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Abstract— Metacognitive architectures provide one solution to 
the brittleness problem for agents operating in complex, 
changing environments. The Metacognitive Loop, in which a 
system notes an anomaly, assesses the problem and guides a 
solution, is one form of such an architecture. This paper 
extends prior work on implementing the note phase of this 
process in symbolic planning domains using the A-distance. 
This extension uses a growing neural gas algorithm to 
construct a network which represents various normal and 
anomalous states. Testing shows that this technique allows for 
improved detection of anomalies in the note phase as well as 
categorization of anomalies by severity and type in the assess 
phase. 

Keywords: Metacognitive loop, anomaly detection, diagnosis, 
comprehension, neural networks. 

I.  INTRODUCTION AND RELATED WORK 
Intelligent agents guided by machine learning algorithms 

are often very successful at well-defined, consistent tasks, 
even when those tasks are very complex. However, for 
autonomous agents to be effective in many real-world 
settings, they must be able to deal with situations that are 
more fluid. Thus a path-finding program might learn to 
navigate mazes better than a person ever could, but if it tries 
to apply that knowledge, unmodified, to the problem of 
climbing a wall, it will fail. Of course, what the agent ought 
to do is to temporarily forgo its maze navigation mastery and 
either start learning from scratch or apply some alternative 
algorithm that is more suited to its new task.  

Anderson and Perlis [1] describe a metacognitive 
approach to this type of problem, in which an agent 
continuously monitors both the world and its own internal 
processes in order to note problems, assess their type and 
severity, and guide an appropriate response strategy. They 
call this process the metacognitive loop (MCL). Several 
iterations of MCL have been developed, including domain-
specific versions that guide agents to improved performance 
in Q-learning [2] and natural language dialog [3] systems. A 
domain-independent version of MCL based on a Bayesian 
net was also developed [4] and used to guide a simulated 
mars rover and for other tasks. 

Recently, we have started to incorporate the MCL 
approach into an integrated cognitive architecture called 
MIDCA that models action and perception along with 
cognition and metacognition [5, 6]. We have done so using 
deterministic, symbolic, planning domains like blocksworld 

(in which agents arrange blocks in stacks) and logistics (a 
package delivery scenario). Because they are defined by 
statements in a predicate logic, such domains are very 
amenable to logic- and explanation-based approaches to 
behavior and hence the note, assess, guide procedure. Noting 
anomalies in symbolic domains usually requires the explicit 
representation of expectations such as the expected effects of 
an action (e.g., see [7]). But surprising or otherwise non-
explicit change is more difficult to detect despite extensive 
research in anomaly detection for numeric domains (e.g. [8, 
9, 10, 11, 12, 13]).1 For symbolic domains, such anomaly 
detection would require the adaptation of statistical 
techniques that were designed for real-valued, time series 
data.  

One such technique, the A-distance [15], uses a statistical 
comparison between a baseline window of “normal” data 
and a sliding window of recent observations to detect shifts 
in the underlying distribution. Researchers have successfully 
applied this approach to domain adaptation work in natural 
language tasks [16, 17, 18]. More recently, we have tested an 
A-distance implementation of the MCL note phase within 
the MIDCA architecture [19, 20]. This approach was 
successful as an anomaly detection procedure but left some 
issues unexamined. First, A-distance requires the choice of a 
threshold value to determine how different a state must be 
from the baseline to be called an anomaly. One approach 
(used in [19]) is to try several different values. However, for 
real-time anomaly detection, this may not always be 
practical. Second, while the adaptation of A-distance to 
symbolic domains during the note phase is novel, the 
explanation of anomalies in the assess phase is currently 
simplistic, making no attempt to diagnose it in terms of 
severity or type. 

This paper aims to begin the work of addressing these 
issues. The following sections will describe a method of 
using A-distance values as inputs to a growing neural gas 
(GNG) network [21]. This results in a network in which 
certain nodes correspond to anomalous data thereby 
providing two benefits. First, because the network grows or 
shrinks to fill the input space representing a given set of 
baseline data, it can self-calibrate to recognize anomalies of 
various types without the necessity for a user-selected 
epsilon value. Second, the nodes of the network do not 
simply present a Boolean “anomalous” or “normal” result 

                                                             
1 A large body of work on anomaly detection in data streams also exists 
[14].  



but can be seen as prototypes with each node representing an 
anomaly of a certain type and intensity. This information can 
then be used to help determine the most appropriate choice 
of strategies. 

The next section will explain the outputs generated by 
applying A-distance to a predicate-logic state representation 
and how those outputs are used as inputs to a GNG network. 
Subsequently, we will detail the experiments performed and 
present data on both the success of the GNG/A-distance 
combination in anomaly detection and in anomaly 
assessment. Finally, we conclude and discuss future research, 
including the ways in which we anticipate using the results 
of this work in a complete version of MCL. 

II. METHODS 

A. A-distance in planning domains 
We conducted a set of experiments using a simple 

logistics world [22], a symbolic planning domain in which 
airplanes and trucks are tasked to deliver packages. Logistics 
is a deterministic world in which states are defined by sets of 
assertions in predicate logic. As an example, consider state 
shown in Fig. 1. This simple configuration consists of two 
trucks, two planes and two packages each located in one of 
two cities. Each city has both a post office and an airport. 

 

 
Figure 1: Pictorial representation of a state in the logistics domain 

Fig. 2 shows a simplified predicate representation of the 
state in Fig. 1. Static predicates representing the locations of 
airports and post offices and their relations have been 
omitted. 

   
At-Truck (TruckC, Airport_A) 
At-Truck (TruckB, Airport_B) 
At-Plane (PlaneA, Airport_A) 
At-Plane (PlaneB, Airport_B) 
At-Package (ObjectC, PostOffice_A) 
Inside-Truck (ObjectA, TruckA) 
Inside-Truck (ObjectB, TruckB) 

Figure 2: Predicate representation of a state in the logistics domain 

From such a state, a classical planner can generate a plan 
to achieve a given list of goals. Such plans constitute a 
stream of observations. Previously we introduced a method 
for applying A-distance to series of these plans in order to 
detect when changes occur in the observation stream [19] 
(for example, when the ability to unload airplanes has been 
removed). The full details of that method will not be 
revisited here, but it is important to the present paper to 
describe the output of the procedure.  

First, we note that A-distance makes use of two 
“windows” of data, each of size n, to detect anomalies. The 
first window consists of the first n observations, which are 
assumed to come from a baseline distribution. The second 
window slides along the data stream and always contains the 
n most recent data points. The value of A-distance at time t is 
a function of the difference between the distributions of data 
in the two windows, [0, n) and (t-n, t]. The output of running 
A-distance on a data stream, then, is another data stream, 
with the value at step t indicating how anomalous were the n 
data points up to and including t in the initial stream.2 In 
other words, if I is an input data stream, and A is the 
resulting A-distance stream, then A[t] measures the 
“anomalousness” of the range I[t-n…t]. 

We use multiple data streams of predicate counts to 
represent a series of plans [19]. For example, the state in Fig. 
2 contains three At-truck predicates. If that state was the start 
state in a plan, then the first value for the At-truck predicate 
stream would be the number three, the second value would 
be the number of At-truck predicates in the state after one 
step, and so on. We generate one of these streams for each 
predicate in the source domain, and run A-distance 
separately on each stream. The output from running A-
distance on these predicate count streams is a series of output 
streams, with the stream corresponding to a given predicate 
reflecting the degree to which that predicate’s usage is 
anomalous at each time step. An anomaly is reported at time 
t when the value of any of the output streams at t is greater 
than a threshold parameter epsilon. Fig. 3 shows an example 
of output streams for three predicates.  

 
[0.13	
   0.24	
   0.30	
   0.36	
   0.36]	
   (At-Package)	
  
[0.16	
   0.20	
   0.20	
   0.20	
   0.18]	
   (Inside-Plane)	
  
[0.13	
   0.21	
   0.26	
   0.32	
   0.34]	
   (Inside-Truck)	
   

Figure 3: A-distance streams for three predicates 

The underlined values are those that would be considered 
anomalous at an epsilon value of 0.3. The last three time 
steps in the sequence shown would then be considered part 
of an anomaly. In this example, it seems likely that the 
anomaly has to do with packages being transferred to and 
from trucks in unusual numbers, since the At-Package 
predicate (which reflects packages being located at airports 
or post offices) and the Inside-Truck predicate are the ones 
that generate the anomaly. 

Sets of predicate-associated output vectors like those in 
Fig. 3 will be the inputs to the algorithm described below. 

                                                             
2	
  For t < n, A-distance is defined to be 0 since the baseline window is not 
yet full.	
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B. Growing Neural Gas 
The algorithm we apply to the A-distance output vectors 

is a modified version of a growing neural gas network [21]. 
A basic neural gas network [23] consists of only two layers, 
input and output. The algorithm uses one-shot single-winner 
competitive learning, in which the winning output node is 
picked based on Euclidean distance from the input vector. 
Equation (1) shows the learning rule for the winner. 

 dw = n(a - w) (1) 

Here a is the input vector, n is the learning rate and w is 
the node’s weight vector. Neighbors of the winning node 
also learn, but with a smaller value of n. The output of the 
network also reflects a single-winner dynamic, with only that 
node turned on. 

Growing neural gas (GNG) adds the behavior of allowing 
output nodes to be created and eliminated to better fit the 
structure of the input data. In Fritzke’s [21] classic model, an 
error value is stored for each node, based on the total squared 
distance from that node to all inputs for which it was the 
winner. New nodes are then added near the nodes with the 
highest error rates at fixed time intervals. Each new node has 
an edge connecting to the high error node near to which it 
was placed.  

This approach is intended to induce higher sensitivity in 
areas where a greater input density exists. However, it is less 
effective at accounting for small anomalous data clusters that 
are disconnected from the larger mass of normal data, 
especially when those clusters are present only during a short 
interval and then cease. One reason why this pattern is less 
easily captured is that anomalous data will occur much less 
frequently, so that it is difficult for a node to move all the 
way out to the location of the actual cluster without being 
pulled back towards the center by the more frequent input 
patterns. Also, even if a node does reach the correct location, 
if the outlying input patterns stop being expressed it will drift 
away due to the pull of its neighbors, and the network will 
“forget” about the anomaly rather quickly. 

The solution to this issue employed in the present 
experiments is two-fold. First, the method of adding nodes 
has been changed. For the purposes of anomaly detection, it 
is actually counterproductive to add more nodes in a small 
area of high concentration, as the old algorithm tends to do. 
Therefore, the version of GNG used herein adds nodes based 
on distance – when an input pattern is near no currently 
existing node, a new node is created at the point specified by 
the input. This allows brief or unusually anomalous events to 
be detected. Second, the neighbor learning rate has been 
reduced to zero, preventing the pull of outlying nodes back 
to the center. This prevents GNG from effectively 
performing its function as a topological map but makes it 
more useful as a flexible clustering method. Table 1 shows 
the modified GNG update algorithm. Note that this algorithm 
does not track error values, nor does it add nodes at any 
specific time interval. Additionally, the step of updating 
neighbors of the selected node is omitted. 

 

 
 
 

Table 1. GNG update algorithm 

Function GNG_update(inputV, maxDistance, learnRate): 
closestNode = get_closest_to(inputV) 

 if distance(closestNode, inputV) > maxDistance: 
  create_node_at(inputV) 
 else: 
  move_towards(closestNode, inputV, learnRate) 
 for node in nodes: 
  if node.time_since_nearby_update > maxAge: 
  delete(node) 

C. A-distance as input to growing neural gas 
As described above, the note phase produces a series of 

A-distance vectors as output with each vector reflecting the 
abnormality of the distribution of a single predicate at each 
time step. The input data to GNG is the series of vectors 
created by, at each time step, concatenating the values from 
all input streams. So, for a system with k predicate streams, 
observed at T time steps, the input to GNG would be T 
vectors of length k, with each vector corresponding to a 
single time step t and reflecting the A-distance values for all 
predicates at t. GNG’s input space is then a k-dimensional 
space in which each dimension represents the relative 
contribution to an anomaly for a particular predicate.  

Over time, the GNG network develops a set of nodes, 
which correspond to prototypes of normal and anomalous 
world states. Since the input data reflect a measurement of 
abnormality, nodes with larger values can be seen as more 
anomalous. The degree to which each prototype is 
anomalous, then, can be crudely determined by the distance 
from the node to the origin. We call this value the severity of 
the anomaly. Additionally, the anomaly type of any input 
state can be determined by referring to the network’s 
activated output node and the dimensions along which the 
node exists. 

To provide a Boolean anomaly detection result, this 
algorithm is run on a set of baseline data. The requirement 
for such a guaranteed set of normal data is not an issue, 
because A-distance already makes this assumption for the 
calibration of the baseline window. Fig. 4 shows an example 
of a small baseline network. 



 
Figure 4: A baseline GNG net (no anomalous data). Darker nodes are 
closer to the viewer. Note that nodes are clustered close to the origin, 

reflecting low A-distance values for all predicates. 

Once a network is generated using this data, the anomaly 
threshold distance DA from the origin is defined as the 
maximum distance of any qualifying node in the baseline 
network. 3  Once DA is calculated, the algorithm is run 
normally on the test data to generate a new network. If the 
distance from the activated node for an input to the origin is 
greater than DA, that input is considered anomalous. An 
example of a network generated from both normal and 
anomalous data is shown in Fig.5. The shaded region is a 
sphere centered at the origin with radius DA and represents 
the area in which nodes are considered normal. Note that the 
shaded region is the smallest sphere centered at the origin 
that would contain all nodes shown in Fig. 4. 

 

 
Figure 5: GNG net with anomalous data. The shaded area represents the 

normal region derived from baseline data. Nodes are colored to show 
classification as normal or anomalous. 

                                                             
3 Nodes must have been updated a minimum number of times to qualify. 
We used 3 for this number; its purpose is to avoid extremely obvious 
outliers, such as nodes that have been created and then never activated 
again. 

 Using this method, a time step is classified as anomalous 
if the node that is activated by the vector of A-distance 
output at that step is outside the normal region. Because a 
GNG network naturally expands to fill its input space, the 
size of this region, and therefore the sensitivity of anomaly 
detection, will reflect the variability of normal data in the 
domain. Data on the effectiveness of this method will be 
presented in Section IV. 

III. EXPERIMENTAL SETUP 
All experimental data were drawn from randomly 

generated world states and goals in the logistics domain 
described above. To create anomalous data, planning was 
done with one operator removed. The data included only 
those world state/goal combinations for which a plan was 
successfully generated.  

We used three data sets for testing. The first, the 
“airplane anomaly” set, consisted of 500 normal plans and 
100 plans with the unload-airplane operator removed. The 
second, designated “truck anomaly”, also had 500 normal 
plans and 100 with the unload-truck operator removed. The 
third, “two anomaly”, had 500 normal plans and two separate 
anomalous sections of 100 plans, the first of which had the 
unload-airplane operator removed, and the second unload-
truck. 

We conducted trials using variable concentrations of 
anomalous plans in the anomalous intervals. The varying 
concentrations represent anomalies of different intensities. 
For example at intensity 0.2, only 20% of the 100 plans in 
each anomalous section were actually anomalous, thus 
signifying a very faint anomaly. For comparison, we ran 
trials on each data set multiple times. Some experiments used 
A-distance with several epsilon values but no GNG network. 
Other trials used the combined A-distance/GNG method. We 
ran fifty trials for each pair of (data set, intensity level), 
where intensities ranged from 0 to 1 by units of 0.1.  

IV. RESULTS 
For each method, including the A-distance/GNG 

combination as well as A-distance alone using several 
epsilon values, reported anomalies at each step were 
recorded and expected results calculated. The expected 
outcome at a time step was ‘anomalous’ if at least P% of the 
values within the sliding window came from anomalous 
plans, i.e., those that were generated with an operator 
removed. We calculated F1 (a weighted average of precision 
and recall) for each method and at several values of P from 1 
to 50 (to clarify, P=50 means that an anomaly is defined as a 
step at which at least half of the data in the sliding window 
was generated by planning with an operator removed). Fig. 6 
shows the average F1 values by test setup for each of the 
three data sets. 

On each data set, the GNG network (the rightmost 
column) performed slightly worse than the best epsilon 
value. However, to select the best epsilon value required 
testing using a priori knowledge of which data came from 
anomalous sources; whereas GNG was initialized using only 
a set of baseline data. 

  



 
Figure 6: F1 values from testing using different epsilon values and GNG. 

Results were averaged across all P values.  

These results therefore suggest that while the addition of 
processing with GNG may not be useful given a domain and 
anomaly set whose characteristics are well known, it does 
come very close to optimizing the performance of A-distance 
without requiring any prior information on the type of 
anomalies that will occur. In the context of MCL and 
MIDCA, which are intended to be employed in a wide 
spectrum of domains that may change unpredictably, this is a 
valuable feature. 

Besides improving the flexibility of anomaly detection, 
this method provides useful information as the MCL cycle 
moves into the assessment phase. GNG’s contribution to this 
goal is to provide groupings of anomalies by type and 
severity so that a newly noted anomaly can be quickly 
categorized, allowing a more robust diagnosis procedure to 
narrow down its list of options.  

Fig. 7 graphs assignments of world states to nodes during 
the anomalous segments of the two-anomaly data set at 
intensity 1. The x-axis counts steps from the sliding 
window’s entry into the anomalous section. The y-axis 
reflects which output node was selected at a given time step. 
The nodes are sorted in terms of severity from least 
anomalous (1) to most anomalous (8).  

 

 
Figure 7: Activated node from GNG network for each time step from 100 

before to 100 after each anomaly, for the two-anomaly data set. 

This graph contains two significant features. First, other 
than at the very edges of each anomaly (when most of the 
data in the sliding window is normal), the two anomaly types 
map to two non-intersecting sets of nodes: the truck anomaly 
maps to nodes 4, 6 and 8, while the airplane anomaly maps 
to 3, 5 and 7. So, the GNG network is able to differentiate 
between anomalies of different types. Second, in both cases 

there is a clear progression as a larger percentage of the 
window slides into the anomalous region. At first GNG maps 
to nodes that are slightly anomalous (3, 4), then nodes that 
are moderately anomalous (5, 6) and finally those that are 
fully anomalous (7, 8) as the window’s back edge enters the 
anomaly. This pattern is reversed as the window slides out of 
the anomalous section, showing that the network has 
generated anomaly prototypes which reflect intensity as well 
as type.  

Fig. 8 shows the network containing these nodes. Normal 
nodes 1 and 2 are contained in the shaded region, while the 
nodes mapped to truck and airplane anomalies arc out along 
the axes corresponding to those A-distance values. The three 
red dots have much higher values along the Inside-Truck 
axis and only slightly larger than normal one along the other 
two axes, while the blue dots’ values increase primarily in 
the direction of the Inside-Airplane axis. 

V. DISCUSSION 
Both A-distance and Growing Neural Gas are established 

techniques. The use of GNG to perform online clustering of 
A-distance data, however, opens up new possibilities for an 
agent that is attempting to adapt to a changing world. The 
first of these is the ability to dispense with user-selected 
epsilon values. Because a GNG network grows to fill its 
input space, it can organically generate a threshold that 
provides results comparable with the best possible epsilon 
choice. 

 

 
Figure 8: GNG net with two different anomalous data sets. The shaded area 
represents the normal region derived from baseline data (see end of section 

III for details). Nodes are colored to reflect classification by anomaly 
status: red nodes were activated during the truck anomaly, blue nodes 

during the airplane anomaly. 

Secondly, the network generated by GNG provides a 
unique perspective on anomaly analysis. A simpler approach 
might have been to run GNG, or another online clustering 
algorithm, on raw state data. By using A-distance data 
instead, we create a network whose nodes represent not 
similar states but similar anomalies. Further, because the 
input data have a consistent meaning – a larger coordinate 
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value corresponds to a larger disparity from normal for the 
corresponding predicate – we have actually gained more 
information than simply a set of clusters. If a selected node is 
just above the anomaly threshold, we can surmise that it 
might simply be an outlier or a weak anomaly. If the selected 
node has a very high value for the “inside-airplane” 
coordinate and a very low one for “inside truck,” we know 
that something strange is happening with the airplane fleet, 
but we probably do not need to spend much time worrying 
about our trucks.  

Because the approach of MCL is to fix problems by first 
deducing what has gone wrong, the added semantics of a net 
constructed from A-distance predicate data are important. 
When presented with a weak anomaly, MCL might want to 
wait for confirmation, or pursue a conservative strategy. If 
the anomaly is caused by changes to the plane-related 
predicates, it should keep trucks running as they have been 
while employing reasoning or learning techniques to 
reevaluate airplane control strategies. The ability to use data-
driven techniques like GNG and A-distance to generate 
semantic knowledge about the type of failure that is being 
experienced gives MCL a significant head start in more 
conventional approaches to reasoning and a clearer target for 
directed learning. 

VI. FUTURE WORK 
The simplest way to build on the work described in this 

paper would be to try to improve the clustering process. We 
have made several changes to GNG to adapt it to use in 
MCL, but it might be beneficial to incorporate other 
clustering algorithms and variations, for example as in [24].  

The use of GNG with A-distance improves upon 
previous research with the MCL note phase. But its primary 
purpose is to expand those results into a useful tool for the 
assess phase in a push towards a working implementation of 
MCL for symbolic domains. Aside from optimization, then, 
the next step will be to move to the final stage of MCL and 
use the information from GNG prototypes to direct a strategy 
change. In the logistics domain, a simple example might 
feature an agent that has two choices of planning algorithms: 
one that emphasizes ground transport and one air transport. 
When an anomaly occurs, it could decide whether to switch 
algorithms on the basis of anomaly type and severity as 
indicated by the active GNG node. 

Another avenue of research will focus on combining the 
data-driven techniques discussed herein with a knowledge-
rich approach to assessment. A significant appeal of logically 
formulated domains like logistics is that they are by nature 
amenable to techniques of case-based reasoning (e.g., [25, 
26]). MCL should be able to utilize this type of process 
alongside and with the aid of techniques like the GNG/A-
distance algorithm. Once this area has been explored and 
combined with present work, we hope to have a version of 
MCL that can autonomously aid an agent in dealing with 
adversity across a wide range of domains and problem types. 

VII. CONCLUSION 
This research stands in a broad context that seeks to 

examine the mechanisms and the means under which 

cognitive systems make intelligent decisions and act 
independently over long periods of time and in situations of 
change and complexity [27, 28]. Our contention is that 
robust behavior in the face of surprise is a function of many 
aspects of intelligence including action and perception, and 
cognition and metacognition. We are in the early stages of 
developing an integrated cognitive architecture that specifies 
these components. The cognitive mechanisms include both 
problem-solving and comprehension and involve significant 
amounts of learning. This paper has examined the first two 
phases in the note-assess-guide procedure which supports the 
interpretive mechanisms of comprehension and failure 
recognition. Although we have concentrated upon the data-
driven features in these phases, we are working towards the 
interaction of data-driven algorithms with knowledge-rich 
methods (see [5]). Current progress and empirical results as 
reported here lead us to expect interesting research ahead. 
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