
Computer Vision and Natural Language Processing:
Recent Approaches in Multimedia and Robotics∗

Peratham Wiriyathammabhum
email: peratham@cs.umd.edu

This scholarly paper is submitted
in partial fulfillment of the requirements for

the degree of Master of Science in Computer Science.

Keywords. language and vision, survey, multimedia, robotics, symbol grounding,
distributional semantics, computer vision, natural language processing, visual attribute,
image captioning, imitation learning, word2vec, word embedding, image embedding,
semantic parsing, lexical semantics.

1 Introduction

Languages are common tools to describe the world for human-human communication.
There are many forms of languages which may be verbal or nonverbal but all are as-
sistants for understanding. Some examples are texts, gestures, sign languages, face
expressions, etc. Languages provide meaning and meaning is grounded in human per-
ception of the world. This is usually referred to as the symbol grounding problem
[86]. If it is a language without perception, it is a fantasy which is not based on the real
world. If it is a pure perception without language, there is no movement and retention
of any object or knowledge by the mind.

In human perception, visual information is the dominant modality for acquiring
knowledge since a big part of the human brain is dedicated to visual processing. Whether
or not there are languages involved in the visual process is still an ongoing argument.
However, for an intelligent system that tries to achieve AI, having languages provides
interpretability and creates a way for human-machine interaction which gives rises to a
lot of interesting applications. To bridge language and vision, we first revisit the major
tasks in both language and vision.

1.1 Computer Vision tasks and their relationships to Natural Language Processing

Computer Vision (CV) tasks can be summarized into the concept of 3Rs [119] which
are Reconstruction, Recognition and Reorganization. Reconstruction involves a
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Figure 1: The 3Rs in Computer Vision [119].

variety of processes ranging from feature matching in multiple view geometry to other
visual cues like shading, texture or depth from stereo or RGB-D cameras. All processes
result in point clouds or 3D models as outputs. Some examples for reconstruction tasks
are Structure from Motion (SfM), scene reconstruction, shape from shading. Recog-
nition involves both 2D problems like handwritten recognition, face recognition, scene
recognition or object recognition, and 3D problems like 3D object recognition from point
clouds which assists robotics manipulations. Reorganization involves bottom-up vision
which is pixel segmentation into groups of pixels that can represent facts. Reorgani-
zation tasks range from low-level vision like scene segmentation to high-level tasks like
semantic segmentation [183, 37, 169] which has an overlapping contribution to recogni-
tion tasks. These tasks can be viewed as fact finding from the visual data like images
or videos which answers the conventional question “to know what is where by looking.”
In other words, “vision is the process of discovering from images what is present in the
world, and where it is [122].”

Between each of the 3Rs tasks, the output from one task can provide information
that helps another task. To give a specific example, 3D faces which are the outputs
of a reconstruction task can give more information and assist face recognition [33]. On
the other hand, recognition can give a prior knowledge to create an object specific 3D
model for a reconstruction task [16]. For reorganization and recognition, reorganization
can provide contours, regions and object candidates for object recognition [151]. On
the contrary, recognition can generate object proposal regions for segmentation [85].
This can also be viewed as recognition providing context for reorganization [88]. For
reorganization and reconstruction, this link is still to be investigated of how low-level
features such as edges or contours will provide any information to reconstruction and
vice versa.

Recognition tasks are closest to languages since the output is likely to be interpretable
as a word. Lexical semantics [72, 83] will come into play as an interface in this scenario.
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Figure 2: From 3Rs in Computer Vision to Language by Lexical Semantics.

For example, object or scene classes are nouns. Activities are verbs. Object attributes
are adjectives. Relations between objects or object and scene are prepositions. Temporal
relations of an object and an activity are adverbs. Reorganization tasks deal with a lower-
level feature set which can be interpreted as primitive parts of shapes, textures, colors,
regions and motions. These primitive parts define a higher-level vision so they do not
refer to any specific object or scene that can be described in words for communication
but they are essential for learning new words as they implicitly describe object or scene
properties. Reconstruction involves geometry of real world physics which provides richer
object or scene properties than reorganization tasks. Reconstruction mainly helps in
real time high-precision robotics manipulation actions which is its interpretation in the
real world.

1.2 Natural Language Processing tasks and their relationships to Computer Vision

Based on the Vauquois triangle for Machine Translation [188], Natural Language
Processing (NLP) tasks can be summarized into the concept ranged from syntax to
semantics and to pragmatics at the top level to achieve communication. Syntax can
be in the study of morphology that studies word forms or in the study of compositional-
ity that studies the composition of smaller language units like words to larger units like
phrases or sentences. Semantics tries to provide meaning by finding relations between
words, phrases, sentences or discourse. Pragmatics tries to interpret the meaning in the
presence of a specific context where the standard meaning may change. For instance, an
ironic sentence cannot be correctly interpreted without any side information that indi-
cates the nonlinearity in the speaker’s intention. Ambiguity in language interpretation
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Figure 3: The Vauquois triangle for Machine Translation [188] with added Pragmatic
transfer.

is the main obstacle for an intelligence system to overcome and achieve language under-
standing. Some complex tasks in NLP are machine translation, information extraction,
dialog interface, question answering, parsing, summarization etc.

Words can also be viewed as labels, so manipulating words is equivalent to label
manipulation. Manipulating words which contain their own formal meanings relies on
the ambiguous and natural visual context that they refer to. This produces a gap in
meaning between the high-level formal data and the low-level natural data. Bridging
the Semantic Gap [204] is to find a pipeline that will go from visual data like pixels or
contours to language data like words or phrases. This is to distinguish the meaning of
the constructions of visual data. To give some specific examples, labeling an image patch
that contains an object with a word is object recognition. Labeling a background in an
image is scene recognition. Assigning words for pixel grouping is semantic segmentation
[183, 37, 169]. If we know how the words are related to each other, it will give a clue
for visual processing to better disambiguate different visual constructs. For instance,
a ‘knife’ is more likely to ‘cut’ a ‘cucumber’ than a ‘chair’ in a ‘kitchen’ because the
meaning of their interaction is presented as a concept in the real world.

NLP concepts were borrowed to solve CV tasks several times and they help pro-
vide interpretability to CV tasks [83]. Human actions and object manipulations can be
described using language [82]. Action grammar [145, 82] exhibits the use of syntactic
information in the compositionality of motions into activities. Semantic Event Chain
(SEC) [1] provides an interpretable and grounded framework for manipulation in imita-
tion learning inspired by the mirror-neuron system [155]. Inferring goals and intentions
of an agent from cognitive effects [47] demonstrates the pragmatics aspect in CV which
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Figure 4: From the Vanquois triangle in NLP to Computer Vision by event semantics.
The descriptor may infer that the shower of this image intends to ask the possible action
that is going to happen next.

is an essential part in Human Robot Interaction (HRI) for Social Robots.
By having these tasks in mind, one can creatively define new joint tasks from these

two domains of language and vision understanding which will better model an arbitrary
cognitive phenomenon. This survey will categorize the existing joint tasks of language
and vision by the application domain, namely multimedia and robotics. These two
domains will further be described in section 2 and section 3 respectively.

This article is structured as follows. Section 2 will provide a survey of language and
vision literature in the multimedia domain. Section 3 will provide another survey of
language and vision works in robotics applications. Section 4 will focus on distributional
semantics in language and vision.

2 Language and Vision for Multimedia

For multimedia, the data is in files from the internet containing images, videos and
natural language texts. For example, a news article will contain news that was written
by a journalist and a photo related to the news content. There can be a clip video
which contains a reporter and a video that depicts the snapshot of the scene where the
event in the news occurred. The cooccurence between an image and texts depicts their
relations. To give a specific example, an image in the news [27] is likely to have a face
and using the accompany news text will help identify the identity of that face including
a lot of side information of that person such as occupation, age or gender. This is under
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the condition that the coreference between the news text and the face can be accurately
discovered. Another example of finding relations between images and texts is entry-level
categorization[141] by finding the ‘naturalness’ which is the way people calling an object
in the world. A word will make sense when used to describe a specific object depending
on contexts. That word will not be weird and can be easily used for an appropriate and
unambiguous communication if it is the word normal people are using naturally.

Both language and visual data provide two sets of information that are combined into
the whole story. This conforms to the theory of semiotics [81] which is the study of the
relations of signs and their meanings. Using NLP concepts from the previous section,
semiotics also has an equivalent viewpoint to those concepts [140]. First, semiotics
studies the relationship between signs and meaning which is equivalent to semantics.
Second, the formal relation between signs is equivalent to syntax. Third, the relation
of signs to the human interpretors is equivalent to pragmatics. By restricting signs to
visual data, this concludes that semiotics can also processed as CV extracting interesting
signs for NLP to realize the corresponding meanings.

The tasks for language and vision in multimedia mainly fall into two categories,
visual description and visual retrieval.

2.1 Visual Description

2.1.1 Attribute-based Vision

Associating words and pictures [13] is equivalent to the Recognition task in CV. We have
words to describe objects and their relations in an image. Object recognition tradition-
ally tries to categorize an image to a fixed set of name tags. [59] argues that an image
has more information than just a set of name tags and categorization should change to
description. Attribute-based recognition [62, 106, 102] describes and summarizes object
properties in words in which an unusual property of that object can be detected and
recognizing novel objects can be done with a few or zero training examples from category
textual descriptions. The attributes may be binary values for some easily recognizable
properties like 4-legged animal or walking left. However, some properties may not be
easily recognizable like smiling. For these types of properties, the relative attributes
[144] help describe the strength of the property in each image by using a Learning to
Rank framework (LtR) [115].

The key is that the attributes will provide a set of key contexts as a knowledge vault
for recognizing a specific object by its properties. The attributes can be discovered
using a classifier which learns a mapping from an image to each property [62, 106].
The attribute words become an immediate representation that will help bridging the
semantic gap between the visual space and the label space. In other words, the attributes
are textual abstractions of an object. This introduces another dimension for feature
engineering in which there are common features that can be shared across tasks [60],
such as object parts, and some features that will be task-specific and unique for each
task, such as the hardness of a diamond or the softness of a gold when exposed to heat.
Mostly, attributes will be shares commonly for objects in the same category.
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From this viewpoint, we can incorporate the feature learning framework into attribute-
based recognition. That is, we need to determine the possible set of attributes whether
they should be words, phrases or sentences. Also, which attributes should be used to
recognize what kind of object becomes a feature selection problem that will impact the
recognition performance explicitly. In addition, this can be further inferred that a spe-
cific set of words will correspond to a specific set of corresponding objects. [70] proposed
learned visual attributes with data in an unsupervised setting with feature selection but
with visual words not textual words.

Attribute-based vision was found useful in many specific applications where property
contexts are crucial and informative including animal recognition [29, 106], face recog-
nition [27, 102], finding iconic images [26], unsupervised attribute recovery on web data
[28] and object identification for robotics [173]. Recognizing an image should result in a
rich meaning that informatively describe what is going on in the image. Beyond words
in isolation, phrases [161] and sentences [61, 196] can expand more dimensions from an
image.

2.1.2 Visual Captioning

Beyond unordered words is a sentence. Attractive images usually come with a long
corresponding text that tells a story. For example, an image from a sport headline will
depict the decisive moment of the game and the corresponding text will describe the
details. Generating a caption from an image needs to answer a set of specific questions
about that image to ensure understanding. First, the classical “to know what is where
by looking” [122] is still applied. Second, the contextual information need to be able to
answer “When, For What, and How?” [143] questions to make sure that this information
is relevant. The meaning representation needs to capture the answers to these questions.

For the words to be meaningful, they should have interpretations as visual meanings
[51]. Sentence generation systems may discard nouns or adjectives that are non-visual
from their visual recognition results to reduce bias errors. Scene information can also
reduce bias errors in object recognition since only a specific set of objects will naturally
occurs in a given scene [201].

Collecting captions from visually similar images can generate good descriptions.
[142] finds the best caption from the most visually similar image based on content match-
ing which is the distance measurement consists of the object, people, stuff and scene
detectors. [103] goes further by summarizing the captions from the candidate similar
images. The motivation for borrowing captions from similar images is that measur-
ing similarity between visual features is easier than measuring in both visual and text
features. This also concludes that Nearest Neighbor methods works well for image cap-
tioning from the remarkable automatic evaluation scores given a good embedding space
by Kernel Canonical Correlation Analysis (KCCA) [90] or Neural Networks [168].

To generate a sentence for an image, a certain amount of low-level visual informa-
tion is needed to be extracted. The primitive set of information is the 〈Objects, Actions,
Scenes〉 triplets to represent meaning as a Markov Random Field (MRF) potential edges
[61]. Then, the parameters are learned using human annotated examples. Consider
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part-of-speech, the quadruplets of 〈Nouns, Verbs, Scenes, Prepositions〉 can represent
meaning extracted from visual detectors [196]. Visual modules will extract objects that
are either a subject or an object in the sentence. Then, a Hidden Markov Model (HMM)
is used to decode the most probable sentence from a finite set of quadruplets along with
some corpus-guided priors for verb and scene (preposition) predictions. [114] represents
meaning using objects (nouns), visual attributes (adjectives) and spatial relationships
(prepositions) as 〈〈adj1, obj1〉, prep, 〈 adj2, obj2〉〉. Then, the sentence is generated
by phrase fusion using web-scale n-grams for determining probabilities. Babytalk [101]
goes further by using Conditional Random Field (CRF) for predicting the best 〈〈adj1,
obj1〉, prep, 〈 adj2, obj2〉〉 triplet. Then, the output is decoded using a language model
and generated as a template-based sentence. Midge [134] makes an additional improve-
ment by tying the syntactic models to visual detections so that the template is more
relaxed and the sentence looks more natural. Visual Dependency Grammar (VDG) [57]
proposes dependency constraints, such as spatial relations of pixel, so that the visual
detection stage will have a structured output to be fed into a template-based generation
system. This step leverages noises from object detectors and provides more stability
given gold standard region annotations. Recent methods use a Convolutional Neural
Networks (CNN) to detect visual features and using Recurrent Neural Networks (RNN)
[97] or Long-Short Term Memory (LSTM) [189] to generate the sentence description.
Both methods are implemented in the NeuralTalk2 system1.

For the recent trend of image captioning datasets, [66] provides a detailed explanation
along with an empirical evaluation across standard datasets. Other interesting datasets
include the Amazon product data [127, 128] and the Comprehensive Cars (CompCars)
dataset [192]. Visual Question Answering (VQA) [6] is also a new interesting task for
image captioning in which senses and knowledges from the question should be considered
in the visual extraction process.

2.2 Visual Retrieval

Content-based Image Retrieval (CBIR) annotates an image with keyword tags so that
the query words will be matched to the precomputed keyword tags. The systems try
to annotate an image region with a word similar to semantic segmentation. Some ap-
proaches are Co-occurence model on words in image grids[138], Machine Translation on
image blobs to words [55], probabilistic models on blobs to words [12], topic models on
blobs and words [31], Cross-media Relevance Model (CMRM) on the joint distribution
of image blobs and words[94] and Continuous-space Relevance Model (CRM) which fur-
ther models the semantics rather than color, texture or shape features [107]. Since image
class label and its annotated tags are likely to have some relations to each other, [191]
proposes an extension of supervised Latent Dirichlet Allocation (sLDA) [129] to jointly
model the latent spaces of image classification and image annotation.

1https://github.com/karpathy/neuraltalk2
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3 Language and Vision for Robotics

3.1 Symbol Grounding

Robotics is a research field involving both perception and manipulation of the world
[181]. There are many modalities of perception, for example, vision, sound, smell, taste,
taction or balance, etc. By hardware sensors, each of these modalities provides an sensory
information to be processed. To manipulate the world environment, a robot controls its
body parts and applies physical forces, embodied from its mechanics, to perform actions
which may result in its own movements or a change to its environment. In this section,
we will consider research works in language and vision where the resulting applications
are in robotics.

For robotics, language becomes symbols and vision dominates perception. Bridging
language and vision is equivalent to the symbol grounding problem [86] in the lens
of robotics which tries to foster an autonomous agent to reason and react in the real
world. The symbol grounding problem is about grounding the meaning of the symbols
to the perception of the real world. If the grounding process tries to ground the meaning
only in symbols, it can be done for some cases in Compositional semantic or Machine
Reading [58] but may result in an infinite loop of referencing which will lead to nowhere
near the concept understanding if the symbols really need a perceptual information as
a context to be grounded in. For example, words like yellow, board, fast, prawn or walk
need a real world perception in order to understand their meaning. Another example
[137] in Wordnet [133] is the word pair ‘sleep’ and ‘asleep’ which have pointers to each
other as a loop.

The symbol grounding problem can be categorized into five subcategories [45]. First,
the physical symbol grounding deals with grounding symbols into perception. This
conforms to the original definition in [86]. Second, perceptual anchoring [46] is to
connect the sensor data from an object to a higher order symbol that refers to that object.
Also, the connection must be maintained in time. Third, grounding words in action
[159] maintains a hierarchical representation of concepts for abstract words: higher-order
concepts are grounded into basic concepts and sensorimotor grounded actions. Fourth,
social symbol grounding [36] tries to share the connection after anchoring for one
agent to many agents. This involves the pragmatics level of meaning understanding.
Fifth, grounding symbols in the semantic web [96] tries to ground the symbols
into a large ontology knowledge base from the internet. This is like grounding in text
which is the least restricted setting of the symbol grounding problem. The symbol
grounding problem represents a gap between symbols and perception.

3.2 Robotics Vision

Visual data can enable perception in a cognitive system that fulfills the grounding pro-
cess. Current computer vision techniques, however, are limited when only low-level
information, like pixels, is being used [2]. Humans process perceptual inputs by using
their knowledge about things they perceive in all modalities in the form of words, phrases
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and sentences [136]. The language may be the knowledge about objects, scenes, actions
or events in the real world in which these perceptions can be given by Computer Vision
systems. The knowledge needs relations to make sense and understand the meaning.

This gives rises to a top-down active visual process [2] where language will
request some actions from a sensorimotor system which will instantiate a new data
collection from perceptual sensors. For example, if an object is far away, a language
executive may request for an action that ends in a clearer view point which has a better
pose and scale of that object. The action may be decomposable into subtasks and may
need a planning system for a robot to perform the action. The visual information from
the new viewpoint may be collectible only from direct observation not by inference. This
schema is interactive between the conventional bottom-up and this novel top-down vision
system. This is like an active learning in education [131] that a student can actively ask
a teacher for a clearer understanding of the subject but a student also needs to be smart
so that the answer from his question will provide the desired information or lead to an
interesting discourse between his teacher and him.

Robotics Vision (RV) [48] is different from the traditional Computer Vision (CV).
Nowadays, a large part of CV relies on Machine Learning where the performance relies
on the volume of the data. Recognition in CV focuses on category-level recognition
which aims to be general and can be acquired from the internet to create a big data
paradigm. In contrast, RV uses reliable hardware sensors like depth camera [104] or
motion camera [15] so the performance relies on the number of sensors instead. Also,
recognition in RV focuses on situated-level recognition where the context environment
is limited from the embodiment of the sensor hardware. Robotics Vision tasks relate
to how a robot can perform sequences of actions on affordable objects to manipulate
the real-world environment. Such tasks need some information involving detecting and
recognizing objects, object motion tracking, human activity recognition, etc. This is to
give a robot both static and dynamic information about its surrounding contexts.

Interfacing CV and RV needs domain adaptation techniques [49] since online images
and real world objects are different. [105] tries to incorporate data available from the
internet, namely, Google’s 3D Warehouse to solve 3D point cloud object detection in
the real world in which the problem describes the need for domain adaptation and the
methods involve domain adaptation formulations.

3.3 Situated Language in Robotics

For robotics, languages are used to describe the physical world for a robot to understand
its environment. This problem is another form of the symbol grounding problem known
as grounded language acquisition or embodied language problem. A robot should
be able to perceive and transform the information from its contextual perception into
language using semantic structures. By this, a language can be grounded into another
predefined grammar that can represent meaning. The most well-known approach is
Semantic Parsing (SP) [202] which transforms words into logic predicates. At first,
SP was first introduced as a natural language interface for question answering database
system [202]. SP tries to map a natural language sentence to a corresponding meaning
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Figure 5: An example parse tree for Combinatorial Categorical Grammar (CCG) from
[203].

representation which can be a logical form like λ-calculus. The parsing model is induced
from a parallel data of sentences and meaning representations. For λ-calculus, the parser
will parse a sentence using Combinatorial Categorical Grammar (CCG) [170] as rules
to construct a parse tree. The motivation is from the principle of compositionality [69],
“The meaning of the whole is determined by the meanings of the parts and the manner
in which they are combined.”

Combinatorial Categorical Grammar (CCG) [170] defines a syntax in addition
to λ-calculus that defines semantics in terms of logic. Similar to Context-Free Grammar,
CCG consists of lexica and their parsing rules. However, CCG defines categories or types
for each lexicon and their combinatory rules to combine those categories together. For
example taken from [203], a word ‘Texas’ is denoted as an atomic symbol ‘NP’ with its
meaning of the state ‘texas’. Another word ‘border(s)’ which takes arguments represent-
ing US states like Texas or Kansas of type ‘NP’ will have a syntax as (S\NP )/NP and
its meaning of a lambda function λx.λy.borders(y,x). That is, the word ‘border(s)’ has
a syntax that will take a word of type ‘NP’ to the right and another word of type ‘NP’
to the left of the word ‘border(s)’ and yield the parse tree as in Figure 5. Like many
other parsing problems, there can be many possible parse trees in which some of them
may be incorrect that they may still contain a lambda form in the tree or the meaning
is incorrect. Therefore, a prediction model can be employed to solve this problem as
another structured prediction problem[50, 176, 163].

The main challenge of SP is its scalability across domains which is from its supervised
training scheme. Some attempts to resolve this problem are by reducing supervision to
make unsupervised SP [152], using distributional semantics which encodes rich interac-
tions between lexica [113] or using semi-structured data for a strong typing constraint by
the database schema [146]. Some applications of SP are robot control [124, 52], question
answering [202, 152, 198, 24] and smart phone voice command [130, 165]. Some software
for SP are SEMPRE2 [24]or Cornell SPF3 [8] or XYZ parser4 [11].

Another alternative to SP is Abstract Meaning Representation (AMR) [9]. AMR

2http://www-nlp.stanford.edu/software/sempre/
3https://bitbucket.org/yoavartzi/spf
4http://bioai8core.fulton.asu.edu/kparser/
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tries to map a sentence to a graph representation which encodes the meaning of that
sentence about “who is doing what to whom”. By this, AMR makes morphology and
syntax abstract into predicate-argument structures. A sentence becomes a rooted di-
rected acyclic graph and is labeled on edges for relations and on leaves on concepts.
The AMR project aims to output a large scale semantic bank by human annotation.
There are some attempts such as [153] that try to use string-to-tree syntactic Machine
Translation systems which is a more automatic process for constructing AMR.

Not all words can describe the geometric properties of the world. For example, words
like ‘special’ or ‘perhaps’ provide emotional information but not about the real world
context. For robotics, most words should involve either actions or contexts. Actions
can be words like ‘move’, ‘put’, ‘push’ or ‘pick up’ which need an argument that can
be the robot itself or other things in the vicinity for execution. The contexts can be
words or phrases like ‘a table on the right’, ‘a green button on the wall’ or ‘the red car
under the roof’ that show affordance [39] of an object so that it can be specified for
the robot to perform actions with attention. Prepositions from these phrases, like ‘on’ in
‘on the wall’ or ‘under’ in ‘under the roof’, encode spatial relations which are essential
contexts to specify where to perform actions for a robot. Affordance is a property of
an object related to tools and actions, for example, a cucumber can be cut with a knife
or a green button can be pushed with a hand. This defines an affordance of ‘able to
cut’ to a knife and ‘can be cut’ to a cucumber. Affordance helps reasoning by giving
the relational information about objects, tools, actions along with their pre-conditions
and post-conditions after the action is applied. Adverbs depict the details of an action
which can be force or speed. A robot should know how to perform a successful action
by adjusting its own control parameters to be precise with tools and object affordances.
For example, cutting a ‘cucumber’ and a ‘wood’ need different tools like a ‘knife’ and
an ‘axe’ in which a robot should handle them differently and apply a specific amount
of forces for each tool. Moreover, to perform a ‘rescue’ task and a ‘finding object’ task
need different speed where ‘rescue’ should be executed with full speed while ‘find’ can be
done with a normal pace. In addition to vision and language, recently advanced tactile
sensors [200] will help in perceiving and adjusting forces by sensing forces and frictions
directly.

3.4 Recent Works in Language and Vision for Robotics

Robotics has various interesting applications and we will describe only a salient set of
them. We conclude that robotics tasks involving language and vision can be categorized
into three main tasks, a robot talking to human, a robot that learns from human actions
and a robot that performs navigation.

First, a robot can interact with human via language which is situated and
grounded in perception. This needs both language understanding and generation as
well as some representation that will integrate perception into language. For situated
language generation tasks, [40] applies semantic parsing to ground simulated Robocup
soccer events into language for commentary. This work goes beyond a manual template
system to learning to perform. Automated sport game models (ASPOGAMO) [18] tries

12



to track sportsmen and ball positions via detection and tracking systems on broadcasted
football games. ASPOGAMO can handle changing lighting conditions, fast camera mo-
tions and distant players. Unifying both system for tracking and sportcasting is another
promising direction. For situated language understanding tasks, [124] parses user nat-
ural language instructions into a formal representation which commands robots with
Probabilistic CCG for semantic parsing [203]. A robot will follow the parsed instruc-
tions and execute its control for routing. [123] further incorporates visual attributes for
grounding words describing objects based on perception. The model incorporates both
semantic parsing for language and visual attribute classification for vision and is trained
via EM algorithm which jointly learns language and attribute relations.

To unify generation and understanding, Grounded Situation Model (GSM) [126]
is a situated conversation agent that bridges perceptions, language and actions with
semantic representation based on parsing. Its belief is updated with a mixture of visual,
language and proprioceptive data. GSM can answer questions and perform basic actions
via verbal interaction. [177] categorizes robot language tasks into following instructions,
asking questions and requesting help. A robot will try to find uncertain parts in the
command and ask a targeted question for clarification than it will perform better actions
based on the obtained information. To achieve this, the G3 framework [178] which is a
probabilistic model is used to model the inverse semantics from the uncertain part of
the world to a word in a sentence. Hence, this involves both language understanding
and language generation.

Recently, [190] unifies language and vision for robotics again by bridging visual,
language, speech and control data for a forklift robot. A robot can recognize objects
based on one example using one-shot visual memory. Its natural language interface is by
speech processing or pen gestures. It is equipped with reliable sensors and an anytime
motion planner that enables its local actions without global information. It has a nice
annunciation and visualization interfaces. A robot also has a safety mechanism for other
workers around by pedestrian detection and shout detection. For further information in
this topic, [125] provides a survey for verbal and nonverbal human-robot interaction.

Second, a robot can learn to perform actions by imitating or observing human
actions. This setting is sometimes denoted as robot learning from demonstration (LfD),
imitation learning [148] or observational learning [10]. Instead of manual hard coding, a
robot can learn from either a human teacher or other robots. LfD helps program robotic
controls to perform actions. The motivation is from the mirror-neuron system [155]
which is a neuron that will fire both when an animal performs and observes a certain
action. This phenomenon enables human to see and learn other people’s actions including
understanding intentions and emotions attached in those actions.

Learning from demonstration (LfD) [7] tries to learn a mapping of state and action
pairs from teacher’s demonstration (st, at) as a supervised learning setting so that the
learned policy from state S to action A which is π : S → A will have some performance
guarantees. The mapping between actions is defined by T (s′|s, a) : S × A × S → [0, 1].
Moreover, the states may not be fully observable, so the observed state Z is from another
mapping S → Z and a policy will be π : Z → A instead. For more information, [7]
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provides a unified framework for LfD.
Julian Jaynes’ bicameral mind [93] theorizes an existence of language interven-

tion in human consciousness and motivates an incorporation of language and vision to
LfD. The bicameral mind means a mind with two chambers in which one room is speak-
ing as an executive in language and another room just obeys and perform actions. This
defines a model of consciousness in ancient human mind which does not apply to people
in nowadays. Whether this is true or not still needs a lot of evidences and may be too
hard to prove or disprove but having this model we can view a robot with language as
an embodiment of the bicameral mind which will see, talk and perform actions. Lan-
guage and vision can provide data and models for this scenario. A robot will recognize
actions by watching a demonstration from either a real world teacher or a video. Then,
it will ground its perceptions to language and learn to plan its own actions. Finally, the
planned imitated actions will be carried out by its motor actuators.

Action grammar [82, 145] is the most common interface for language and vision
in LfD. Action grammar can model the hand-object-tool relations and incrementally
construct an activity tree [172]. An interesting feature is interleaving activities can
be recognized using action grammar. This provides a strength from the nature of the
sequential data in which there can be many motif sequences to be recognized. [180]
introduces a prior knowledge of action-tool relations mined from their cooccurence in
Gigawords corpus. This results in a learned prior knowledge that reflects the real world
and helps improve activity recognition using textual knowledge. [195] further models
the hand-object-tool, object-scene and object-scene-attribute relations as a multi-label
classification task with a prior from Gigawords corpus as in [180]. The results suggest
that the language prior will rule out some relations that will never occur because they
do not make sense such as using a cup of water to fold a t-shirt. Furthermore, the large
amount of actions can be easily observed from real world descriptions so having the
meaning from texts helps a robot learn starting from words to actions.

Nowadays, there are a large amount of online videos in which demonstration videos
can be retrieved easily for human learning. A robot can do the same by watching videos
and imitating actions. A robot may needs to be given all language, speech and visual
data for a complete understanding [120]. However, using only language and vision can
efficiently teach a robot to perform a task successfully as in cooking [194] or t-shirt folding
[166]. Semantic Parsing is an enhancement to the action grammar in which a post-
condition can be inferred using the semantics of the Combinatorial Categorical Grammar
itself [197]. For example, cutting a cucumber will result in divided cucumbers. This is
also called as manipulating action consequences [193] which represents object-centric
consequences as a knowledge graph. The results can be said that they are the desired
goals for the action performers. The corresponding semantics is λ.xλ.y cut(x, y) →
divided(y) where x is a cutting tool, such as a knife, and y is a cuttable object, such as
a cucumber. [166] goes further and introduces the knowledge transfer scheme where a
robot will learn from a human demonstration then transfer its knowledge by teaching to
another human.

Third, a robot can perform planning for navigation. With an understanding of
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the surrounding world, a robot can perform reasoning and make a plan to achieve its
goals. However, real world navigation requires map making with some techniques like
Simultaneous Localization And Mapping (SLAM) [54]. For robotics research, a simu-
lated world is created to test the software so a navigation is on a visual world instead.
The map can be either egocentric or top view (aerial). The spatial relations are fre-
quently used to refer to a subjective relation between a robot and a map. Therefore, the
language used will be more pragmatics since many meanings are hidden as a presuppo-
sition or an implicature such as the left-right-straight-backward directions. There are
also many scenarios where navigation plans can be distinctively different. The scenario
can range from an event or a place where an action should be immediately carried, like
an emergency event with a dense human crowd, to a mysterious and dangerous place
but with a few people, like a mine, to a household kitchen which is a safe place but the
objects are cluttered.

A planning for navigation problem can be casted as a situated language generation
[73]. The task is to generating instructions in virtual environments which is giving direc-
tions and instructions [35], such as ‘pushing a second button on the wall’, to accomplish
the final task which is taking the trophy. The contexts in a virtual environment are
converted into natural language using Tree-Adjoining Grammar (TAG) which will be
further converted into a planning problem [98, 74]. Some visual cues, such as listener
gazes [75], can help the system generating a more meaningful discourse because it will
have some feedback information that help inferring the mental state of the listener while
giving instructions.

4 Distributional Semantics in Language and Vision

4.1 Distributional Semantics

Distributional Semantics [87] relies on the hypothesis that words which occur in
the similar contexts are similar. This hypothesis can recover word meaning from cooc-
currence statistics between words and contexts in which they appear. Distributional
Semantic Models (DSMs) use the vector space and its properties to model the meaning.
The semantic vector space will represent a word as a data point and will encode the
similarity and relatedness between words in term of measurements between those data
points.

Word similarities can be measured by Euclidean distance between the data points
or cosine similarity of the angle between a pair of words. Similar words will have sim-
ilar vector representations and will be near to each other in the vector space. Word
relatedness can be observed from the displacements or offsets between the vectors which
represent relations. For instance, the word ‘King’ can be mapped to another vector
which is very similar to the word ‘Queen’ by subtracting with the word vector ‘man’ and
adding with the word vector ‘woman’.

Modeling meaning by word cooccurence as the only source of information limits
its connection to the real world. One may argue that the meaning can be described
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in language and provide understanding without any perception as a prerequisite for
communication. So, word cooccurence can be derived and provide meaning because an
appropriate corpus can be created to serve any specific meaning. However, one can also
argue that there are a lot of knowledge that cannot be understood without a grounded
perception.

For example, a ‘coconut’ can occur with other words that represent ‘fruits’ or ‘trop-
ical countries’ which describe some aspects of a ‘coconut’. Nevertheless, one cannot
understand its unique shape, color and texture without perceiving a real coconut. If
there are any similar fruits whose shape, color or texture are the same as a coconut,
one can effectively describe a coconut by each information aspect but there will be still
a question of ‘What does it really look like’ remains. Therefore, perception is essential
in order to answer these questions and provide more information sources for modeling
meaning.

For an object, its context can be where this specific object will appear in. This
encapsulates the natural information about how scenes and objects can relate to each
other [43]. The context also includes the meaning of the real world that similar objects
in the same category will be likely to appear in the same context which can be further
inferred that those objects cooccur with each other in some specific patterns as well.
For example, a ‘lion’ and a ‘deer’ are likely to be in a ‘forest’ or a ‘zoo’. If we were
to observe them both in a ‘forest’, a ‘lion’ is likely to be chasing a ‘deer’ for its meal.
Understanding these meaning will help the reasoning process about the real world.

4.2 Vector Space Models

Vector Space Models (VSMs) [186] is an algebraic model which represent text documents
as vectors where each dimension correspond to a term. Putting the vectors together
forms a term-document matrix which represent word cooccurence in documents. The
best known method for computing the values in this matrix is term frequency-inverse
document frequency weighting (tf-idf) [162].

The tf-idf weighting computes the importance of each word to a document in a corpus
collection [121]. A word with high term frequency ‘tf ’ will have a high score but it is
also proportional by the inverse of the frequency of how it appears across the corpus
‘idf ’. Given a term ‘t’ and a document ‘d’, tf-idf weighting computes the score for each
term in each document as follows.

tf-idft,d =tft,d × idft.

idft = log
N

dft
.

(1)

where ‘N ’ denotes the total number of the documents in the corpus collection. The tf-
idf weighting has many useful applications in which the best well known application is to
perform ranking for document retrieval. tf-idf weighting is so simple and computationally
efficient that it is usually used as an important preprocessing step for various text mining
algorithms. There are also some variations in computing the term frequency ‘tf ’ and
the inverse document frequency ‘idf ’ which are investigated by [121].
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VSMs implement the idea of similarity measurement in the algebraic space. This
interpretation of vectors and their similarities are building blocks for the following dis-
tributional semantic models.

4.3 Distributed Word Representation

There are two types of connectionist representations, local and distributed [149, 89]. Lo-
cal representations have a small number of features for each item while distributed rep-
resentations have a large number of features from nearly all features in the feature pool.
Local representations are sparse and capture salient signals from particular features.
In contrast, distributed representations are dense, continuous and depict patterns over
many signals. Local representations have lower representation power than distributed
representations which are dense and compact.

4.3.1 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) [53] or Latent Semantic Indexing (LSI) is the most well
known instance of distributed word representation which tries to recover word relations
from a corpus. LSA uses Singular Value Decomposition (SVD) on the term-document
matrix ‘C’ which outputs a low-rank approximation that can be used as a weighting
scheme.

C =UΣV T .

Ck =U ′kΣ′kV
′T
k .

(2)

where ‘k’ is the approximate rank of the term-document matrix ‘C’ into the reduced
rank matrix‘Ck’. An improvement made by LSA is that it can model synonimity and
polysemy [53] as well as a grouping of words into concepts while other prior models
which rely on term matching cannot. LSA has better performance compared to tf-idf
but lacks unit-like interpretability featured in local representation.

Probabilistic Latent Semantic Indexing (pLSI) [91] or aspect model is the probabilis-
tic version of LSA which models each word in a document as a sample from a mixture
model of conditionally independent multinomial distributions. Each document consists
of topics and each topic consists of words. pLSI has an improvement over LSA in terms
of the interpretability of word-topic and topic-document relations.

4.3.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [32] was proposed to overcome the overfitting problem
in pLSI by introducing the Dirichlet prior over the multinomial topic distribution. The
generative story of LDA [32] is as follows,

1. For each document:

(a) Choose N ∼ Poisson(ξ).
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(b) Choose θ ∼ Dir(α).

(c) For each of the N words wn:

i. Choose a topic zn ∼ Multinomial(θ).

ii. Choose a word wn from p(wn|zn, β), a multinomial probability condi-
tioned on the topic zn.

where α is the parameter of the Dirichlet prior of the document-topic distribution,
β is the parameter of the Dirichlet prior of the topic-word distribution, θ is the topic
distribution for document i, N is the number of words in the document. For a detailed
explanation on topic models, some literature surveys on topic models [30, 171, 154, 118]
provide an excellent explanation including various new models along with the evolution
in the field of topic models created by LDA.

This is to show that distributed representations are essential for extracting interest-
ing patterns from the corpus but it is also beneficial to add interpretablility like local
representations for further understanding.

4.4 Count and Prediction-based Word Embedding

4.4.1 Word2Vec

While LSA represents the geometry aspect of meaning and LDA represent the probabilis-
tic generative aspect of meaning [34], the recently proposed Word2Vec [132] represents
the neural model of the meaning. In contrast to LSA and LDA, Word2Vec produces a
word embedding, in other words, a distributed representation [184] which is equivalent to
factorizing the term-term matrix [111]. Word embedding is typically induced by neural
language models [23, 139] which predict the context given an input word. The training
and testing by prediction was typically slow and scaled by the vocabulary size.

Word2Vec solves this problem by reducing the feed forward neural model to a simple
log linear model so that less nonlinearity is involved. The log linear model is just a
simple softmax function. However, this made a breakthrough since a high quality word
embedding can be obtained by predictive training on a very large corpora. Comparing
to the traditional training methods like LSA or LDA which are based on statistics
given by counting the terms cooccurence, whether the predictive models will make an
improvement in performance [14] or just give more insight information in parameter
tuning [112] is still an ongoing open problem.

Word2Vec provides a significant improvement over LSA and LDA from its quality of
the output word embedding. The resulting representation is encoded with word meaning
so similar words will have similar vector representations, for example, the vector(‘car’)
will be similar to the vector(‘driver’). Moreover, the relationship between words is also
preserved in term of displacement between points such that basic vector operations on
these points will be meaningful, for example, vector(‘Paris’) - vector(‘France’) + vec-
tor(‘Italy’) will be resulting in a vector very similar to the vector(‘Rome’). Also, the
displacement can capture the syntactic relations, for instance, vector(‘sweet’) - vec-
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tor(‘sweetest’) + vector(‘fastest’) will be resulting in a vector very similar to the vec-
tor(‘fast’).

4.4.2 Word2Vec models

Word2Vec has two models, Continuous Bag-of-Words Model (CBOW) and Continuous
Skip-gram models. Furthermore, there are also two training techniques, namely, Hier-
archical Softmax and Negative Sampling. The CBOW model tries to predict the vector
representation of the current word given context words. This corresponds to the count-
based models [14]. On the other hand, the Skip-gram model tries to predict the vector
representations of the context words given the current word. This corresponds to the
predict-based models [14]. The CBOW is faster but the Skip-gram model better rep-
resents the infrequent words. From the original experiment in [132] and also another
experiment in citebaroni2014don, the Skip-gram model is superior in term of accuracy.

Given a sequence of words w1, w2, w3, . . . , wT , the CBOW model tries to maximize
the objective function of a log probability of a word wt,

1

T

T∑
t=1

log p(wt|wt−c, · · · , wt−1, wt+1, · · · , wt+c), (3)

where c is the size of training context. The Skip-gram model tries to maximize the
objective function in terms of average log probability,

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (4)

where c is the size of training context. The term p(wt|wt−c, · · · , wt−1, wt+1, · · · , wt+c)
and p(wt+j |wt) are defined by the softmax function:

p(wOutput|wInput) =
exp(v′TwOutput

vwInput)∑W
w=1 exp(v′TwOutput

vwInput)
(5)

where vw and v′w are the input and output vector representation of the word w and
W is the number of words in the vocabulary list. This softmax function tries to predict
the output words wOutput given the input words wInput. However, this formulation is
impractical because of the cost when computing the gradient is proportional to W which
is typically very large. So, the hierarchical softmax and negative sampling are proposed
to compute the approximation to the softmax function instead.

4.4.3 Word2Vec training

The hierarchical softmax [139] reduces the number of nodes to be evaluated from W to
log2(W ) nodes by defining a binary tree over W as leaves and the relative probabilities
of W as the intermediate nodes. This creates a random walk model over W . That is,
there exists a path from the root of the tree to each leaf node w. Let n(w, j) be the
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jth node on that path and L(w) denotes the length of the path. Also, let ch(n) be an
arbitrary fixed child node of n and an operation [[x]] will return 1 if x is true and −1
otherwise. The p(wOutput|wInput) of hierarchical softmax is as follows,

L(w)−1∏
j=1

Σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′Tn(w,j)vwInput

)
, (6)

where Σ = 1/(1 + exp(−x)). This hierarchical softmax has only one representation
for each word vw and one representation for each intermediate node n as v′n.

The Negative sampling (NEG) simplifies Noise Contrastive Estimation (NCE) [84]
which is an alternative to hierarchical softmax that approximates the log probability
of the softmax model. NEG concerns only with the quality of the word representation
rather than differentiate data from noises. The term p(wOutput|wInput) of NEG is as
follows,

log σ(v′TwOutput
vwInput) +

K∑
i=1

Ewi∼Pn(w) log σ(−v′TwOutput
vwInput) (7)

which is a replacement to log p(wOutput|wInput) in the CBOW and Skip-gram ob-
jective functions. NEG tries to distinguish wOutput from noises Pn(w) using logistic
regression where k is the number of negative samples for each data sample. Pn(w) is a
free parameter in which [132] suggests to use the unigram distribution U(w) raised to
the 3/4rd power as the best choice. From the original experiment in [132], the Skip-gram
model with NEG provides the best word embedding. In addition, the Skip-gram model
with NEG was shown to be equivalent to factorizing the PMI word cooccurence matrix
[111]. [156, 79, 56] provides a more detailed explanation of Word2Vec training methods.

4.4.4 State-of-the-art Word2Vec-based models

There are a lot of interesting follow up works which try to improve Word2Vec in various
ways. For example, GloVe [147] tries to incorporate global word cooccurence informa-
tion. DEPs [110] tries to include syntactic dependency information. MCE [42] uses
pairwise ranking loss function in the learning to rank framework to model antonyms on
an antonym word list. SPs [164] creates its word embedding based on symmetric pat-
terns extracted from corpora such as “X such as Y” or “X is a Y” or “X and Y” which
also enables antonym modeling. Modeling lexical contrast [135] is an important con-
tribution because it solves the fundamental problem of cooccurence between the target
word and its synonym or antonym which previously was a blind spot of modeling distri-
butional semantics by word cooccurence. These works provide another breakthrough in
distributional semantics by word embedding.

Other interesting works try to make an improvement to word embedding in term
of interpretability because word embedding models typically output dense vectors that
cannot be easily interpreted by human. [64, 199] tries to add interpretability into a word
embedding by incorporating sparsity using sparse coding methods. AutoExtend [157] can
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extend existing word embedding from synsets and lexemes to make a better embedding.
Retrofitting [63] is a graph-based method which also extends an existing word embedding.
Word2Vec triggered a lot of interest from its high quality word representation output so
that it creates a renaissance of word embedding research.

Other interesting works try to generalize word embedding to logic for better reason-
ing. Traditionally, this was done by the method of binding roles and fillers by using
operations such as tensor product [44]. Roles are logical predicates and fillers are logical
atoms which are both represented as vectors. Recently, there are efforts that try to
map boolean structures to distributional semantics for recognizing textual entailment
(RTE) which decides the entailment between two sentences. The proposed approaches
are Markov Logic Networks [21, 76] and learning a mapping function with BDSM [100].

4.5 Bag-of-Visual-Words and Image Embedding

4.5.1 Bag-of-Visual Words (BoVW)

In Computer Vision (CV), the idea of bag-of-words representation (BoW) was long
borrowed from Natural Language Processing (NLP) community in solving recognition
tasks under the name of bag-of-visual-words representation (BoVW). BoW representa-
tion discards spatial and temporal relations between words and creates a representation
of a document based on only word frequencies which outputs the term-document matrix.
Similarly, BoVW discards location and shape information.

For an image, BoVW representation is a descriptor-image matrix where descriptors
are local descriptors in the visual codebook. The descriptors are salient keypoints of an
image extracted by using techniques such as SIFT [116] or SURF [17] which can reliably
find descriptors across images under difficulties like rotation, translation or illumination
changes. Then, the descriptors are clustered together by a clustering algorithm such
as k-means [117] to create a visual codebook. The reason is that there are varying
numbers of visual descriptors in each image unlike text documents whose words come
off-the-shelf so the codebook step is needed for visual data. Thus, the clustering step
is needed in order to make the frequency histogram comparable across images by fixing
the codewords. This BoVW model still does not go beyond point descriptors to edges
or lines. The local descriptors will correspond to image patches with similar appearance
but may not be correlated with the object-level parts in an image [80].

Some landmark works incorporate location and shape information into BoVW model
and achieve a test-of-the-time result like Spatial Pyramid Matching (SPM) [108] or
Constellation model [65].

4.5.2 Image Embedding

Since natural images lie in a low dimensional manifold in the space of all possible images,
the efforts to model that manifold result in image embedding techniques [150]. Image
embedding is similar to word representation because it is also represented as a dense
low dimensional feature vector. Besides, the images that are close to each other are
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similar and each dimension captures factors of variations in the images such as pose,
illumination or translations.

The image embedding is an output or intermediate output from a representation
learning methods such as dimensionality reduction methods [187] including deep learning
techniques [22]. One of the most dominant examples for image embedding is in face
recognition [205]. Eigenfaces [185] uses Principal Component Analysis (PCA) which is
analogous to Singular Value Decomposition (SVD) used in LSA to create a projection
to a low dimensional image manifold which represent faces. Fisherfaces [19] also uses a
dimensionality reduction method, namely Fisher’s Linear Discriminant Analysis (FLD)
[68], to compute a better projection. There are more creative dimensionality reduction
techniques based on SVD, for instance, ISOMAP [179], Locally Linear Embedding (LLE)
[158] or Laplacian Eigenmaps [20] can capture nonlinear variations in images such as pose
or facial expressions. These techniques fall into the category of Spectral Methods which
is still an interesting ongoing research [3, 4, 5] in Machine Learning.

4.5.3 State-of-the-art Image Embedding models

Both BoVW and image embedding are used as a feature set for classification mainly for
recognition tasks but are not limited to them. For example, Recursive Neural Networks
(RNN) was applied to another recognition task of semantic segmentation in the context
of scene parsing [169]. Recently, image embedding from deep Convolutional Neural
Networks (CNNs) [109] which exhibits similar characteristics to Word2Vec [71] is applied
in various tasks both in Reorganization (like Optical Flow [67]) and Recognition using
Siamese CNNs (like visual analogy [160]). Moreover, the CNN models from Caffe [95],
including models for recognition like AlexNet [99] or GoogLeNet [174] or VGG net [167]
and models for detection like R-CNN [78] or Fast R-CNN [77], tend to be the current
state-of-the-art image embedding models.

In short, one can conclude that performing representation learning on image data
will result in image embedding similar to Word2Vec. However, image embedding is likely
to be more domain specific and has more data set bias [182]. Even though it is trained
on a data set of millions or billions images like AlexNet [99] and provides a breakthrough
in recognition on the ImageNet LSVRC-2010 challenge [25], the coverage of real world
objects is just around 1, 000 categories and is still far from learning from text alone
like training Word2Vec on Google’s Billion Words corpus which has 793, 471 vocabulary
words [38]. For face recognition, the recently proposed DeepFace [175] model was created
to recognize around 4, 000 identities on the Labelled Face in the Wild (LFW) data set
[92] which is very remarkable but still far from a system that can recognize everybody’s
faces on the fly.

Solving this problem by learning on a larger scale image collection of size trillions or
zillions, such as learning from the internet [41], to provide a general image embedding
like Word2Vec which also models infrequent data, is an interesting future direction.

22



References

[1] Eren Erdal Aksoy, Alexey Abramov, Johannes Dörr, Kejun Ning, Babette
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