
Symbolic Anomaly Detection and Assessment Using Growing Neural Gas

Matthew Paisner and Don Perlis
Department of Computer Science

University of Maryland
College Park, USA

{paisner, perlis}@cs.umd.edu

Michael T. Cox
Institute for Advanced Computer Studies

University of Maryland
College Park, USA
mcox@cs.umd.edu

Abstract— Metacognitive architectures provide one solution to
the brittleness problem for agents operating in complex,
changing environments. The Metacognitive Loop, in which a
system notes an anomaly, assesses the problem and guides a
solution, is one form of such an architecture. This paper
extends prior work on implementing the note phase of this
process in symbolic planning domains using the A-distance.
This extension uses a growing neural gas algorithm to
construct a network which represents various normal and
anomalous states. Testing shows that this technique allows for
improved detection of anomalies in the note phase as well as
categorization of anomalies by severity and type in the assess
phase.

Keywords: Metacognitive loop, anomaly detection, diagnosis,
comprehension, neural networks.

I. INTRODUCTION AND RELATED WORK
Intelligent agents guided by machine learning algorithms

are often very successful at well-defined, consistent tasks,
even when those tasks are very complex. However, for
autonomous agents to be effective in many real-world
settings, they must be able to deal with situations that are
more fluid. Thus a path-finding program might learn to
navigate mazes better than a person ever could, but if it tries
to apply that knowledge, unmodified, to the problem of
climbing a wall, it will fail. Of course, what the agent ought
to do is to temporarily forgo its maze navigation mastery and
either start learning from scratch or apply some alternative
algorithm that is more suited to its new task.

Anderson and Perlis [1] describe a metacognitive
approach to this type of problem, in which an agent
continuously monitors both the world and its own internal
processes in order to note problems, assess their type and
severity, and guide an appropriate response strategy. They
call this process the metacognitive loop (MCL). Several
iterations of MCL have been developed, including domain-
specific versions that guide agents to improved performance
in Q-learning [2] and natural language dialog [3] systems. A
domain-independent version of MCL based on a Bayesian
net was also developed [4] and used to guide a simulated
mars rover and for other tasks.

Recently, we have started to incorporate the MCL
approach into an integrated cognitive architecture called
MIDCA that models action and perception along with
cognition and metacognition [5, 6]. We have done so using
deterministic, symbolic, planning domains like blocksworld

(in which agents arrange blocks in stacks) and logistics (a
package delivery scenario). Because they are defined by
statements in a predicate logic, such domains are very
amenable to logic- and explanation-based approaches to
behavior and hence the note, assess, guide procedure. Noting
anomalies in symbolic domains usually requires the explicit
representation of expectations such as the expected effects of
an action (e.g., see [7]). But surprising or otherwise non-
explicit change is more difficult to detect despite extensive
research in anomaly detection for numeric domains (e.g. [8,
9, 10, 11, 12, 13]).1 For symbolic domains, such anomaly
detection would require the adaptation of statistical
techniques that were designed for real-valued, time series
data.

One such technique, the A-distance [15], uses a statistical
comparison between a baseline window of “normal” data
and a sliding window of recent observations to detect shifts
in the underlying distribution. Researchers have successfully
applied this approach to domain adaptation work in natural
language tasks [16, 17, 18]. More recently, we have tested an
A-distance implementation of the MCL note phase within
the MIDCA architecture [19, 20]. This approach was
successful as an anomaly detection procedure but left some
issues unexamined. First, A-distance requires the choice of a
threshold value to determine how different a state must be
from the baseline to be called an anomaly. One approach
(used in [19]) is to try several different values. However, for
real-time anomaly detection, this may not always be
practical. Second, while the adaptation of A-distance to
symbolic domains during the note phase is novel, the
explanation of anomalies in the assess phase is currently
simplistic, making no attempt to diagnose it in terms of
severity or type.

This paper aims to begin the work of addressing these
issues. The following sections will describe a method of
using A-distance values as inputs to a growing neural gas
(GNG) network [21]. This results in a network in which
certain nodes correspond to anomalous data thereby
providing two benefits. First, because the network grows or
shrinks to fill the input space representing a given set of
baseline data, it can self-calibrate to recognize anomalies of
various types without the necessity for a user-selected
epsilon value. Second, the nodes of the network do not
simply present a Boolean “anomalous” or “normal” result

1 A large body of work on anomaly detection in data streams also exists
[14].

but can be seen as prototypes with each node representing an
anomaly of a certain type and intensity. This information can
then be used to help determine the most appropriate choice
of strategies.

The next section will explain the outputs generated by
applying A-distance to a predicate-logic state representation
and how those outputs are used as inputs to a GNG network.
Subsequently, we will detail the experiments performed and
present data on both the success of the GNG/A-distance
combination in anomaly detection and in anomaly
assessment. Finally, we conclude and discuss future research,
including the ways in which we anticipate using the results
of this work in a complete version of MCL.

II. METHODS

A. A-distance in planning domains
We conducted a set of experiments using a simple

logistics world [22], a symbolic planning domain in which
airplanes and trucks are tasked to deliver packages. Logistics
is a deterministic world in which states are defined by sets of
assertions in predicate logic. As an example, consider state
shown in Fig. 1. This simple configuration consists of two
trucks, two planes and two packages each located in one of
two cities. Each city has both a post office and an airport.

Figure 1: Pictorial representation of a state in the logistics domain

Fig. 2 shows a simplified predicate representation of the
state in Fig. 1. Static predicates representing the locations of
airports and post offices and their relations have been
omitted.

At-Truck (TruckC, Airport_A)
At-Truck (TruckB, Airport_B)
At-Plane (PlaneA, Airport_A)
At-Plane (PlaneB, Airport_B)
At-Package (ObjectC, PostOffice_A)
Inside-Truck (ObjectA, TruckA)
Inside-Truck (ObjectB, TruckB)

Figure 2: Predicate representation of a state in the logistics domain

From such a state, a classical planner can generate a plan
to achieve a given list of goals. Such plans constitute a
stream of observations. Previously we introduced a method
for applying A-distance to series of these plans in order to
detect when changes occur in the observation stream [19]
(for example, when the ability to unload airplanes has been
removed). The full details of that method will not be
revisited here, but it is important to the present paper to
describe the output of the procedure.

First, we note that A-distance makes use of two
“windows” of data, each of size n, to detect anomalies. The
first window consists of the first n observations, which are
assumed to come from a baseline distribution. The second
window slides along the data stream and always contains the
n most recent data points. The value of A-distance at time t is
a function of the difference between the distributions of data
in the two windows, [0, n) and (t-n, t]. The output of running
A-distance on a data stream, then, is another data stream,
with the value at step t indicating how anomalous were the n
data points up to and including t in the initial stream.2 In
other words, if I is an input data stream, and A is the
resulting A-distance stream, then A[t] measures the
“anomalousness” of the range I[t-n…t].

We use multiple data streams of predicate counts to
represent a series of plans [19]. For example, the state in Fig.
2 contains three At-truck predicates. If that state was the start
state in a plan, then the first value for the At-truck predicate
stream would be the number three, the second value would
be the number of At-truck predicates in the state after one
step, and so on. We generate one of these streams for each
predicate in the source domain, and run A-distance
separately on each stream. The output from running A-
distance on these predicate count streams is a series of output
streams, with the stream corresponding to a given predicate
reflecting the degree to which that predicate’s usage is
anomalous at each time step. An anomaly is reported at time
t when the value of any of the output streams at t is greater
than a threshold parameter epsilon. Fig. 3 shows an example
of output streams for three predicates.

[0.13	
 0.24	
 0.30	
 0.36	
 0.36]	
 (At-Package)	

[0.16	
 0.20	
 0.20	
 0.20	
 0.18]	
 (Inside-Plane)	

[0.13	
 0.21	
 0.26	
 0.32	
 0.34]	
 (Inside-Truck)	

Figure 3: A-distance streams for three predicates

The underlined values are those that would be considered
anomalous at an epsilon value of 0.3. The last three time
steps in the sequence shown would then be considered part
of an anomaly. In this example, it seems likely that the
anomaly has to do with packages being transferred to and
from trucks in unusual numbers, since the At-Package
predicate (which reflects packages being located at airports
or post offices) and the Inside-Truck predicate are the ones
that generate the anomaly.

Sets of predicate-associated output vectors like those in
Fig. 3 will be the inputs to the algorithm described below.

2	
 For t < n, A-distance is defined to be 0 since the baseline window is not
yet full.	

PostOffice-­‐B

Airport-­‐A

Airport-­‐B

Plane-­‐B

Plane-­‐A

Truck-­‐A

Truck-­‐B

Object-­‐A

Object-­‐B

Object-­‐C

Truck-­‐C

City-­‐B

City-­‐A

B. Growing Neural Gas
The algorithm we apply to the A-distance output vectors

is a modified version of a growing neural gas network [21].
A basic neural gas network [23] consists of only two layers,
input and output. The algorithm uses one-shot single-winner
competitive learning, in which the winning output node is
picked based on Euclidean distance from the input vector.
Equation (1) shows the learning rule for the winner.

 dw = n(a - w) (1)

Here a is the input vector, n is the learning rate and w is
the node’s weight vector. Neighbors of the winning node
also learn, but with a smaller value of n. The output of the
network also reflects a single-winner dynamic, with only that
node turned on.

Growing neural gas (GNG) adds the behavior of allowing
output nodes to be created and eliminated to better fit the
structure of the input data. In Fritzke’s [21] classic model, an
error value is stored for each node, based on the total squared
distance from that node to all inputs for which it was the
winner. New nodes are then added near the nodes with the
highest error rates at fixed time intervals. Each new node has
an edge connecting to the high error node near to which it
was placed.

This approach is intended to induce higher sensitivity in
areas where a greater input density exists. However, it is less
effective at accounting for small anomalous data clusters that
are disconnected from the larger mass of normal data,
especially when those clusters are present only during a short
interval and then cease. One reason why this pattern is less
easily captured is that anomalous data will occur much less
frequently, so that it is difficult for a node to move all the
way out to the location of the actual cluster without being
pulled back towards the center by the more frequent input
patterns. Also, even if a node does reach the correct location,
if the outlying input patterns stop being expressed it will drift
away due to the pull of its neighbors, and the network will
“forget” about the anomaly rather quickly.

The solution to this issue employed in the present
experiments is two-fold. First, the method of adding nodes
has been changed. For the purposes of anomaly detection, it
is actually counterproductive to add more nodes in a small
area of high concentration, as the old algorithm tends to do.
Therefore, the version of GNG used herein adds nodes based
on distance – when an input pattern is near no currently
existing node, a new node is created at the point specified by
the input. This allows brief or unusually anomalous events to
be detected. Second, the neighbor learning rate has been
reduced to zero, preventing the pull of outlying nodes back
to the center. This prevents GNG from effectively
performing its function as a topological map but makes it
more useful as a flexible clustering method. Table 1 shows
the modified GNG update algorithm. Note that this algorithm
does not track error values, nor does it add nodes at any
specific time interval. Additionally, the step of updating
neighbors of the selected node is omitted.

Table 1. GNG update algorithm

Function GNG_update(inputV, maxDistance, learnRate):
closestNode = get_closest_to(inputV)

 if distance(closestNode, inputV) > maxDistance:
 create_node_at(inputV)
 else:
 move_towards(closestNode, inputV, learnRate)
 for node in nodes:
 if node.time_since_nearby_update > maxAge:
 delete(node)

C. A-distance as input to growing neural gas
As described above, the note phase produces a series of

A-distance vectors as output with each vector reflecting the
abnormality of the distribution of a single predicate at each
time step. The input data to GNG is the series of vectors
created by, at each time step, concatenating the values from
all input streams. So, for a system with k predicate streams,
observed at T time steps, the input to GNG would be T
vectors of length k, with each vector corresponding to a
single time step t and reflecting the A-distance values for all
predicates at t. GNG’s input space is then a k-dimensional
space in which each dimension represents the relative
contribution to an anomaly for a particular predicate.

Over time, the GNG network develops a set of nodes,
which correspond to prototypes of normal and anomalous
world states. Since the input data reflect a measurement of
abnormality, nodes with larger values can be seen as more
anomalous. The degree to which each prototype is
anomalous, then, can be crudely determined by the distance
from the node to the origin. We call this value the severity of
the anomaly. Additionally, the anomaly type of any input
state can be determined by referring to the network’s
activated output node and the dimensions along which the
node exists.

To provide a Boolean anomaly detection result, this
algorithm is run on a set of baseline data. The requirement
for such a guaranteed set of normal data is not an issue,
because A-distance already makes this assumption for the
calibration of the baseline window. Fig. 4 shows an example
of a small baseline network.

Figure 4: A baseline GNG net (no anomalous data). Darker nodes are
closer to the viewer. Note that nodes are clustered close to the origin,

reflecting low A-distance values for all predicates.

Once a network is generated using this data, the anomaly
threshold distance DA from the origin is defined as the
maximum distance of any qualifying node in the baseline
network. 3 Once DA is calculated, the algorithm is run
normally on the test data to generate a new network. If the
distance from the activated node for an input to the origin is
greater than DA, that input is considered anomalous. An
example of a network generated from both normal and
anomalous data is shown in Fig.5. The shaded region is a
sphere centered at the origin with radius DA and represents
the area in which nodes are considered normal. Note that the
shaded region is the smallest sphere centered at the origin
that would contain all nodes shown in Fig. 4.

Figure 5: GNG net with anomalous data. The shaded area represents the

normal region derived from baseline data. Nodes are colored to show
classification as normal or anomalous.

3 Nodes must have been updated a minimum number of times to qualify.
We used 3 for this number; its purpose is to avoid extremely obvious
outliers, such as nodes that have been created and then never activated
again.

 Using this method, a time step is classified as anomalous
if the node that is activated by the vector of A-distance
output at that step is outside the normal region. Because a
GNG network naturally expands to fill its input space, the
size of this region, and therefore the sensitivity of anomaly
detection, will reflect the variability of normal data in the
domain. Data on the effectiveness of this method will be
presented in Section IV.

III. EXPERIMENTAL SETUP
All experimental data were drawn from randomly

generated world states and goals in the logistics domain
described above. To create anomalous data, planning was
done with one operator removed. The data included only
those world state/goal combinations for which a plan was
successfully generated.

We used three data sets for testing. The first, the
“airplane anomaly” set, consisted of 500 normal plans and
100 plans with the unload-airplane operator removed. The
second, designated “truck anomaly”, also had 500 normal
plans and 100 with the unload-truck operator removed. The
third, “two anomaly”, had 500 normal plans and two separate
anomalous sections of 100 plans, the first of which had the
unload-airplane operator removed, and the second unload-
truck.

We conducted trials using variable concentrations of
anomalous plans in the anomalous intervals. The varying
concentrations represent anomalies of different intensities.
For example at intensity 0.2, only 20% of the 100 plans in
each anomalous section were actually anomalous, thus
signifying a very faint anomaly. For comparison, we ran
trials on each data set multiple times. Some experiments used
A-distance with several epsilon values but no GNG network.
Other trials used the combined A-distance/GNG method. We
ran fifty trials for each pair of (data set, intensity level),
where intensities ranged from 0 to 1 by units of 0.1.

IV. RESULTS
For each method, including the A-distance/GNG

combination as well as A-distance alone using several
epsilon values, reported anomalies at each step were
recorded and expected results calculated. The expected
outcome at a time step was ‘anomalous’ if at least P% of the
values within the sliding window came from anomalous
plans, i.e., those that were generated with an operator
removed. We calculated F1 (a weighted average of precision
and recall) for each method and at several values of P from 1
to 50 (to clarify, P=50 means that an anomaly is defined as a
step at which at least half of the data in the sliding window
was generated by planning with an operator removed). Fig. 6
shows the average F1 values by test setup for each of the
three data sets.

On each data set, the GNG network (the rightmost
column) performed slightly worse than the best epsilon
value. However, to select the best epsilon value required
testing using a priori knowledge of which data came from
anomalous sources; whereas GNG was initialized using only
a set of baseline data.

Figure 6: F1 values from testing using different epsilon values and GNG.

Results were averaged across all P values.

These results therefore suggest that while the addition of
processing with GNG may not be useful given a domain and
anomaly set whose characteristics are well known, it does
come very close to optimizing the performance of A-distance
without requiring any prior information on the type of
anomalies that will occur. In the context of MCL and
MIDCA, which are intended to be employed in a wide
spectrum of domains that may change unpredictably, this is a
valuable feature.

Besides improving the flexibility of anomaly detection,
this method provides useful information as the MCL cycle
moves into the assessment phase. GNG’s contribution to this
goal is to provide groupings of anomalies by type and
severity so that a newly noted anomaly can be quickly
categorized, allowing a more robust diagnosis procedure to
narrow down its list of options.

Fig. 7 graphs assignments of world states to nodes during
the anomalous segments of the two-anomaly data set at
intensity 1. The x-axis counts steps from the sliding
window’s entry into the anomalous section. The y-axis
reflects which output node was selected at a given time step.
The nodes are sorted in terms of severity from least
anomalous (1) to most anomalous (8).

Figure 7: Activated node from GNG network for each time step from 100

before to 100 after each anomaly, for the two-anomaly data set.

This graph contains two significant features. First, other
than at the very edges of each anomaly (when most of the
data in the sliding window is normal), the two anomaly types
map to two non-intersecting sets of nodes: the truck anomaly
maps to nodes 4, 6 and 8, while the airplane anomaly maps
to 3, 5 and 7. So, the GNG network is able to differentiate
between anomalies of different types. Second, in both cases

there is a clear progression as a larger percentage of the
window slides into the anomalous region. At first GNG maps
to nodes that are slightly anomalous (3, 4), then nodes that
are moderately anomalous (5, 6) and finally those that are
fully anomalous (7, 8) as the window’s back edge enters the
anomaly. This pattern is reversed as the window slides out of
the anomalous section, showing that the network has
generated anomaly prototypes which reflect intensity as well
as type.

Fig. 8 shows the network containing these nodes. Normal
nodes 1 and 2 are contained in the shaded region, while the
nodes mapped to truck and airplane anomalies arc out along
the axes corresponding to those A-distance values. The three
red dots have much higher values along the Inside-Truck
axis and only slightly larger than normal one along the other
two axes, while the blue dots’ values increase primarily in
the direction of the Inside-Airplane axis.

V. DISCUSSION
Both A-distance and Growing Neural Gas are established

techniques. The use of GNG to perform online clustering of
A-distance data, however, opens up new possibilities for an
agent that is attempting to adapt to a changing world. The
first of these is the ability to dispense with user-selected
epsilon values. Because a GNG network grows to fill its
input space, it can organically generate a threshold that
provides results comparable with the best possible epsilon
choice.

Figure 8: GNG net with two different anomalous data sets. The shaded area
represents the normal region derived from baseline data (see end of section

III for details). Nodes are colored to reflect classification by anomaly
status: red nodes were activated during the truck anomaly, blue nodes

during the airplane anomaly.

Secondly, the network generated by GNG provides a
unique perspective on anomaly analysis. A simpler approach
might have been to run GNG, or another online clustering
algorithm, on raw state data. By using A-distance data
instead, we create a network whose nodes represent not
similar states but similar anomalies. Further, because the
input data have a consistent meaning – a larger coordinate

0	

0.5	

1	

0.
1	

0.
2	

0.
3	

0.
4	

0.
5	

0.
6	

M
ea
n	

F1
	

Epsilon	
 Value	
 (or	
 GNG)	

Truck	
 Anomaly	

Airplane	

Anomaly	

Two	
 Anomaly	

1	

3	

5	

7	

-­‐100	
 0	
 100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	

Truck	
 Anomaly	

Airplane	

Anomaly	

value corresponds to a larger disparity from normal for the
corresponding predicate – we have actually gained more
information than simply a set of clusters. If a selected node is
just above the anomaly threshold, we can surmise that it
might simply be an outlier or a weak anomaly. If the selected
node has a very high value for the “inside-airplane”
coordinate and a very low one for “inside truck,” we know
that something strange is happening with the airplane fleet,
but we probably do not need to spend much time worrying
about our trucks.

Because the approach of MCL is to fix problems by first
deducing what has gone wrong, the added semantics of a net
constructed from A-distance predicate data are important.
When presented with a weak anomaly, MCL might want to
wait for confirmation, or pursue a conservative strategy. If
the anomaly is caused by changes to the plane-related
predicates, it should keep trucks running as they have been
while employing reasoning or learning techniques to
reevaluate airplane control strategies. The ability to use data-
driven techniques like GNG and A-distance to generate
semantic knowledge about the type of failure that is being
experienced gives MCL a significant head start in more
conventional approaches to reasoning and a clearer target for
directed learning.

VI. FUTURE WORK
The simplest way to build on the work described in this

paper would be to try to improve the clustering process. We
have made several changes to GNG to adapt it to use in
MCL, but it might be beneficial to incorporate other
clustering algorithms and variations, for example as in [24].

The use of GNG with A-distance improves upon
previous research with the MCL note phase. But its primary
purpose is to expand those results into a useful tool for the
assess phase in a push towards a working implementation of
MCL for symbolic domains. Aside from optimization, then,
the next step will be to move to the final stage of MCL and
use the information from GNG prototypes to direct a strategy
change. In the logistics domain, a simple example might
feature an agent that has two choices of planning algorithms:
one that emphasizes ground transport and one air transport.
When an anomaly occurs, it could decide whether to switch
algorithms on the basis of anomaly type and severity as
indicated by the active GNG node.

Another avenue of research will focus on combining the
data-driven techniques discussed herein with a knowledge-
rich approach to assessment. A significant appeal of logically
formulated domains like logistics is that they are by nature
amenable to techniques of case-based reasoning (e.g., [25,
26]). MCL should be able to utilize this type of process
alongside and with the aid of techniques like the GNG/A-
distance algorithm. Once this area has been explored and
combined with present work, we hope to have a version of
MCL that can autonomously aid an agent in dealing with
adversity across a wide range of domains and problem types.

VII. CONCLUSION
This research stands in a broad context that seeks to

examine the mechanisms and the means under which

cognitive systems make intelligent decisions and act
independently over long periods of time and in situations of
change and complexity [27, 28]. Our contention is that
robust behavior in the face of surprise is a function of many
aspects of intelligence including action and perception, and
cognition and metacognition. We are in the early stages of
developing an integrated cognitive architecture that specifies
these components. The cognitive mechanisms include both
problem-solving and comprehension and involve significant
amounts of learning. This paper has examined the first two
phases in the note-assess-guide procedure which supports the
interpretive mechanisms of comprehension and failure
recognition. Although we have concentrated upon the data-
driven features in these phases, we are working towards the
interaction of data-driven algorithms with knowledge-rich
methods (see [5]). Current progress and empirical results as
reported here lead us to expect interesting research ahead.

ACKNOWLEDGMENT
We thank ONR and ARO for their support through ONR

Grants # N00014-12-1-0430 and # N00014-12-1-0172 and
ARO Grant # W911NF-12-1-0471. We also thank Josh
Brulé, Michael Maynord and our anonymous reviewers for
their helpful comments and feedback.

REFERENCES
[1] M. L. Anderson and D. Perlis . “Logic, self-awareness and

self-improvement: The metacognitive loop and the problem of
brittleness,” Journal of Logic and Computation, 15.1, 2005.

[2] M. L. Anderson, T. Oates, W. Chong, and D. Perlis, “The
metacognitive loop I: enhancing reinforcement learning with
metacognitive monitoring and control for improved
perturbation tolerance,” Journal of Experimental and
Theoretical Artificial Intelligence, 18.3, pp. 387-411, 2006.

[3] D. Josyula, S. Fults, M. L. Anderson, S. Wilson, and D.
Perlis, “Application of MCL in a dialog agent,” in Third
Language and Technology Conference, 2007.

[4] M. D. Schmill, M. L. Anderson, S. Fults, D. Josyula, T.
Oates, D. Perlis, H. Haidarian, S. Wilson, and D. Wright.
“The metacognitive loop and reasoning about anomalies,” In
M. T. Cox and A. Raja (Eds.), Metareasoning: thinking about
thinking (pp. 183-198), Cambridge, MA: MIT Press, 2011.

[5] M. T. Cox, M. Maynord, M. Paisner, D. Perlis, and T. Oates,
“The integration of cognitive and metacognitive processes
with data-driven and knowledge-rich structures,” Proc.
Annual Meeting of the International Association for
Computing and Philosophy, IACAP-2013, 2013.

[6] M. Maynord, M. T. Cox, M. Paisner, and D. Perlis, “Data-
driven goal generation for integrated cognitive systems,” To
appear in C. Lebiere & P. S. Rosenbloom (Eds.), Integrated
Cognition: Papers from the 2013 Fall Symposium. Menlo
Park, CA: AAAI Press, , in press.

[7] M. Klenk, M. Molineaux, and D. Aha, “Goal-driven
autonomy for responding to unexpected events in strategy
simulations,” Computational Intelligence, 29.2, pp. 187–206,
2013.

[8] S. Albrecht, J. Busch, M. Kloppenburg, F. Metze, and P.
Tavan, “Generalized radial basis function networks for
classification and novelty detection: self-organization of
optional Bayesian decision,” Neural Networks 13(10), pp.
1075–1093, 2000.

[9] M. Basseville and I. V. Nikiforov, Detection of abrupt
changes - theory and application. Englewood Cliffs, NJ,
Prentice-Hall, 1993.

[10] P. Crook and G. Hayes, “A robot implementation of a
biologically inspired method for novelty detection,” in Proc.
Towards Intelligent Mobile Robots Conference, Edinburgh,
Scotland, Division of Informatics, University of Edinburgh,
2001.

[11] T. Fawcett and F. Provost, “Activity monitoring: noticing
interesting changes in behavior,” in Proc. 5th International
Conference on Knowledge Discovery and Data Mining
(SIGKDD99), pp. 53-62, New York: Association for
Computing Machinery, 1999.

[12] J. Janssens, E. Postma, J. Hellemons (Eds.), Proc.
International Workshop on Maritime Anomaly Detection
2011, Tilburg, The Netherlands: Tilburg Center for Cognition
and Communication, Tilburg University, 2011.

[13] G. Pannell and H. Ashman, “Anomaly detection over user
profiles for intrusion detection,” in Proc. 8th Australian
Information Security Management Conference, Perth,
Western Australia: Edith Cowan University, 2010.

[14] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly
detection: A survey,” ACM Computing Surveys 41(3), 2009

[15] D. Kifer, S. Ben David, and J. Gehrke, “Detecting change in
data streams,” In Proc. Thirtieth Very Large Databases
Conference, pp. 80-191, 2004.

[16] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation
with structural correspondence learning,” Proc. 2006
Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2006.

[17] J. Blitzer, M. Dredze, and F. Pereira, “Biographies,
Bollywood, boom-boxes and blenders: domain adaptation for
sentiment classification,” in Association for Computational
Linguistics Vol. 7, pp. 440-447, 2007.

[18] M. Dredze, T. Oates, and C. Piatko, “We're not in Kansas
anymore: detecting domain changes in streams,” in Proc.
EMNLP '10, pp. 585-595, 2010.

[19] M.T. Cox, T. Oates, M. Paisner, D. Perlis. “Noting anomalies
in streams of symbolic predicates using A-distance,”
Advances in Cognitive Systems 2, pp. 167-184, 2012.

[20] M.T. Cox, T. Oates, M. Paisner, and D. Perlis, “Detecting
change in diverse symbolic worlds,” in L. Correia, L. P. Reis,
L. M. Gomes, H. Guerra, & P. Cardoso (Eds.), Advances in
Artificial Intelligence, 16th Portuguese Conference on
Artificial Intelligence, University of the Azores, Portugal:
CMATI, pp. 179-190, 2013.

[21] B Fritzke, “A growing neural gas network learns topologies,”
in Advances in Neural Information Processing Systems 7,
MIT Press, Cambridge MA, 1995.

[22] M. M. Veloso, “Learning by analogical reasoning in general
problem solving,” Doctoral Dissertation, Carnegie Mellon
University, Pittsburgh, PA, 1992.

[23] T. Martinez and K. Schulten, “A neural-gas network learns
topologies,” in T. Kohonen, K. Makisara, O. Simula, and J.
Kangas (Eds.), Artificial Neural Networks, B.V., North
Holland: Elsevier Science Publishers, 1991.

[24] B. Hammer, M. Strickert, T. Villman, “Supervised neural gas
with general similarity measure,” in Neural Processing Letters
21(1), pp. 21-44, 2005.

[25] J. Kolodner, “Case-based reasoning,” San Francisco, Morgan
Kaufmann, 1993.

[26] R.L. de Manteras, D. McSherry, D. Bridge, D. Leake, B.
Smith, S. Craw, B. Faltings, M.L. Maher, M.T. Cox, K.
Forbus, M. Keane, A Aamodt, and I. Watson, “Retrieval,
reuse and retention in case-based reasoning,” Knowledge
Engineering Review, 20(3), pp. 215-240, 2006.

[27] M.T. Cox, “Perpetual self-aware cognitive agents,” AI
Magazine 28(1), pp. 32-45, 2007.

[28] D. Perlis, M. T Cox, M. Maynord, E. McNany, M. Paisner, V.
Shivashankar, J. Shamwell, T. Oates, T.-C. Du, D. Josyula,
and M. Caro “A broad vision for intelligent behavior:
Perpetual real-world cognitive agents,” unpublished.

