious, and recovered are shown in the plots over a time
interval of t ∈ [0, 20]. Contact network visualization is also presented, where the color of
each meta-node indicates the constituents of its particular population. The color scheme
is kept the same as in Figure 1.
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Figure 9: The contact network being modeled. Each node represents a different popu-
lation which interact with other populations as determined by the edge set. Node size
is relative to the total population contained in that node.

a high betweenness centrality, a measurement often used in social network research) to
the rest of the population. In the example contact network show in Figure 8, if node
f or g were initially the only infected populations, then we would want to vaccinate
node e which is the only way that the disease could spread to other populations in the
network.

We choose to use a more complex contact network for this stage, shown in Figure 9.
We first run the initial non-vaccinated simulation to develop a baseline of the dynamics
of the network. We then apply two vaccination approaches in turn: we first apply a
uniform vaccination to 25% of the entire population on a per-node basis. That is to say,
that each node of the contact network has 25% of its population vaccinated immediately.
As a second strategy, we vaccinate 50% of key populations. The three sets of results are
shown in Figure 10.

Vaccination seems to help in general, as the red infectious curve becomes suppressed
throughout its lifetime. Currently, the uniform 25% vaccination outperforms the tar-
geted 50% version. This currently is the case for two reasons: (1) because the overall
number of vaccinations in the 25% is drastically higher. Given that there are 18 nodes
in the graph and uniform populations in each node, and that only three nodes were vac-
cinated in the 50% targeted case, while the 25% uniform strategy requires vaccinations
of a quarter of the population, the targeted case only requires 0.5·3

18
= %18.75. Addition-

ally, the “key” locations chosen were not optimal in the sense that they were not direct
neighbors of the initially infected node; this could suggest that a more blanket uniform
strategy may be needed if issuing a delayed response to a rampant disease where the
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Figure 10: The effects of vaccination on the larger contact network.
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disease has already spread past a single node.

5 Conclusion & Future Work

We have considered the modeling of disease spread over populations, and shown how one
can readily encode existing classes of models (compartmental, true contact networks,
and intermediate variants) into CTMCs which allow for queries to be posed over the
models using temporal logics, which are a natural fit for many types of queries that one
would desire for the purposes of disease prevention and control. Control measures such
as vaccinations were considered, and it was shown that, as one would expect, vaccinating
the correct target group(s) of a contact network prevents a larger number of infections
that blindly administering the same (or more) vaccinations to different members of
the population. This type of prevention measure adjusts the initial population states
by shifting many to a “recovered” state. An alternative measure, proposed by Myers,
suggests [6] that by restricting the contacts themselves, one can also limit disease spread
effectively. This would correspond to deleting edges in the model’s contact network (or
dropping transmission rates along the edges to 0), and could be investigated further.
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