
SymDroid: A Symbolic Executor to Identify Activity Permission

in Android Application

Qianwen Li
University of Maryland, College Park

qianwenliq@gmail.com

ABSTRACT

Mobile development is expanding widely over the
past few years. Amongst the top operating plat-
forms for Smartphones, Google Android platform
has been discovered with known privilege escala-
tion attacks. Many of the known privilege escala-
tion attacks are related to the permission system
used by the Android platform. This paper will
introduce SymDroid, a tool using symbolic execu-
tion to explore permissions used in Android appli-
cations.

1 INTRODUCTION

The Smartphone market has become one of the
fastest growing areas in the telecommunication
industry in recent years and will soon domi-
nate the mobile devices market. A report by
”prnewswire.com“ states that [14]: As of December
2nd, 2011, a total of 989,476 mobile applications
have been downloaded, and on average, approxi-
mately 2,000 new apps enter the Smartphone appli-
cations marketplace each day. Out of all the appli-
cations being downloaded, the Google Android[1]
application, with 320,315 applications that have
been downloaded to date, is the second most down-
loaded applications of all times. This number is
closely behind the Apple iOS application, which
has a market share of 32.54 percent of the over-
all Smartphone application market and represents
an increase of more 100 percent over the last 12
months. Smartphone applications range from a
basic calculator to powerful analytical tools that
even have the capability to remotely control the
lighting system in a person’s house. In the dy-
namic environment where better and newer features
are constantly being added to the mobile applica-
tions, security issues become increasingly critical;
especially since most applications are developed by
third parties. In recent years, numerous research
papers and tools have been developed targeted at
discovering security vulnerabilities in mobile appli-
cations. Some examples include XmanDroid[3] and

SCanDroid[11]. The purpose of this paper is to in-
troduce a way of auditing permissions used and per-
missions checked during application launching. We
describe SymDroid, a symbolic executor for identi-
fying permission checking on Android applications.
The underlying concept of SymDroid is to use sym-
bolic execution to branch through all the possi-
ble paths of an application and perform permission
checking on each path. This is a continuation of a
project done by Jinseong[12], who is a current grad-
uate computer science student at the University of
Maryland, College Park.

The remainder of this paper is organized as fol-
lows: Section 2 introduces the background of An-
droid permission system and symbolic execution;
Section 3 explains the architecture of each part of
the SymDroid in detail as well as discusses the test
results; and Section 5 is the conclusion.

2 BACKGROUND

2.1 ANDROID

Android is a software stack for mobile devices that
includes an operating system, middleware and key
applications[7]. Android applications are Java-
based, but there exists several differences between
the Andorid application and the Java program. In
contrast to the Java virtual machine, Android uses
the Dalvik Virtual Machine, which runs on a slow
CPU, with relatively little RAM while powered by a
battery and it emphasize on memory efficiency[2].
Additionally, the Android application generates a
binary file called the .dex file, or the Dalvik Exe-
cutable file, in additional to the .class file. In other
words, the Android application will first compile
to .class files just like Java, and then it will con-
vert all the .class file into one single .dex file[9].
The primary difference between .dex format and
.class format is the elimination of redundancy of the
five constant pools (string ids, type ids, proto ids,
field ids, method ids) under the header that are in
each file by moving them to the top of the .dex file.

1



[2]. Figure 1 below demonstrates the difference be-
tween the regular Java format architecture and the
Android .dex format architecture.

Figure 1: comparsion of .dex file and .class file[2]

Android applications typically start with an activ-
ity. The activity provides a user interface for a
single screen in your application. [8]. An activity
can be in one of four stages: created, stopped, re-
sumed or destroyed. Figure 2 shows the activity’s
lifecycle. New activities can be invoked from any
existing activity, and when a new activity is being
created, it will be pushed onto the activity stack
with the caller application underneath it. Besides
managing the lifecycles of individual components,
Android’s application framework is also responsible
for calling components from other components and
for passing messages between components[11]. In-
terprocess communication (IPC) on Android allows
intents to invoke other intents or pass information
to other intents. In IPC, intent is passed as param-
eters for launching activities[11].

Figure 2: The activity lifecycle[8]

Android deploys application sandboxing and a
permission framework is implemented as a refer-

ence monitor at the middleware layer to control
access to system resources and mediate applica-
tion communication[4]. More specifically, Android
application uses ”system-centric” security model,
where applications statically identify the permis-
sions that govern the rights to their data and in-
terfaces at installation time. Each permission la-
bel is a unique string variable declared in the An-
droid Manifest.xml file by the developer to legally
grant access to certain features such as Internet us-
age and the ability to read / write content. How-
ever, such technique has been identified with sev-
eral security weaknesses because the permissions
given are mostly coarse grained on what the appli-
cation is granted or how the application will be us-
ing it[15]. For instance, an information sharing ap-
plication such as Bump[5], which is an application
that allows two devices to share photos, contacts
and applications by bumping into each other, could
be sending more information than authorized. To
prevent such security vulnerability, software testing
is commonly used.

A project called the Stowaway project[10] analyzed
the Android permission system. Stowaway de-
clares that permission checking could be performed
in three ways: interacting with system API calls,
database and message-passing system. The API
functions may be protected by permissions. Op-
erations on user data, which is stored in Content
Provider, may require permissions. Applications
may also need permissions to receive Intents (i.e.,
messages) from the operating system.

2.2 SYMBOLIC EXECUTION

Symbolic execution was first introduced around the
1975s and has been explored for many usages since
then. Recently, various papers have been published
advocating for the use of symbolic execution for
program analysis and bug exploration. The main
idea of symbolic execution is to treat values as sym-
bolic expressions that can assume any value. The
execution will proceed under normal execution ex-
cept when computation of expression or conditional
branching occurs. In which case, the computa-
tion of expression will be ”delayed” or generalized
by the appropriate algebraic formula manipulations
and conditional branching are being forked on all
possible paths[6]. The path conditions will accu-
mulate all the constraints that the symbolic value
must satisfy in order to proceed to the branch. As
a result, the output values computed by a program
are expressed as a function of the input symbolic
values[13]. Constraint solver is used to test branch-
ing condition and the final assertion, if there is any.
The main advantage of using symbolic execution
for program testing is that it only needs to execute

2



Figure 3: sample .dex instruction

on the program once and the ability to generate
counterexamples that can be used to recreate the
same behavior.

3 ARCHITECTURE AND IMPLE-
MENTATION

3.1 OVERVIEW

As introduced, Symdroid is used to detect confused
deputy attacks on Android framework. The system
will run on application .apk or .dex file, symboli-
cally execute through all possible paths to identify
permission checks. The entire system consists of
three main parts: parser, executor and permission
checker. The parser will read in the target appli-
cation or the .dex file, parse the instructions and
stored it in an inner structure that is used by the
executor. The executor includes a virtual machine
and a symbolic executor. The virtual machine con-
trols a list of statements and a list of functions to be
executed in order. The symbolic executor will exe-
cute each statement and branch all possible paths.
Permission checking is done on each Android API
function call using the Stowaway project, which will
be introduced in detail in Section 3.4.

3.2 PARSER

A parser was created for SymDroid so that the .dex
file will be directly parsed and stored in the in-
ternal structure called dex, similar to the original
binary format. The dex structure has fields such
as dex header, d string ids and d data to represent
objects in the .dex file. The symbolic executor will
then use the dex structure directly for execution.
Similarly, all Android opcodes will be mapped to
the corresponding opcode structure. The operand
structure can be one of four types: const of type
int64, register of type int, register of type int, in-
dex of type int, and offset of type int32. The in-
struction is declared to consist of an opcode and
a list of corresponded number of operands. Fig-
ure 3 illustrates a sample .dex file generated by the
dex disassembler provided by Android, called the
dexdump. The internal structure for SymDroid is
much similar to the figure structure. The parsed
data, which contains a list of Dalvik instructions,
is then transferred to the executor.

3.3 EXECUTOR

As mentioned, the executor consists of a virtual
machine and a symbolic executor. Virtual machine

3



controls the overall flow of the program while sym-
bolic executor will execute each statement and re-
turn all possible paths after the current statement
is executed.

Algorithm 1 sample execution queue

main.onCreate();
main.onStart();
main.onResume();
l = ListOfOtherIntents();
i = 0;
while i < l.length do
l[i].onCreate();
l[i].onStart();
l[i].onResume();
l[i].onPause();
l[i].onStop();
l[i].onDestroy();

end while
main.onPause();
main.onStop();
main.onDestroy();

3.3.1 VIRTUAL MACHINE

The virtual machine for SymDroid is simply two
while loops. The outer while loop, which is added
in order to simulate Android framework, iterates
through a queue of functions to be executed and the
inner loop will loop through each statement of the
current function. The Android framework is simu-
lated by calling activity API functions sequentially
according to the order of activity lifecycle. More
specifically, the list of intents is filtered to create
the queue of functions to be executed. The main
activity will first push in its own list of functions
(onCreate, onStart, onResume, onPause, onStop,
onDestory), then the same list of functions will be
pushed in the queue between the onResume and
onPause function of the main activity for each ac-
tivity that is not the main activity. Algorithm 1
shows a sample code that generates the execution
queue. When a new activity is being created and
started within the app itself, the onCreate func-
tion of the new activity is called and the execution
queue will be modified to include the list of func-
tions for the new activity. This behavior is the same
as calling startActivityForResult from a driver ap-
plication. Once the virtual machine receives the list
of Dalvik instructions from the parser, it will first
map the data to a structure called micro instruc-
tion, a structure created to simulate Dalvik byte-
code instruction. Figure 4 shows the semantics for
the micro instruction. The list of micro instructions
is then passed to the symbolic executor.

Figure 4: semantics for micro instructions[12]

3.3.2 SYMBOLIC EXECUTOR

The symbolic variables for SymDroid are primarily
function parameters. The starting function onCre-
ate takes in a parameter of type Bundle, which is
basically a list of hashes of key value pairs. An
empty mapping is passed onto each onCreate func-
tion and whenever a value is retrieved from the
bundle, a symbolic variable will be created. Each
statement is processed just like normal machine
language instructions using the internal dex struc-
ture, where corresponding register and heap mem-
ory get updated with each statement. Symbolic
variables are also updated by adding constraints.
If conditional branching includes a symbolic vari-
able, all possible paths will be explored by solving
constraints for the symbolic variable.

In order to solve constraints for symbolic value,
SymDroid binds a constraint solve called stpvc.
The stpvc is a higher level interface to Libstp,
which is a library for Ocaml STP constraints solver.
An instant of validity checker is being created in
Dalvik.ml to serve as the global validity checker.
When branching is needed for computation, simply
pass in a query with the global validity checker to
the stpvc and it will return a boolean value indicat-
ing if the path is reachable.

3.4 PERMISSION CHECKING

One of the key features I added to SymDroid is
the permission checking. The Stowaway project
is used to handle permission checking. The
Stowaway project is a tool that detects over priv-
ilege in compiled Android applications[10]. More
specifically, it determines the set of API function
calls that an application uses and maps those
function calls to permissions[10]. For instance,
a mapping from the function WebView.loadurl()
to android.permission.INTERNET implies that
whenever the function WebView.loadurl() is
being called, it will eventually call the function
checkPermission(android.permission.INTERNET).

4



Application
Name

Declared Check
Hit

Unique
Hit

Caller
Check

BackupRestore 0 0 0 0
BluetoothChat 2 1 1 0
BluetoothHDP 1 1 1 0
ContactManager 3 1 1 0
Home 6 1 3 0
RandomMusic
Player

2 1 1 0

SipDemo 6 1 1 0

Table 1: Result for Sample Applications

SymDroid will load the Stowaway mapping onto
a map structure stored in SymDroid prior to
execution. When an Android API function is
called, the system simply maps the function name
and output any permission required if there is any.
If the function call is checkCallingPermission or
other similar methods, the system will print out
the permission granting permission to the caller
app.

3.5 EVALUATION

A list of applications has been selected from the
sample Android applications came along with
the SDK for testing. Tables below show the
result of running the applications on SymDroid
as well as a short description of intents in each
application. For Table 1, the first column has the
application; the second column shows the number
of permissions declared in the Manifest.xml file;
the third column is the number of permission
checks being hit by SymDroid; the fourth column
indicates the number of unique permission checks
being hit; and the last column presents the number
of unique permission checks being hit which
also have the caller application permission check
beforehand. Table 2 shows the list of API calls
and the corresponding permissions for each app.
Most applications hit at least one permission check
but none of them have any permission checks for
caller application. Table 3 lists the description of
activities for each app. For example, figure 5 shows
a piece of code from the Home application. When
executes the onCreate() function for the Home
activity, SymDroid steps into the function setDe-
faulWallpaper() and hits the API function call
com.example.android.home.Home.clearWallpaper()
after a branching condition on the variable ”wallpa-
per”. In this case the variable ”wallpaper” has the
contraint that it does not equal to NULL. Next, the
permission checking maps the API call (in this case
is the call android.app.Activity.clearWallpaper())
to the Stowaway map and outputs the permission

android.permission.SET WALLPAPER. Note that
the number of unique permission check hit is
most of the time less than the number of per-
mission declared in the Manifest.xml file. This
is because permission may be required in three
ways: interacting with system API, database, and
the message-passing system[10]. Symdroid only
handles permission checking on system API for
now.

4 CONCLUSION

Recent discoveries of several security vulnerabili-
ties raise the concern of permission safety policy
used by the Android security framework. In this
paper we present the concept and architecture of
SymDroid, which is a system for examining per-
mission checking against Android framework. Sym-
Droid uses symbolic execution to explore all pos-
sible paths and perform permission checks on each
Android API function calls. This study tested sam-
ple Android applications and results suggest that
none of the applications perform caller permission
checks.

Going forward, there are many opportunities of im-
provements for SymDroid. One area of improve-
ment is to include permission checking on content
provider and intent. Hence all permission checks
will be discovered.

4.1 RELATED WORK

Many Android security enforcement techniques
has been discussed and published recently: Saint
and Taintdroid monitor inter-application flow
by modifying the Dalvik VM and libraries to
track the flow of sensitive data between dif-
ferent applications[16][17]. XManDroid is tak-
ing the approach of analyzing the communication
links among application and apply policy on such
communication[3]. SCanDroid, which is declared
to be the first program analysis target on the An-
droid platform, is trying to extract security spec-
ification from manifests and using control flow to
analyze[11].

REFERENCES

[1] android. www.android.com.

[2] D. Bornstein. Dalvik vm internals. In Google
I/O Developer Conference, volume 23, pages
17–30, 2008.

5



App Name API Function Call Permission
BackupRestore android/app/backup/BackupManager/data-

Changed
android.permission.BACKUP or NONE

BluetoothChat android/bluetooth/BluetoothAdapter/isEna-
bled

android.permission.BLUETOOTH

android/bluetooth/BluetoothAdapter/getBon-
dedDevices

android.permission.BLUETOOTH

BluetoothHDP android/bluetooth/BluetoothAdapter/isEnabl-
ed

android.permission.BLUETOOTH

ContactManager com/example/android/contactmanager/Cont-
actManager/setContentView

android.permission.INTERNET or
NONE

Home com/example/android/home/Home/clearWall-
paper

android.permission.SET WALLPAPER

com/example/android/home/Home/setConte-
ntView

android.permission.INTERNET or
NONE

android/app/ActivityManager/getRecentTa-
sks

android.permission.GET TASKS

RandomMusicPlayer com/example/android/musicplayer/MainAct-
ivity/setContentView

android.permission.INTERNET or
NONE

SipDemo com/example/android/sip/WalkieTalkieActiv-
ity/setContentView

android.permission.INTERNET or
NONE

Table 2: Permission Checking List

App Name Num of
Activity

Activity Description

BackupRestore 1 BackupRestoreActivity: main activty to backup data
BluetoothChat 2 BluetoothChat : main activity that display current chat session

DeviceListActivity: a dialog that list all paired devices and de-
tected devices

BluetoothHDP 1 BluetoothHDPActivity: activity passes messages to and from ser-
vice

ContactManager 2 ContactManger: starting activity, display the list of contact
ContactAdder: activity to add new contact

Home 2 Home: simulate the Home that users use to launch applications
Wallpaper: Wallpaper picker for the Home application. User can
choose from a gallery of stock photos

RandomMusicPlayer 1 MainActivity: shows the media player buttons and lets the user
click them

SipDemo 2 SipSettings: Handles SIP authentication settings for the Walkie
Talkie app
WalkieTalkieActivity: Handles all calling, receiving calls, and UI
interaction in the WalkieTalkie app

Table 3: List of Intents

6



Figure 5: Sample code for the Home application

7



[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
and A.R. Sadeghi. Xmandroid: A new android
evolution to mitigate privilege escalation at-
tacks. Security, 2011.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer,
A.R. Sadeghi, and B. Shastry. Towards tam-
ing privilege-escalation attacks on android. In
Proc. of the 19th Network and Distributed Sys-
tem Security Symposium (NDSS 2012), San
Diego, CA, 2012.

[5] Inc Bump Technologies. Bump.

[6] J.A. Darringer and J.C. King. Applications of
symbolic execution to program testing. Com-
puter, 11(4):51–60, 1978.

[7] A. Developers. What is android?
Internet: http://developer. android.
com/guide/basics/what-is-android. html
[Sept, 5 2011], 2010.

[8] Android Developers.
http://developer.android.com/.

[9] D. Ehringer. The dalvik virtual machine ar-
chitecture, 2010.

[10] A.P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified.
In Proceedings of the 18th ACM conference on
Computer and communications security, pages
627–638. ACM, 2011.

[11] A.P. Fuchs, A. Chaudhuri, and J.S. Foster.
Scandroid: Automated security certification
of android applications. Manuscript, Univ.
of Maryland, http://www. cs. umd. edu/˜
avik/projects/scandroidascaa, 2009.

[12] Youngil Kim Jinseong Jeon. Symdroid: Sym-
bolic execution for dalvik virtual machine.

[13] S. Khurshid, C. PĂsĂreanu, and W. Visser.
Generalized symbolic execution for model
checking and testing. Tools and Algorithms
for the Construction and Analysis of Systems,
pages 553–568, 2003.

[14] Mobilewalla. Mobile apps approaching ma-
jor milestone of 1 million apps in marketplace:
Mobilewalla.

[15] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-
centric security in android. In Computer
Security Applications Conference, 2009. AC-
SAC’09. Annual, pages 340–349. IEEE, 2009.

[16] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-
centric security in android. In Computer
Security Applications Conference, 2009. AC-
SAC’09. Annual, pages 340–349. Ieee, 2009.

[17] E.J. Schwartz, T. Avgerinos, and D. Brumley.
All you ever wanted to know about dynamic
taint analysis and forward symbolic execution
(but might have been afraid to ask). In Secu-
rity and Privacy (SP), 2010 IEEE Symposium
on, pages 317–331. IEEE, 2010.

8


