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Abstract. There is much empirical evidence that human decision-
making under risk does not coincide with expected value maximization,
and much effort has been invested into the development of descriptive
theories of human decision-making involving risk (e.g. Prospect Theory).
An open question is how behavior corresponding to these descriptive
models could have been learned or arisen evolutionarily, as the described
behavior differs from expected value maximization. We believe that the
answer to this question lies, at least in part, in the interplay between
risk-taking, sequentiality of choice, and population dynamics in evolu-
tionary environments. In this paper we provide the results of several
evolutionary game simulations designed to study the risk behavior of
agents in evolutionary environments. These include several evolutionary
lottery games where sequential decisions are made between risky and safe
choices, and an evolutionary version of the well-known stag hunt game.
Our results show how agents that are sometimes risk-prone and some-
times risk-averse can outperform agents that make decisions solely based
on the maximization of the local expected values of the outcomes, and
how this can facilitate the evolution of cooperation in situations where
cooperation entails risk.

1 Introduction

Empirical evidence of human decision making under risk shows that humans are
sometimes risk averse, sometimes risk seeking, and even behave in ways that
systematically violate the axioms of expected utility [17]. Such risk propensi-
ties can differ greatly from simple expected value considerations on prospective
outcomes. Researchers have invested much effort into constructing utility func-
tions that appropriately model human decision making under risk (e.g. [2, 8,
28]). Researchers have also constructed alternative descriptive theories of deci-
sion making that claim to correspond more closely to how humans make deci-
sions involving risk, such as prospect theory [17, 34], regret theory [18], and SP/A
(Security-Potential/Aspiration) theory [19–21]. One advantage of these models is
that they more explicitly or perhaps more naturally model some of the mechan-
ics involved in human decision making processes. For example, state-dependent



attitudes toward risk are modeled in prospect theory by using a reference point
with respect to which prospective outcomes can be interpreted as potential gains
or losses, and are modeled in SP/A theory by including an aspiration level as an
additional decision criterion in decisions involving risk.

An important open question is how behaviors corresponding to the above
decision-making models, or any other empirically documented risk-related be-
havior that differs from expected value maximization, could have arisen in human
evolution or are learned in societies. We believe that the answer lies, at least in
part, in the interplay between risk-taking, sequentiality of choice, and popula-
tion dynamics in evolutionary environments. We present analysis and simulation
results to support this hypothesis.

Several recent works speculate about the relation of risk-related behavior
and biological evolutionary factors [1, 30, 32]. Our work differs from and expands
such study by providing explicit analyses and simulations of risk behavior using
evolutionary-game models intended to reflect both biological and cultural evo-
lution. In the spirit of numerous previous studies that have used evolutionary
game simulations to explore and derive explanations for how the phenomenon
of cooperation can arise in populations of individuals (e.g. [3, 4, 11, 22–24]), we
use an evolutionary games based approach to explore risk-related behavior. Our
results include the following:

1. Simulations of versions of simple lottery games in which agents make se-
quential choices among lotteries that have equal expected value but different
risks. The experimental results demonstrate that depending on the game’s
reproduction mechanism, an agent that acts solely according to the local
expected values of outcomes can be outperformed by an agent that varies its
risk preference in ways suggested by descriptive models of human decision
making.

2. Simulations of evolutionary stag hunt games that show how the principle
results from our evolutionary lottery games can apply to and impact results
in other, more complex games of social cooperation. The experimental results
show how the advantage of conditionally risky behavior can promote the
evolution of cooperation in a situation where the cooperation requires a
risky decision (namely, choosing to cooperate).

Section 2 introduces our evolutionary lottery games. Analysis, simulation
results, and discussion of results for these games follow in Sections 3-5. Section
6 describes our experiments with an evolutionary version of the well-known stag
hunt game. Section 7 provides concluding remarks.

2 Evolutionary Lottery Games

Here we describe a class of evolutionary games that we use to investigate risk
behavior. Agents in these evolutionary games acquire payoffs dispensed by lot-
teries. In each generation, each agent must make a sequence of n choices, where
each choice is between two lotteries with equal expected value but different risks.



One lottery has a guaranteed payoff of 4, we call this the safe lottery. The other
lottery gives a payoff of 0 with probability 0.5 or a payoff of 8 with probability
0.5, we call this the risky lottery. Both lotteries have an expected value of 4, the
only difference is the payoff distribution.

Within this class, we can define different games by varying two important
game features, both of which are discussed below: the number n of choices in
the sequence, and the population dynamics. We will include all possible pure
strategies in the environment in equal frequencies, as described in the following
section. Through this setup, we dont model risk propensities of agents explicitly,
but each of the agent types strategies can be interpreted as different attitudes
towards risk: some risk-averse, some risk-seeking, and some varying depending
on previous choice outcomes.

2.1 Number of Choices and Strategies

We consider two cases: n = 1, i.e., at each generation the agents make a single,
one-shot choice among the two lotteries; and n = 2, i.e., at each generation the
agents make two sequential choices. When n = 1 there are two possible pure
strategies, shown in Table 1. When n = 2, there are six possible pure strategies,
shown in Table 2.

Table 1. All of the possible pure strategies when n = 1.

Strategy Choice

S choose the safe lottery
R choose the risky lottery

Table 2. All of the possible pure strategies when n = 2.

Strategy 1st lottery 2nd lottery

SS choose safe choose safe
RR choose risky choose risky
SR choose safe choose risky
RS choose risky choose safe
RwS choose risky choose safe if 1st lottery was won, risky otherwise
RwR choose risky choose risky if 1st lottery was won, safe otherwise

2.2 Population Dynamics

Our evolutionary model uses finite, non-overlapping populations of agents. Once
all lottery choices have been made and payoffs have been dispensed, all agents
reproduce into the next generation (a new population). Reproduction does not



necessarily mean biological reproduction, but can be treated as a model for the
process of learning [13] or the social spread and adoption of cultural memes or
behavioral traits [6] (e.g. [10]), possibly through imitation. These processes are
integral parts of cultural evolution[5]. We consider two different variants of our
games, using two widely used population dynamics according to which agents
reproduce: the replicator dynamic and imitate-the-better.

The replicator dynamic is a commonly used population dynamic originating
from biology. Under this dynamic the payoffs received by agents are considered
to be a measure of the agent’s fitness, and agent types reproduce proportionately
to these payoffs [9, 14]:

pnew = pcurrf(a)/F (1)

where pnew is the corresponding proportion in the next generation, pcurr is the
proportion of agents of type a in the current population, f(a) is the average payoff
an agent of type a received from all games played in the current generation, and
F is the average payoff received by all agents in the population. An agent’s type
is simply the strategy it employs to make choices among lotteries. In terms of
cultural evolution through imitation or social learning, this model is equivalent
to each agent randomly observing another agent in the population for potential
imitation (adopting their strategy) and doing so with a probability proportional
to the difference in the agent’s own payoff and the observed agent if the observed
agent has a higher payoff [9].

Imitate-the-better ([14], used in, e.g.: [11, 12, 29]), also called “tournament
selection”, is a reproduction mechanism most commonly used as an imitation
dynamic for modeling reproduction of strategies in the context of games played
in societies and social learning. Here, each agent in the population is matched
up with a randomly drawn other agent in the population and the agent with the
higher acquired payoff is reproduced into the next generation. If the payoffs are
equal, one of the agents is chosen at random. In terms of imitation, this model
is equivalent to each agent randomly observing another agent in the population
for potential imitation and doing so if the observed agent has a higher payoff
[9]. There is empirical evidence that this imitation strategy is a good model of
human social learning [16, 15, 25, 26].

3 Analysis

We now consider four different versions of our evolutionary lottery game, us-
ing all four combinations of the following parameters: the number of sequential
choices (n = 1 or n = 2), and the reproduction mechanism (imitate-the-better
or replicator dynamics).

We are interested in the dynamics of agent type (i.e. strategy) frequencies
as our population of agents evolves over time. To anticipate the performance
of different agents in our simulations, it is important to take a closer look at
the nature of the reproduction mechanisms. Under replicator dynamics, agents’
rate of change of population frequency is directly proportional to the payoff
received relative to the average population payoff. Imitate-the-better on the other



hand acts like a probabilistic, population dependent, threshold step-function,
where the particular threshold an agent needs to achieve in order to produce one
offspring is the payoff of the randomly drawn opponent from the population.

Recall that for n = 1 (i.e., the single choice game) there are only two pure
strategies, S and R. S will always receive a payoff of 4, while R will have a 50%
chance to receive a payoff of 8 and a 50% chance to receive 0. Hence in each
case, the expected value is 4. Thus under replicator dynamics, by equation (1)
we expect neither type of agent to have an advantage. Under imitate-the-better,
an R agent will have a 50% chance to beat an S agent and a 50% to lose, thus
we expect neither agent to have an advantage here either.

For n = 2 (i.e., a sequence of two lottery choices), there are six pure strategies.
As before, they all have an expected value of 4 at each lottery choice, thus a total
expected value of 8 for the sequence of two choices. For each of these strategies
except RwS and RwR, the probability of being above the expected value equals
the probability of being below the expected value; but for RwS and RwR, the
two probabilities differ. (Table 4 in Section 5.1 shows the payoff distributions for
all strategies when n = 2.) RwS has a 50% chance of receiving a payoff of 12,
since it always chooses the safe option after the first lottery was one. It has a
25% chance of receiving the exact expected value 8, which occurs when only the
second risky choice is won. Hence it has only a 25% chance of acquiring a payoff
below the expected value. (Similarly, RwR has only a 25% chance of acquiring
a payoff above the expected value.) This lead us to hypothesize that there are
circumstances in which RwS will do better than the other strategies. The purpose
of our simulation, described in the next section, is to test this hypothesis.

4 Evolutionary Lottery Game Simulation Results

We have run simulations of our evolutionary lottery game using all four com-
binations of the following parameters: the number of sequential choices (n = 1
or n = 2), and the reproduction mechanism (imitate-the-better or replicator
dynamics). The types of agents were the ones described in Section 2.1. All simu-
lations started with an initial population of 1000 agents for each agent type and
were run for 100 generations, which was sufficient for us to observe the essential
population dynamics. The average over multiple simulation runs would not pro-
duce significantly different results, except for smoother lines due to noise being
averaged out.

In these sets of simulation experiments, the agent types and numbers thereof
included in the initial population are the control variables. The independent
variables are the number of sequential choices (n = 1 or n = 2), and the popula-
tion dynamics used (imitate-the-better and replicator dynamics). The dependent
variables measured are the population frequencies of agent type throughout evo-
lutions and the stable population states arrived at, if any.

Figures 1(a,b) show the frequency for each type of agent when n = 1. As
we had expected, both S and R performed equally well (modulo some stochastic
noise) regardless of which reproduction mechanism we used.
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(a) n = 1, imitate-the-better (b) n = 1, replicator dynamics
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Fig. 1. Agent type frequencies for all four simulations over 100 generations.

For n = 2 (Figures 1(c,d)), the results are more interesting and differ de-
pending on the reproduction mechanism used. Under replicator dynamics, all
of the strategies performed equally well and remained at their frequency in the
original population. But under imitate-the-better, the conditional strategy RwS
outperformed the other strategies. RwS rose in frequency relatively quickly to
comprise the majority (> 2/3) of the population and remained at this high fre-
quency throughout subsequent generations. One surprise, which we discuss in the
next section, was that the two unconditional strategies SR and RS fell slightly
in population but then remained, comprising the proportion of the population
not taken over by RwS.



5 Discussion

Table 3 summarizes the experimental results as they relate to the hypothesis we
stated at the end of Section 3. The results confirm our hypothesis that there
are circumstances under which the RwS agent performs better than other agent
types. In particular, it performed much better than all other agents in the se-
quential lottery using imitate-the-better simulation.

Table 3. Performance of agent types for the single (n = 1) and sequential (n = 2)
lottery game simulations under imitate-the-better and replicator dynamics.

Imitate-the-better Replicator

Single S, R same S, R same

Sequential RwS best all same

The following subsections discuss the impact of the reproduction mechanisms
used, the population dynamics observed, and how the results relate to theoretical
work concerning models of decision making under risk.

5.1 The Role of Reproduction Mechanisms

The reproduction mechanism played a central role in the results of our simula-
tions. We now analyze the impact of the reproduction mechanisms by examining
the expected payoff distributions of the agent types.

Table 4 lists these distributions of payoffs that agents are expected to receive
from their choices in one generation of the sequential lottery game.

Table 4. Payoff distributions for all agent types in the sequential lottery game.

agent RwS RwR SR RS SS RR

payoff 12 8 0 16 8 4 12 4 12 4 8 16 8 0

probability .5 .25 .25 .25 .25 .5 .5 .5 .5 .5 1 .25 .5 .25

We can see that the RwS agent had a 50% chance of acquiring a payoff of 12,
a 25% chance of acquiring a payoff of 8, and a 25% chance of acquiring 0. Under
imitate-the-better, RwS had an advantage over the other agents because it had
an increased probability of achieving a payoff at or above a certain reproduction
threshold. This threshold is the payoff of a randomly drawn opponent, which has
an expected value of 8 equal to the expected value of the lotteries. RwS pays
for this enlarged chance of being above the threshold through a small chance of



doing much worse (payoff 0) than the summed expected utilities, which occurs
when the first and the second risky choice is lost.

Since imitate-the-better only considers whether or not the agent’s payoff is
better than another agent’s in order to decide whether the agent reproduces,
the extent to which the agent is better is not significant. In contrast, the repli-
cator dynamics define reproduction to be directly proportional to the amount
by which the agent’s payoff deviates from the population average. In this case
the small chance of RwS of being significantly below the expected value bal-
ances against the agent’s larger chance of being slightly above it. Thus, under
replicator dynamics, the RwS agents had no advantage.

Hofbauer and Sigmund [14] define an infinite class of reproduction dynamics
called imitation dynamics, for which there is a single parameter 0 ≤ α ≤ 1 with
the following meaning: α = 0 is the imitate-the-better dynamic, α = 1 is the
replicator dynamic, and each value 0 < α < 1 is a reproduction dynamic whose
effects are intermediate between the imitate-the-better and replicator dynamics.
We have shown analytically [31] that for every 0 < α < 1, the RwS strategy
has an evolutionary advantage over all five of the other pure strategies. In other
words, in an evolutionary double lottery dynamic using any imitation dynamic
for which 0 < α < 1, if the initial population includes the RwS strategy, then
RwS will grow to 100% of the population and the other strategies will become
extinct.

5.2 Further Population Dynamics

As noted in Section 4, the SR and RS agents did not go extinct in the sequential-
lottery imitate-the-better simulation. The reason SR and RS remained can be
explained by considering all the agents’ payoff distributions expected in a gen-
eration (Table 4). If we compare the payoff distribution of SR and RS with that
of RwS, we see that if these agents are matched up with each other in imitate-
the-better there is an equal chance that either of the strategies reproduces, since
each strategy has an equal chance of having a higher payoff than the other. Thus
once all other strategies are extinct, the population frequencies remain approxi-
mately unchanged. The reason RwS rises in frequency so much faster early on is
because RwS has a significantly higher chance of beating an agent from the rest
of the population. Against SS for example, RwS has a 62.5% chance of winning:
50% of the time the payoff of 12 beats the sure payoff of 8 by SS and 1/2 of
the time the two players are matched with equal payoff of 8 (25% chance), RwS
is favored. SR and RS on the other hand only have a 50% chance of winning
against SS. Similar relations hold for RR and RwR.

This shows an interesting dynamic of population-dependent success of agents:

– In an environment that contains SR, RS, and RwS and no other strategies,
all three do equally well.

– In an environment that contains SR, RS, SS and RR and no other strategies,
all four do equally well.



– In an environment that contains SR, RS, SS, RR, RwR, and RwS, RwS will
increase until SS, RR and RwR become extinct, at which point SR and RS
and RwS are at an equilibrium and remain at their current frequencies.

5.3 Relations to Alternative Decision Making Models

The manner in which the RwS strategy deviates from expected value maximiza-
tion in our lottery game can be characterized as risk-averse (preferring the safe
choice) when doing well in terms of payoff and risk-prone (preferring the risky
choice) otherwise. Similar risk behavior is suggested by models such as prospect
theory [17, 34] and SP/A theory. In prospect theory, people are risk-seeking in
the domain of losses and risk-averse in the domain of gains relative to a reference
point. In SP/A theory [21], a theory from mathematical-psychology, aspiration
levels are included as an additional criterion in the decision process to explain
empirically documented deviations in decision-making from expected value max-
imization.

One explanation for the existence of decision-making behavior as described
by such models is that the described behavioral mechanisms are hardwired in
decision makers due to past environments in which the behaviors provided an
evolutionary advantage [1]. Another interpretation, not necessarily unrelated, is
that the utility maximized by decision makers is not the payoffs at hand, but
a different perhaps not obvious utility function. Along these lines, [7] proposes
a model of decision making that includes probabilities of success and failure
relative to an aspiration level into an expected utility representation with a
discontinuous (at the aspiration level) utility function. Empirical evidence and
analysis provided in [27] provide clear support for the use of probability of success
in a model of human decision making. All these descriptive theories provide for
agents to be sometimes risk-prone and sometimes risk-averse, depending on their
current state or past outcomes, such as the RwS in our simulations.

The sequentiality of choices in our game simulations allows for such state-
dependent risk behavior to be explicitly modeled. One could theoretically model
the sequential lottery game in normal form, i.e. reduce the choices to a single
choice between the payoff distributions listed in Table 4. Doing so would provide
essentially equivalent results except that the asymmetry in the payoff distribu-
tion of lotteries would be the determining factor of agent successes. In such a
representation however, the analysis of risky and safe choices, and agents’ prefer-
ences among them becomes blurred. In fact, we believe that a tendency towards
modeling games in normal form often leads people to overlook the impact of
sequentiality on risk-related behavior.

We believe our results show that imitate-the-better models an important
mechanism that can lead to the emergence of risk-taking behavior with similar
characteristics to that captured in alternative, empirical evidence-based models
of decision making like the ones discussed above. Whenever reproductive suc-
cess is not directly proportional to payoff (i.e., a reproduction mechanism other



than the pure replicator dynamics),1 risk propensities that differ from expected
value maximization have the opportunity to be more successful than agents that
solely consider expected value in their local choices. This suggests that there
are many other reproduction mechanisms for which expected-value agents can
be outperformed by agents that vary their propensities toward risk-taking and
risk-averseness.

6 Conditionally Risky Behavior in an Evolutionary Stag
Hunt Game

In this section we show how the principle observations from our lottery game
experiments apply in a popular social dilemma game of safety and coopera-
tion. We consider an evolutionary game in which agents play two sequential stag
hunt games in a generation. Like the prisoner’s dilemma [3], the stag hunt is
a game that models a dilemma between cooperation and noncooperation. We
demonstrate how a strategy essentially equivalent to the RwS strategy from our
lottery games can have an advantage in this evolutionary stag hunt environment,
and how this advantage impacts the evolutionary results. (For an extensive dis-
cussion of the stag hunt game, see e.g. [33].)

6.1 Stag Hunt Environment

The stag hunt environment we consider is equivalent to our sequential lottery
game environment, except now payoffs are acquired through two sequential two-
player stag hunt games rather than through single-player lotteries. The payoff
matrix we use for the stag hunt game is shown in Table 5.2 Each generation, all
agents are randomly paired to play a two-player stag hunt game. Agents receive
payoff from the first game and then are randomly paired again for a second game,
the payoffs of both games are accumulated. After these payoffs are accumulated,
agents reproduce into the next generation according to population dynamics
as before (which means an additional random pairing for imitation under the
imitate-the-better dynamic). Since agents play two sequential stag hunt games,
we will call this an evolutionary double stag hunt game.

6.2 Risk and Strategies

A significant difference between our stag hunt environment and our lottery game
environment is that in the former payoffs are not stochastic due to probabilities

1 We say “pure” here because replicator dynamics can be modified to make repro-
ductive success not directly proportional to payoff. For example, if a death rate
(e.g. [24]) is implemented as a payoff-dependent threshold function, we might expect
risk propensities to differ depending on whether an agent is above or below that
threshold, similar to an aspiration level in SP/A theory.

2 Many different payoff matrixes may be used for the stag hunt game, as long as the
payoffs satisfy certain constraints. We chose payoff values that coincide with our
lottery games, but keep the relevant payoff relations of the stag hunt.



Table 5. Payoff matrix used in our stag hunt game. The payoff values are chosen as
to coincide with our lottery games, but keep the relevant payoff relations of the stag
hunt.

Stag Hare

Stag 8, 8 0, 4

Hare 4, 0 4, 4

on the payoffs themselves, but due to the probabilities of playing against a stag
agent (i.e., cooperator, always hunts stag) or hare agent (i.e., defector, always
hunts hare) in the social game. Assume the initial population consists of 50%
stag agents and 50% hare agents. Hence, for a new agent entering the population,
hunting stag is a risky choice that will pay 8 with probability of 0.5 and 0 with
probability 0.5. Hunting hare on the other hand is a safe choice that will always
pay 4. We can thus define the equivalent of an RwS strategy in this environment
as follows: hunt stag (the risky choice) in the first stag hunt game; if the stag
payoff was achieved in the first game, hunt hare (the safe choice) in the second
game, otherwise hunt stag again in the second game.

Given what we have learned from our lottery game results in Section 4, we
know that in a population approximately split equally between stag and hare
players, the RwS strategy just described should have an evolutionary advantage
under imitate-the-better (but not under replicator dynamics). This is because
with 50% stag and 50% hare agents, the choices that an agent has to make in the
two stag hunt games—as described in the previous paragraph—are equivalent
in payoff distributions to those of our two-choice lottery game.

We describe simulation experiments that we have run to confirm this hy-
pothesis and to investigate the impact it has on population evolution in Section
6.4. But first we provide some general analysis of the double stag hunt game
environment required to explain our experiments and results.

6.3 Analysis

Consider a population consisting of hare and stag agents. Let s be the proportion
of stag agents in the population. The payoff to a hare agent will be 4 in each
stag hunt game, thus hare agents will accumulate a payoff of 8 in a generation
of the double stag hunt environment. The payoff to a stag agent will depend on
s, the probability of playing another stag player in each game. An accumulated
payoff of 16 is only achieved if the agent plays another stag agent (getting a
payoff of 8) in both games, which occurs with probability s2. If the agent plays
a hare agent (getting a payoff of 0) in both games, it receives a total payoff of 0,
which occurs with probability (1 − s)2. Finally, if the agent plays a hare agent
(payoff of 0) in one game and a stag (payoff of 8) agent in the other, it receives
a total payoff of 8, which occurs with probability 2s(1 − s). Table 6 lists these



payoff distributions achieved by agents in a population consisting of hare and
stag agents in the double stag hunt game environment.

Table 6. Payoff distributions for agents in a population of stag and hare agents in
the double stag hunt environment. s denotes the proportion of stag agents in the
population.

agent hare stag

payoff 8 16 8 0

probability 1 s2 2s(1 − s) (1 − s)2

It can be shown easily that in a population of (50%) stag and (50%) hare
agents, neither strategy will have an advantage (on average) over the other un-
der either replicator dynamics or imitate-the-better. Under replicator dynamics,
the average payoff of both strategies is equal, and under imitate-the-better, the
probabilities that either strategy will achieve a higher payoff than the other is
equal. However, under both population dynamics, if one of the agent types in-
creases in population proportion due to random variation, that agent type will
bootstrap itself to take over the entire population.

Under replicator dynamics a random (arbitrarily small) increase in s will lead
to a higher average payoff of stag agents, which in turn leads to more offspring,
which again leads to a higher average payoff. More specifically, let si and si+1

be the proportion of stag agents in generation i and i+1, respectively. Then the
replicator equation (Eq. (1)) gives si+1 = si · fi(s)/Fi, where fi(s) is the average
payoff of stag agents and Fi is the average payoff of the population. Using the
payoff distribution information from Table 6, we get:

fi(s) = 16s2 + 16s(1− s) + 0(1− s)2 = 16s,

Fi = sf(s) + 8(1− s) = 16s2 − 8s+ 8,

si+1 = 16si
2/(16si

2 − 8si + 8).

Since we are are dealing with a population of only stag and hare agents, the
proportion of hare agents at any generation j is simply hj = (1− sj). Figure 2
plots si+1 and hi+1, the proportion of stag and hare agents in generation i + 1
against si, the proportion of stag agents in the previous generation. We can see
that if by random variation we arrive at a generation j in which sj 6= 0.5, if
sj < 0.5, then sj goes to 0, and if sj > 0.5, then sj goes to 1. Thus eventually
one of the agents will bootstrap themselves to take over the entire population.
If neither strategy has an advantage when s = 0.5, and we have a population
split equally between hare and stag agents, the population converges to 100%
hare or 100% stag agents with equal likelihood under replicator dynamics.

Similarly under imitate-the-better random variation in population propor-
tion will lead to the population being taken over entirely by either hare or stag
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Fig. 2. Plot of si+1, the proportion of stag agents in generation i + 1, and hi+1, the
proportion of hare agents in generation i + 1 against si, the proportion of stag agents
in generation i, under replicator dynamics.

agents. When pairing agents for imitate-the-better, we have the following possi-
ble pairing probabilities and resulting reproductions:

P(stag vs. stag) = s2, whence stag reproduces.
P(hare vs. hare) = (1− s)2, whence hare reproduces.
P(stag vs. hare) = 2s(1 − s)2, whence the agent with the higher payoff
reproduces, or a random agent if payoffs are equal.

We can calculate si+1 under imitate-the-better by combining these pairing
probabilities and the payoff distribution information from Table 6. Doing so
gives:

si+1 = P(stag vs. stag) · 1 + P(hare vs. hare) · 0 +

+ P(stag vs. hare)[P(stag ’s payoff is 16) + P(stag ’s payoff is 8)/2]

= si
2 + 2si(1− si)[si2 + si(1− si)]

= 3si
2 − 2si

3.

Figure 3 plots si+1 and hi+1 against si under imitate-the-better. We can see
that, as for replicator dynamics, an arbitrarily small increase in s will lead to a
higher reproduction probability for stag, which will in turn increase s in the next
generation. The opposite effect occurs for an arbitrary small decrease in s. As for
the replicator dynamics, eventually one of the agents will bootstrap themselves
to take over the entire population. If neither strategy has an advantage when
s = 0.5, and we have a population split equally between hare and stag agents,
the population converges to 100% hare or 100% stag agents with equal likelihood
under imitate-the-better.
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Fig. 3. Plot of si+1, the proportion of stag agents in generation i + 1, and hi+1, the
proportion of hare agents in generation i + 1 against si, the proportion of stag agents
in generation i, under imitate-the-better.

Hence we have illustrated how under both replicator dynamics and imitate-
the-better, in a population of hare and stag agents, if one of the agent types
acquires a majority in the population (possibly due to random effects), that
agent type will bootstrap itself into taking over 100% of the entire population.

6.4 Simulations and Results

Our first set of simulation experiments serves as a control and as to verify that in
a population of 50% stag and 50% hare agents, neither agent type has an advan-
tage on average. Since the above analyzed bootstrapping leads each simulation
run to converge to 100% stag or 100% hare agents, we run a large number of
simulation runs and count the amount of times the population is entirely taken
over by either agent type. Figure 4 shows the counts of each for 200 simulation
runs for an initial population of 3000 stag and 3000 hare agents under both repli-
cator dynamics and imitate-the-better. We see that the counts are very close,
confirming that neither agent type has an advantage under either population
dynamic and the population is equally likely to evolve to full cooperation (100%
stag) and full defection (100% hare).

We have hypothesized in Section 6.2 that in a population of 50% stag and
50% hare players, given the payoff matrix in Table 5, the RwS agent in our stag
hunt environment should have an evolutionary advantage under imitate-the-
better (but not replicator dynamics), as the two choices of hunting hare vs. stag
are equivalent to the safe vs. risky lottery choices in our earlier lottery games.
Our second set of experiments serves to verify this hypothesis and investigate
the impact it has on population evolution. For this set of simulations, we used an
initial population of 3000 stag, 3000 hare, and a small amount (30) of RwS agents.



Fig. 4. Simulation results for an initial population of 3000 hare and 3000 stag agents.
The plot shows the count of simulations in which the population resulted in all stag
agents (cooperation) and all hare agents (defection) for 200 simulations under each
imitate-the-better and replicator dynamics.

We again ran 200 simulations each under replicator dynamics and imitate-the-
better (the independent variable is the population dynamics used) and compare
results. The earlier described bootstrapping of stag or hare agents occurs just
the same in a population with RwS agents as it does in a population without.
Thus all of our simulations again lead to the population evolving to complete
cooperation (100% stag)or complete defection (100% hare).

Figure 5 shows the number of times that the population evolved to complete
cooperation and the number of times it evolved to complete defection under repli-
cator dynamics and under imitate-the-better. Observe that under imitate-the-
better the population evolves to all cooperators more often than under replicator
dynamics. A Pearson’s Chi-squared test shows this difference in the number of
cooperative outcomes between the two sets of simulations to be significant with
a p-value of 0.005414 (X2 = 7.7356).

6.5 Discussion

The reason a significantly higher amount of cooperation occurred under imitate-
the-better is due to the fact that the RwS strategy (as expected from our lottery
game results) had an advantageous risk behavior under the imitate-the-better
dynamics. This led to growth in the number of RwS agents during the first few
iterations (during which the stag and hare players occupied an approximately
equal population proportion). The RwS agents in the population aid the cooper-
ating stag players, since the RwS agents will play stag as long as they haven not
already received a stag payoff in an earlier game. Thus RwS agents serve as a
catalyst to stag agents. Since the RwS agents initially increase under imitate-the-
better, the chance they will boost the stag players and lead them to bootstrap
themselves into taking over the population is higher under imitate-the-better
than under replicator dynamics.



Fig. 5. Simulation results for an initial population of 3000 hare and 3000 stag agents
and 30 RwS agents. The plot shows the count of simulations in which the popula-
tion resulted in all stag agents (cooperation) and all hare agents (defection) for 200
simulations under each imitate-the-better and replicator dynamics.

Figure 6 shows a plot of the number of agents of each type from a typical
simulation run under imitate-the-better in which this “boosting” occurs. We see
that the RwS agents grew from the initial 30 to over 500 agents, which was
enough aid to the cooperating stag players for them to take over the popula-
tion. Once the stag agents grew to a significantly higher population proportion,
hunting stag is no longer as much of a risky choice, and the RwS agents begin
to decline in numbers. In summary, these experiments showed that the principle
lessons learned from our lottery game simulations can apply and impact the re-
sults of other (social) evolutionary games, in this case promoting the emergence
of cooperative behavior in an evolutionary double stag hunt environment.

7 Conclusion

We have explored risk behavior of agents through analysis and simulation of
several evolutionary games. We provided results for two types of simulations:
1) simulations of simple evolutionary lottery games that we have proposed to
study risk behavior of agents in evolutionary environments, and 2) simulations of
evolutionary stag hunt games that show how our results from the lottery games
can apply to a more complex social cooperation game.3

7.1 Evolutionary Lottery Game Simulations

Our results from several evolutionary lottery games demonstrate how the inter-
play between sequentiality of choice and population dynamics can affect decision

3 Simulation source code and result data used for this paper
are made available for download on the author’s website at
http://www.cs.umd.edu/users/roos/materials/ACS2010.html.
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Fig. 6. Agent type frequencies for a typical stag hunt simulation run under imitate-
the-better in which RwS agents grew and boost stag players, leading them to take over
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making under risk. The simulations show that a strategy other than expected-
value maximization can do well in an evolutionary environment having the fol-
lowing characteristics:

– At each generation, the agents must make a sequence of choices among al-
ternatives that have differing amounts of risk.

– An agent’s reproductive success is not directly proportional to the payoffs
produced by those choices. We specifically considered imitate-the-better; but
as pointed out in Section 5.3, we could have gotten similar results with many
other reproduction mechanisms.

The most successful strategy in our simulations, namely the RwS strategy,
exhibited behavior that was sometimes risk-prone and sometimes risk-averse de-
pending on its success or failure in the previous lottery. Such a behavioral charac-
teristic is provided for in descriptive theories of human decision making based on
empirical evidence. It is not far-fetched to suppose that when human subjects
have exhibited non-expected-value preferences in empirical studies, they may
have been acting as if their decisions were part of a greater game of sequential
decisions in which the success of strategies is not directly proportional to the
payoff earned. Apart from a purely biological interpretation, in which certain
behavioral traits are hardwired in decision-makers due to past environments,
perhaps such empirical studies capture the effects of the subjects’ learned habit
of making decisions as part of a sequence of events in their daily lives.

Our results also demonstrate (see Section 5.2) that the population makeup
can have unexpected effects on the spread and hindrance of certain risk propen-
sities. This may be an important point to consider, for example, when examining
decision-making across different cultures, societies, or institutions.



7.2 Evolutionary Stag Hunt Game Simulations

Our evolutionary stag hunt game simulations show how the results from our
simple lottery games can apply in other, more complex and commonly studied
games of social cooperation. The results show how the advantage of conditionally
risky behavior under imitate-the-better can promote the evolution of cooperation
in a situation where the cooperation requires a risky decision (namely, choosing
to cooperate). We suspect that the interplay between risk taking, sequential
choices, and population dynamics can impact a variety of other games (e.g. the
Prisoner’s Dilemma) similarly.

7.3 Future Work

General avenues for future work include investigating how a greater range of
population dynamics and sequential choices can affect risk behavior as well as
if and how such results apply to a variety of other games and situations. Our
simple lottery game simulations are a first step in exploring evolutionary mecha-
nisms which can induce behavioral traits resembling those described in popular
descriptive models of decision making. A specific related topic to explore is how
the prospect-theoretic notion of setting a reference point may relate to evolu-
tionary simulations with sequential lottery decisions. In general, there is much
more opportunity for future work to use simulation for the purpose of exploring
or discovering the mechanisms which induce, possibly in a much more elabo-
rate and precise manner, the risk-related behavior characteristics described by
prospect theory or other popular descriptive decision making models based on
aspiration levels.
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