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ABSTRACT
Disease outbreaks are intimately tied to geographic loca-
tions and to times, and as a result, health-related GIS along
with open, Web-based data sources are increasingly cru-
cial for public health. One such data source, ProMED-mail,
offers disease reports distributed as email postings, along
with locations and times of relevance. Locations are spec-
ified in text rather than in geometry, which necessitates a
method for mapping textual locations to their spatial rep-
resentations, called geotagging. To address this need, the
previously-developed STEWARD system is leveraged for dis-
ease detection and tracking by geotagging ProMED-mail
postings. While STEWARD was previously used in a disease
tracking role, improvements to STEWARD are described in-
cluding an innovative time slider that allows powerful and in-
tuitive spatio-textual querying. Many additional future im-
provements for STEWARD and related systems are also dis-
cussed.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and

Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Design, Performance

Keywords
Disease tracking, geotagging, GIS, spatio-temporal

1. INTRODUCTION
Disease detection and tracking plays an important role in to-
day’s globally connected society. Organizations such as the
US Centers for Disease Control and Prevention and World
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Health Organization are intensely interested in monitoring
infectious diseases around the world, especially since the In-
ternet is increasingly accessible everywhere. In addition, the
increasing prevalence of volunteered geographic information
(VGI) [14] in media such as blogs and tweets can likewise be
leveraged to effect greater tracking ability. Importantly, dis-
ease outbreaks have a strong geographic component, in that
their origins and spread are intimately related to environ-
mental conditions and movement patterns, which enhances
the need for robust health-oriented geographic information
systems (GIS). A number of Web-based services for disease
tracking have likewise flourished, most notably ProMED-

mail [16], henceforth referred to as ProMED, an online alert
system intended to quickly disseminate news of the latest
outbreaks to medical professionals and laymen around the
world.

Our focus in this paper is to enable the simple and intuitive
spatio-temporal querying and retrieval of relevant ProMED
postings—that is, retrieval of postings that mention diseases,
locations, and/or times of interest. We do so by leveraging
the capabilities of STEWARD [19, 23], a system originally
developed for geotagging documents from the hidden Web,
i.e., mapping them to the geographic space (see also the re-
lated NewsStand system designed for news [33, 34, 36]). Geo-
tagging consists of first finding in each document references
to locations, called toponyms, and second, assigning each
toponym a spatial interpretation in the form of lat/long val-
ues. This problem is challenging because toponyms exist in
the space of natural language and hence exhibit ambiguity.
Many toponyms are also names of other, non-location enti-
ties (e.g., “Paris, France”, the location, versus“Paris Hilton”,
the person) [17], and further, many places have the same
name (e.g., any of over 60 cities around the world named
“Paris”) [18, 21, 22, 29]. Likewise, many locations mentioned
in ProMED postings will also be ambiguous, and it is here
where STEWARD’s utility is most apparent, in contrast to
other disease tracking systems that are incapable of resolv-
ing such ambiguities. STEWARD’s map-based Web inter-
face also allows for powerful spatio-textual retrieval and dis-
play. In particular, it can be used for feature-based queries [1]
(e.g., spatial data mining) as well as location-based queries
(see also the related QUILT system [31, 35] and the SAND
Browser [32]).

While STEWARD was previously used in an infectious dis-
ease tracking role [20], in this work we describe improve-
ments to STEWARD that allow for intuitive and useful



spatio-temporal querying through the use of a time slider.
This slider allows users to quickly and easily vary the tempo-
ral components of their queries by changing the time range
and time size under consideration. This slider varies the dis-
play of relevant documents associated with locations on the
map, by limiting the displayed locations to those associated
with documents with times that fall within the time pe-
riod covered by the slider. Further, by pressing a “play” but-
ton, the slider moves automatically across the entire time
spanned by all result documents, and thus users can exam-
ine the changes in locations associated with a given disease
or condition over time. In this way, disease detection and
tracking amounts to observing these changes, which is made
simple and intuitive by our improvements.

The rest of this paper is organized as follows. First, we out-
line related research systems and datasets (Section 2). Next,
we describe our methods for retrieval and processing of Pro-
MED postings, which leverage STEWARD’s geotagging ca-
pabilities (Section 3). Then, we describe our Web interface,
including the time slider improvements, and explain our im-
plementation of temporal querying that enables the slider
(Section 4) Finally, we offer concluding remarks and outline
potential avenues for future research (Section 5).

2. RELATED WORK
A huge amount of resources have been devoted to the devel-
opment of disease tracking and monitoring datasets, and as-
sociated strategies. In this section, we provide a brief survey
of some of the systems and datasets that have been devel-
oped for this purpose. For more details see, e.g., Buckeridge
et al. [2].

Disease surveillance systems can be classified in a variety of
ways, but one simple measure is according to the types of
data with which they make their predictions. In particular,
datasets can be loosely characterized as pre-Web datasets,
which predate the prevalence of Web-based communications,
and complementary post-Web datasets.

Pre-Web datasets tend to consist of highly curated, veri-
fied, closed information that is limited in scope and size,
which in turn limits their effectiveness in the context of a
real-time surveillance system. Examples include information
released by public governmental agencies devoted to health
concerns. Such agencies release great quantities of public
health information, and many public health services exist
that are provided by these agencies, but we list only a few
here. OutbreakNet [3], provided by the US Centers for Dis-
ease Control and Prevention, releases curated disease reports
akin to press releases from a team of epidemiologists who
investigate incidences of disease. The European Centre for
Disease Prevention and Control maintains the Eurosurveil-
lance journal [8], which publishes articles containing inves-
tigated reports of outbreaks. The Public Health Agency of
Canada operates the Global Public Health Intelligence Net-
work (GPHIN) [28], which collects news reports from around
the world and employs human analysts to curate and verify
reports, which are then released to subscribers—generally,
various health organizations that then disseminate that in-
formation publicly in their own domains.

In addition to various public agencies, there exist a variety of
private organizations that cater to specific member clients.
One such example, the RODS network [37, 38], monitors
member organizations’ data, including hospital emergency
department visits and retail store sales. The International
Society of Travel Medicine’s GeoSentinel network [10] col-
lects data from faxable disease reports submitted by medi-
cal professionals, who report cases of patients with partic-
ular diseases visiting their practice. The ESSENCE II sys-
tem [24] detects outbreaks using emergency department vis-
its, as well as medication sales information, clinic visits, ab-
sentee records, and other sources, in a combined approach
to disease detection.

Given the history and quantity of pre-Web data, many re-
searchers have explored methods and techniques related to
such data. Cooper et al. [6] model disease outbreaks as Bay-
esian networks and test a detection system based on these
networks with emergency department records from several
local hospitals. Likewise, Reis et al. [30] investigated meth-
ods for modeling simulated disease outbreaks as the result
of bioterrorism using hospital data, and found that build-
ing such models using long-term as opposed to short-term
data resulted in more accurate outbreak prediction. This in-
dicates the importance of understanding the temporal com-
ponents of disease outbreaks and calls for powerful and intu-
itive methods for temporal querying. Fienberg and Shmueli
[9] note that the traditional forms of data used for biosurveil-
lance, such as hospital visits, are inadequate for rapid out-
break detection, and outline various types of non-traditional
data that may be used for detection, including school ab-
sence records, 911 call records, and their focus, grocery sales
data. This finding alludes to the growing importance of Web-
based datasets, such as the ProMED data that we use.

In contrast to pre-Web data, post-Web datasets consist pri-
marily of open, minimally structured and verified informa-
tion from a wide variety of nontraditional sources not specif-
ically dedicated to health information, such as news reports,
blogs, personal reports, and mailing lists such as ProMED
(although ProMED is more curated than most sources). As
a result, these datasets are much larger, and much noisier,
than pre-Web datasets. Many systems have grown around
post-Web data, and given the variety and magnitude of
such data, they tend to act as aggregators in many respects.
One well known system in this domain is HealthMap [4,
11], which gleans information from ProMED, GeoSentinel,
Eurosurveillance, Google News, Moreover, and many other
sources. The BioCaster system [5] gathers documents from
several Web sources, including ProMED, and finds locations
and other entities. Their main contribution is an expert-
curated disease ontology that draws together disease infor-
mation from multiple sources, and also has links to external
disease databases. Also, the more recent GermTrax [12] em-
ploys collaborative disease tracking that relies primarily on
disease reports from ordinary people who are sick. As a re-
sult, the system is intended for non-specific conditions such
as“cold”or“flu”. Grishman et al. [15] use ProMED and news
data to search for outbreak events using a rule-based frame-
work. Their browsing interface is rudimentary and presents
only a tabular view of outbreaks, which limits spatial un-
derstanding.



All these systems, and others, suffer from the lack of a
solid geotagging framework. They assign locations to dis-
ease reports using minimal metadata which does not corre-
late with the locations where diseases are occurring. Further,
these systems lack an intuitive method for specifying tem-
poral queries. The systems that do allow temporal querying
tend to be limited to a single geographic area, or a sin-
gle geographic resolution, with static displays of results. In
contrast, STEWARD uses well-developed geotagging tech-
nology, in combination with simple and powerful temporal
querying, to aid in the discovery and exploration of disease
outbreaks.

Wilson and Brownstein [40] advocate the use of free Web-
based data sources for rapid disease detection, as opposed
to costly, closed traditional surveillance methods. In partic-
ular, they illustrate the utility of keyword searches in search
engines and users’ click streams. When many Web surfers
from a single geographic region—determined by mapping
their IP addresses to locations—all click on links related to
the same disease, or search for the same disease keywords,
it serves as an indication of prevalence of the disease within
that region. Ginsberg et al. [13] describe one such implemen-
tation of this strategy for detecting outbreaks of influenza by
observing patterns of influenza-related searches from partic-
ular geographic regions, determined by IP addresses. Areas
with overlarge searches for“flu”and related keywords tended
to experience more outbreaks of influenza. These techniques
illustrate the growing importance of collaborative data col-
lection and filtering, such as in the ProMED data which we
use.

3. DATA PROCESSING
In this section, we describe the format of the ProMED data,
and how we retrieve and process it for spatio-temporal query-
ing and retrieval in STEWARD.

3.1 Data Format
ProMED is an online alert system intended to act as a
medical information clearinghouse, by quickly disseminat-
ing news of infectious disease outbreaks to medical profes-
sionals and other subscribers around the world. ProMED’s
editors monitor news media reports, official government re-
ports, and online disease summaries to learn of new cases
or updates to existing cases. Monitored diseases are limited
to those of humans, animals, and plants. In addition, med-
ical professionals sometimes send local reports of diseases,
or commentary related to existing disease reports, directly
to ProMED’s editors. The editors vet and verify each re-
port, and if they determine that the report is found to be
accurate, such reports are republished to ProMED’s sub-
scribers on one or several mailing lists, organized by topic,
such as animal or plant diseases, emerging disease reports,
broad location-oriented posts (e.g., Africa, Latin America,
Southeast Asia), and others. Prior to republication, the ed-
itors add metadata to each report, including the report’s
date and time, organisms of relevance (i.e., human, animal,
plant), and crucially, the location or locations affected by
the disease outbreak. They may also modify the report’s
text or add suitable commentary from contributors. In ad-
dition, once or twice daily, reports are synthesized into single
digests for easier republication.

Figure 1 shows a typical ProMED post which illustrates its
general structure. This post was released during the 2003
outbreak of severe acute respiratory syndrome (SARS) in
southeast Asia and other parts of the world. It consists of
a reposting of a World Health Organization (WHO) travel
advisory, relating details of the disease and a warning for
travelers leaving from or going to various locations affected
by the outbreak. The post begins with ProMED metadata
that is present in all such postings, namely the Published

Date, Subject, and Archive Number, which related the date
of posting, subject of the post, and a unique post identifier
which can be used to retrieve the original post from Pro-
MED’s website. The Subject line contains additional meta-
data, starting with tags that identify the mailing lists of
relevance—in this case, PRO/ALL, which indicates the post-
ing’s relevance to all of ProMED’s mailing lists. The line
also mentions the disease of relevance, namely Severe acute

respiratory syndrome, and the general geographic location
of relevance, which in this case is Worldwide. Thus, all of
ProMED’s posts feature geographic locations very promi-
nently, which is not surprising given the heavily geographic
nature of reports of disease outbreaks.

The rest of the post contains the actual content, which in
this case is the full text of the corresponding WHO posting.
This posting has a similar structure to news articles, starting
with a dateline that contains the date and location of publi-
cation, namely 15 March 2003 | GENEVA. This dateline has
a clear format and both the date and location are readily
machine-parseable. However, like the majority of such doc-
uments that describe ongoing events, the dates relevant to
the events described in the content differ from the date of
posting. Also, for digest and summary posts, the time need
not have any relevance at all, since they act as groupings
of older posts and will not represent the latest information.
The very first sentence states that during the past week

a large number of cases were reported, indicating the post-
ing’s relevance to this time range, as opposed to the posting
time. Further, the dateline’s location, GENEVA, in which the
WHO is headquartered, is totally irrelevant to the locations
of outbreaks of SARS, which are presented en masse in the
post’s body. Clearly, for this post and many others like it,
naively tagging the post with locations and times mentioned
in metadata, as opposed to content, will result in irrelevant
results to spatio-temporal queries.

3.2 Data Retrieval
To retrieve an initial complement of data for our system,
we crawled ProMED’s website and downloaded its entire
database of archived posts from 1994 to 2011, which num-
bered 39,420 posts in total. To give a general overview of the
amount of data present, Figure 2 illustrates the volume of
available ProMED posts, arranged by year. Examining Fig-
ure 2a, which shows the total number of ProMed posts per
year, about 2,000–2,500 notices are consistently posted per
year, or about six per day, which can be processed quickly.
On the other hand, examining Figure 2b, showing counts of
only SARS-related posts, a clear pattern of frequent posting
appears in 2003, corresponding with the outbreak of SARS
in that year, and tapers off in subsequent years, indicating
a declining interest in such queries. Of course, these counts
would be of little use to experts, who would be interested
in much finer temporal ranges, and if we were to “zoom in”



Published Date: 2003-03-15 23:50:00

Subject: PRO/ALL> Severe acute respiratory syndrome - Worldwide:alert

Archive Number: 20030315.0637

[...]

World Health Organization issues emergency travel advisory

Severe Acute Respiratory Syndrome (SARS) Spreads Worldwide

----------------------

15 March 2003 | GENEVA -- During the past week, WHO has received reports of more

than 150 new suspected cases of Severe Acute Respiratory Syndrome (SARS), an

atypical pneumonia for which cause has not yet been determined. Reports to date

have been received from Canada, China, Hong Kong Special Administrative Region

of China, Indonesia, Philippines, Singapore, Thailand, and Viet Nam. Early

today, an ill passenger and companions who travelled from New York, United

States, and who landed in Frankfurt, Germany were removed from their flight and

taken to hospital isolation.

[...]

Figure 1: A typical ProMED posting, including metadata and body text.
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Figure 2: Number of ProMED posts per year, considering
(a) all posts and (b) only posts related to the keyword
“SARS”.

on particular years, we would see more variations through-
out the year. However, we present these figures to give a
high-level overview of the size and temporal aspects of our
dataset.

3.3 Geotagging
After retrieving the ProMED data, we used STEWARD’s
existing infrastructure to associate each posting with the
locations that it mentions and hence to which it is relevant.
Lieberman et al. [19] provide details of such processing, but
we provide a brief overview here.

The first stage of processing in STEWARD involves stan-
dardizing each document’s format and extracting relevant
metadata, including time of publication, title, and relevant
keywords. STEWARD’s purpose of geotagging documents
from the hidden Web means this step may be involved for
documents in general, which may include PDFs, MS Word,
HTML, or other types of documents. However, for ProMED
posts, there is not much work involved since the posts are
in text format, and the date of publication and posting title
are given with each post’s metadata. Each posting is inserted
into STEWARD’s PostgreSQL database, with the posting’s
text indexed for full text searches using an inverted index.

Next, we use STEWARD’s infrastructure to associate each
posting with its locations, a process known as geotagging.
As mentioned previously, each post’s title contains general
locations of relevance for the post, so one may be tempted to
use these locations for geotagging. However, these locations
are unsuitable for our purposes since they are of very coarse
resolution, especially for widespread disease outbreaks (e.g.,
“worldwide”). Instead, STEWARD’s geotagger finds refer-
ences to locations, known as toponyms, in each posting’s
text, and further associates each toponym with its spatial
interpretation in the form of lat/long values. These steps
are difficult because toponyms exist in the space of human
language, and as such exhibit the significant ambiguity that
is characteristic of human language. In particular, many to-
ponyms are also names of other entities (e.g., “Paris” may
refer to “Paris, France”, a location, or “Paris Hilton”, a per-



son), and further, a given toponym may have many location
interpretations (e.g., “Paris, France”versus “Paris, Texas” or
any of over 60 other places named“Paris”all over the world).

STEWARD’s geotagger uses many techniques to find to-
ponyms and assign them lat/long values. To find toponyms,
STEWARD uses a hybrid approach involving techniques
from natural language processing (NLP), and in particular
named-entity recognition (NER) and part-of-speech (POS)
tagging. The NER task involves finding typed entities within
free running text, including locations, but also variously
persons, organizations, stock symbols, currencies, dates and
times, genes and proteins, and others. Tools developed for
NER can be leveraged for finding toponyms by simply re-
trieving the output location entities. Similarly, POS tagging
involves assigning each word or token in a text with its corre-
sponding part of speech. Names of locations, and other types
of entities, tend to be proper nouns, so adjacent groups of
proper nouns are taken as toponyms. Of course, some of
these proper nouns will not be locations, but they will be
filtered out in subsequent steps of processing.

After finding toponyms, STEWARD associates with each to-
ponym one or more location interpretations from a location
gazetteer, which is a database of locations and associated
metadata. STEWARD uses a gazetteer constructed by merg-
ing two freely available gazetteers: the Geographic Names In-
formation System (GNIS) [39], which contains US location
interpretations, and the GeoNET Names Server (GNS) [27],
which contains non-US locations. As of this writing, these
gazetteers contain over 2.2 million and 5 million location
interpretations, respectively, which means that STEWARD
has excellent coverage of locations, at the cost of increased
toponym ambiguity and hence geotagging difficulty. How-
ever, wide coverage is necessary for obtaining smaller loca-
tions of relevance that are crucial in disease detection and
tracking.

Next, STEWARD resolves each toponym by assigning to it
one of the interpretations associated with it. The resolution
algorithm involves a variety of heuristic evidence applied
through rules. For example, object/container pairs such as
“Paris, Texas” indicate that the interpretation of “Paris”
should be contained by the interpretation of “Texas”. Addi-
tionally, STEWARD uses an algorithm termed pair strength,
where pairs of toponym interpretations within the document
are ranked according to their document distance, geographic
distance, and population. The ranked pairs are then sorted,
and toponyms are greedily resolved using the first pair in
which they appear. For more details, see Lieberman et al.
[19].

At this point, each document is associated with a set of to-
ponyms and their location interpretations (i.e., lat/long val-
ues). The final stage of processing involves finding an over-
all geographic focus of each document by ranking the loca-
tions present in it. Locations are ranked using a combination
of document frequency and document position—toponyms
mentioned earlier are presumed to be more important to the
content as a whole than those mentioned later. By ranking
locations in this manner, spatial components of queries to
STEWARD return more relevant postings.

4. WEB INTERFACE
In this section we describe STEWARD’s Web interface, as
enhanced for intuitive and powerful temporal querying via
its time slider, as well as details of the time slider’s imple-
mentation that enables interactive temporal querying.

4.1 Visual Elements
Figure 3 shows STEWARD’s Web interface, along with our
new extension to allow spatio-temporal querying capabili-
ties. Here, the user has entered a query for “SARS”, and the
results are shown both in the textual pane at bottom left
and the spatial pane at bottom right. The textual pane con-
tains information about individual search results, with each
entry corresponding to a ProMED posting. The primary lo-
cations associated with the postings are shown in the map
pane, with each marker corresponding to a posting. In this
case, all ProMED reports containing “SARS” are returned,
which number 856 in our database.

In addition to the keyword search, the user has performed
additional temporal filtering on the results by selecting the
“Temporal” tab at the top, which enables the display of a
time slider that grants intuitive access to STEWARD’s tem-
poral querying capability. Users move the slider along the
timeline to control the temporal range in which query results
are shown in the map pane. Further, users can drag either of
the slider’s endpoints to adjust the size of the slider’s range,
which correspondingly changes the time range of results dis-
played in the map. In Figure 3, the user has selected to only
show notices that were posted in 2004. In addition, the time-
line’s endpoints change dynamically to match query results
by being updated to the time span of the returned data. In
this case, ProMED postings relevant to “SARS” span the
years of 1997–2012. We used ArcGIS’s public API [7] to fa-
cilitate the implementation of our slider.

In addition to moving the slider manually, users can click the
“play” button to the left of the timeline to cause the time
slider to automatically move across the timeline. The slider
can also be moved stepwise forward and backward through
time intervals by clicking the “step forward” and “step back”
buttons to the right of the timeline. These features enable
an intuitive and compelling display of the data’s evolution
over time, which allows the discovery of temporal trends and
outliers. Figure 4 illustrates one such discovery of the world-
wide outbreak of SARS using these features of the slider.
ProMED postings relevant to “SARS” and posted in 2001,
2002, and 2003 are displayed when the slider moves over the
corresponding times in the time scale. Bursts of ProMED
postings related to “SARS” are limited in number, between
2001–2002, expand greatly in 2002–2003, and explosively ap-
pear in 2003–2004, reflecting the number of SARS cases and
their news coverage during those time periods. The map
also illustrates the outbreak’s evolving geographic nature,
with early cases concentrated in Southeast Asia, and later
cases having worldwide distribution. While these examples
are simplistic in scope, they serve as a powerful illustra-
tion of the power and potential of dynamic spatio-temporal
querying.

4.2 Temporal Querying
Here, we provide some brief details of our implementation
of temporal querying to support the above interface devel-



Figure 3: STEWARD’s map-based Web interface after a query for “SARS”. All relevant ProMED postings appear in the left
textual pane, while the locations obtained by geotagging the postings appear as markers in the right map pane. Mapped
locations are restricted to the range covered by the time slider at the top.

opments. Temporal aspects of queries are fully implemented
in the client, in that the underlying database of STEWARD
is not involved in the queries. To execute spatio-temporal
queries, the keyword and spatial components of the query are
first executed in STEWARD’s database, and relevant docu-
ments R are retrieved. STEWARD’s interface also supports
top-k querying of the database, where the first k ranked
results of R are returned rather than all of them. Users sub-
sequently specify temporal parameters using the time slider
described in the previous section, and these parameters de-
termine which documents in R have their corresponding lo-
cations mapped in the Web interface. This determination is
made by the client when rendering results. Thus, the tem-
poral query component currently functions as a client-side
postprocessing filter, although it would be better to inte-
grate such queries more closely with the spatio-textual com-
ponents.

Having a dynamic and configurable time slider demands a
correspondingly fast implementation of temporal querying.
However, for queries with relevance to a large portion of
documents, a large number of result documents R are re-
turned from the initial spatio-textual query. Initial versions
of temporal querying implemented in STEWARD suffered
from interactivity problems with large query results, due to
the screen’s limited update rate, as well as the Web browser’s
slow script processing. Therefore, prior to temporal query-
ing via the slider, we perform simple indexing of result doc-
uments by placing them in a list and sorting them by time,
using an in-place quicksort implementation. Temporal range
querying then reduces to binary search in the sorted list.

Related to interactivity is the issue of rendering temporal
query updates. When users move the slider, markers that
fall outside the range are removed, and those that are now
relevant are added. This could be implemented by clearing
the map of all markers after every update, and then reading
only the markers that are relevant to the time range. Un-
fortunately, this incurs unacceptable performance penalties
and noticeably reduces interactivity, especially when using
the automatic slider functionality. Instead, we leave in place
those markers that are unaffected by the query update, i.e.,
those that remain in the range after the update.

5. CONCLUSION
STEWARD’s geotagging capability, in combination with its
use of a time slider, enables intuitive and powerful tempo-
ral querying for disease outbreaks. However, as a prototype
system, the work completed thus far is preliminary and a
number of improvements would increase its querying and re-
trieval capability, and are of general interest. First, our sys-
tem could be augmented to consider additional data sources
for processing. ProMED itself features postings in language
other than English, such as Portuguese, Spanish, and Rus-
sian, and we could leverage machine translation capabilities
to find relevant disease reports in these languages. In ad-
dition, PubMed data [26], which contains case studies of
disease incidences as well as more recent disease reports,
would be a valuable source of data for temporal queries. We
have retrieved all PubMed documents from 2011, consisting
of 885,316 documents, and are currently processing them
for inclusion in our retrieval system. We could also poten-
tially use tweets from individuals with particular sicknesses.
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(b) 2002

(c) 2003

Figure 4: Origin and spread of the 2003 SARS outbreak.
Markers correspond to geotagged ProMED postings. As the
time slider is moved across times of interest, the locations
affected by the outbreak are easily apparent.

Because each tweet contains a large amount of metadata,
including GPS values and timestamp, this would provide a
source of timestamped geographic information. Of course,
filters would have to be developed to filter out the vast ma-
jority of tweets which do not concern diseases, and likewise
to determine the veracity of disease-related tweets.

Additional work could be done related to information ex-
traction within ProMED postings or other unstructured text
documents. Currently STEWARD’s geotagger provides a ro-
bust mechanism for associating documents with the loca-
tions contained within them. However, it has a limited facil-
ity for recognizing dates and times, and hence is currently
limited to temporal retrieval using the timestamp associated
with each ProMED posting. Recognizing dates and times in
the text, in addition to locations, would enhance STEW-
ARD’s temporal querying capability for such data. These
dates and times could be explicit, such as“June 1”, but could
also include relative times such as “last week” or “yesterday”
which would be normalized to the dates to which they corre-
spond. In addition, many ProMED postings consist of daily
post digests, or summaries of multiple posts about the same
disease. These posts could be more effectively processed by
developing techniques for detecting such divisions within the
document, and processing it with these distinctions in mind.

STEWARD’s Web interface could be enhanced in several
ways to improve its usability with temporal querying. Cur-
rently, all documents within the time slider’s range are dis-
played on the map. For times with disease outbreaks, this
results in the map being completely filled with markers that
overlap significantly, which in turn impedes understanding.
Instead, we could rank and display documents on the map
using a mix of importance, measured by the prevalence of
disease at the location, and geographic spread, where we en-
sure good coverage of the map. This feature would be use-
ful both from a usability perspective, since users will not be
overwhelmed with too many markers on the map, and from a
database performance perspective, since fewer markers need
to be retrieved. Additionally, the timeline could augment
users’ exploratory capability by examining the distribution
of documents throughout the timeline and suggesting times
of interest for users to query. This would be accomplished by
clustering documents in the time dimension, and searching
for clusters and outliers.

Finally, the temporal aspects of queries could be more tightly
integrated into STEWARD’s database. Currently, the Pro-
MED dataset is relatively small with an infrequent publica-
tion rate, but to apply our processing to other, much larger
datasets such as tweets, faster indexing and retrieval meth-
ods are required. In particular, spatio-temporal indexes [25]
could be integrated or developed that combine times and lo-
cations, which would leverage the database’s query planner
to more efficiently perform spatio-temporal queries. Devel-
opment of such techniques, in combination with the ever-
increasing availability of public health reports and data, en-
sures that health-related GIS plays a central role in main-
taining and improving societal health.
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