
Web Service Composition with User Preferences

Naiwen Lin

Department of Computer Science,
University of Maryland, College Park, MD 20742, USA,

nwlin@cs.umd.edu

Abstract. In Web Service Composition (WSC) problems, the composition pro-
cess generates a composition (i.e., a plan) of atomic services, whose execution
achieves some objectives on the Web. Existing research on Web service com-
position generally assumed that these objectives are absolute; i.e., the service-
composition algorithms must achieve all of them in order to generate successful
outcomes; otherwise, the composition process fails altogether. The most straight-
forward example is the use of OWL-S process models that specifically tell a com-
position algorithm how to achieve a functionality on the Web. However, in many
WSC problems, it is also desirable to achieve users’ preferences that are not ab-
solute objectives; instead, a solution composition generated by a WSC algorithm
must satisfy those preferences as much as possible. In this paper, we first de-
scribe a way to augment OWL-S process models by qualitative user preferences.
We achieve this by mapping a given set of process models and preferences into a
planning language for representing Hierarchical Task Networks (HTNs). We then
present SCUP, our new WSC algorithm that performs a best-first search over the
possible HTN-style task decompositions, by heuristically scoring those decom-
positions based on ontological reasoning over the input preferences. Finally, we
discuss our experimental results on the SCUP algorithm.

1 Introduction

Web Service Composition (WSC), dynamic integration of multiple Web Services to
fulfill the requirements of the task at hand, is one of the most important area in the
Web Services research. Most research on composing Web services has been focused
on developing new algorithms based on existing AI planning techniques. Examples of
this approach include [1–6]. All of these works generally assumed that the composition
process generates a solution composition (i.e., a plan) of atomic services, whose execu-
tion achieves some objectives on the Web. Those objectives are almost always required
to be absolute; i.e., a service-composition algorithm must achieve all of them in order
to generate successful outcomes; otherwise, the composition process fails altogether.
As an example, in WSC planning systems such as [2, 4, 6], such absolute objectives
and constraints specify structural ways of decomposing higher-level process models in
OWL-S [7] into an atomic-level composition that solves the input WSC problem.

In many real-life WSC scenarios, on the other hand, the aim is to generate a solution
that not only achieves some absolute goals and any constraints associated with them,

but also is desirable with respect to some user-provided preferences. For example, there
are abundant number of travel Web sites providing transportation and accommodation
services. Possibly, there will be several combinations of these services that will allow
one to plan for a trip from a source location to a destination. However, an agent mak-
ing such trip arrangements will need to take into account user preferences such as a
desired range on the total cost of the trip, preferences on particular transportation com-
panies/hotels, and certain times/dates for the trip. None of these are necessarily absolute
goals in the sense that, if violated, they do not affect the correctness of the compositions
but specify that certain compositions are more preferable than others.

In this paper, our contributions are as follows:

• We describe a way to augment Semantic Web services described as OWL-S process
models with user preferences. We first describe a planning formalism that is based
on the previous languages developed for Hierarchical Task Networks (HTNs). Then,
we describe a way to take OWL-S service descriptions and preferences described in
the PDDL3 language [8], and translate them into our formalism. This enables us to
investigate the semantics of user preferences in the context of HTNs and provides a
clear, unifying framework for augmenting OWL-S processes and preferences.

• We describe our new algorithm, called SCUP (for Service Composition with User
Preferences). SCUP combines HTN planning with best-first search that uses a
heuristic selection mechanism based on ontological reasoning over the input user
preferences, state of the world, and the HTNs. In this context, the ontological reason-
ing provides a way to compute the heuristic cost of a method before decomposing
it. Using best-first search, SCUP generates compositions for WSC problems with
minimal cost of violations of the user preferences.

• We present an experimental evaluation, demonstrating that our approach is a promis-
ing one. On two benchmark problem suites that were used in the latest International
Planning Competition (IPC-5) [9], SCUP generated solutions that had substantially
better quality than the ones generated by the planning algorithm SGPlan [10, 11], the
winner of the IPC-5 in “Planning with Qualitative Preferences” track.

2 Preliminaries

Our formalism is based on the several previous HTN-planning formalisms; in particular,
we use similar definitions as for the Universal-Method Composition Planner (UMCP)
[12–14] and the HTN-DL WSC system [4, 15].

We assume the traditional definitions for logical constant and variable symbols,
atoms, literals, and ontologies. A state is a set of ontological assertions describing the
world. A state s is consistent if there is an interpretation µ that satisfies all axioms and
assertions in s; otherwise we say the state is inconsistent.

We assume the existence of finite set of symbols, called task symbols. A task is an
expression of the form t = (head, Inp,Out,Pre,Eff). head, the name of this task, is a
task symbol. Inp and Out, the set of input and output parameters respectively, are finite
sets of variable symbols. Pre and Eff are the preconditions and the effects of the task,
respectively, both of which are in the form of conjunctive ontological assertions.

A task network is of the form ((n1 : t1, n2 : t2, . . . , nk : tk),∆) such that each ni

is a unique label symbol, each ti is a task, and ∆ is a set of task-network constraints.
Label symbols in a task network are used to differentiate with different occurrences of
a particular task in the network. We define two kinds of task-network constraints: task-
ordering and state constraints. A task-ordering constraint is an expression of the form
(n ≺ n′), where n and n′ are the labels associated with two tasks t and t′ in the current
task network, respectively. Intuitively, n ≺ n′ means that the task denoted by the label
n must be accomplished before the task denoted by n′.

A state constraint is either of the following forms: (n, φ), (φ, n), or (n, φ, n′). Here,
φ is an arbitrary logical formula, and n, n′ are label symbols. Intuitively, state con-
straints (n, φ) and (φ, n) mean that the literal φ must be true in the state immediately
after or before the task labeled with n, respectively. These constraints are used to spec-
ify the effects and preconditions of a task labeled by n. A state constraint of the form
(n, φ, n′) means that φ is true in every state between n and n′.

If we want a state constraint to hold for every occurrence of the task regardless of
the label symbols, we simply use the task name in the constraint, e.g. (φ, t). We also
use task variables in constraint expressions, e.g. (φ, ?t) and (?t1 ≺ ?t2), in order
to represent an existential constraint. Intuitively, a task variable will be bound (only
once) to a task that exists in the task network such that the constraint will be satisfied.
If no such binding is possible throughout the decomposition process we say that the
constraint is violated. In addition, we allow a task-binding constraint in the form (?t =
t) and (?t 6= t) to restrict the tasks that a task variable can be bound to.

Let s be a state, w be a task network, and x be a task-network constraint in w. Then,
we define a violation-cost function, χ, as the partial function:

χ(s, w, x) =
{
c, if x does not hold in w given s,
0, otherwise (1)

where c is either a positive number or it is ∞. The overall violation cost of a task
network w = (τ,∆) in a state s is

Ξ(s, w,∆) =
∑
x∈∆

χ(s, w, x). (2)

A WSC planning operator is an expression of the form o =
(task, Inp,Out,Pre,Eff) where task is a task symbol that specifies the task of
this operator, Inp is the set of input parameters, Out is the set of output parameters, Pre
is the preconditions of the operator, and Eff is the effects of the operator. Pre and Eff
are in the form of conjunctive ontological assertions. An action is a ground operator
instance which can be executed directly on the Web. A plan (or equivalently, a service
composition) is a sequence of actions. We describe the state change from s to s′ when
applying an action a by the state-transition function γ: that is, s′ = γ(s, a).

A WSC planning operator o is applicable to a task t in a state s, if there is a variable
substitution σ such that σ(o) is ground, the preconditions of σ(o) hold in the state s, o
has the same task symbol as in t, and σ(o) entails the effects of σ(t).

A task-decomposition method is a tuple m = (task, Inp,Out, Local,Pre,Eff, Γ),
where task, Inp, Out, Pre, and Eff are defined the same as in the above definition of a

planning operator. Γ is a task network. Local is a set of local variables used in P and Γ .
Local variables are those variables inm that does not appear in the inputs, but are bound
in the preconditions of the method or of a task network. A method m is applicable to
a task t in a state s, if there is a variable substitution σ such that σ(m) is ground, the
preconditions of σ(m) are satisfied in the state s, m has the same task symbol as in t,
and the effects of the σ(m) entails the desired effects of σ(t).

A WSC planning domainD is a triple of (O,M, Tont), whereO is the set of operator
descriptions, M is the set of methods, and Tont is the task ontology. We assume that
the task ontology Tont is an OWL ontology [16] that describes the set of all possible
tasks in the domain. A WSC planning problem is a triple P = (s0, w,D,Ξ), where s0
is the initial state, w is the initial task network, D is the WSC planning domain, and Ξ
is the overall violation-cost function. A solution for P is a task network w∗ = (τ,∆)
such that (1) all of the tasks in τ are primitive; (2) there exists a total-ordering of the
tasks in τ (i.e., a solution plan τ = 〈a1, a2, ..., ak〉) that has a minimum overall cost
Ξ(sk, w

∗,∆) <∞, where sk is the final state generated by applying the actions in τ in
s0. Note that a plan that has a violation-cost of ∞ is not a solution even if it somehow
generates the final state, when applied in the initial state s0.

We remark that our formalism above is not intended to depend on a particular WSC
system and can be implemented as the input languages of any of the existing HTN-based
WSC systems such as [4, 15, 6]. The rationale behind this formalism is that it provides
a clear semantics for augmenting OWL-S process models and user preferences in a
unifying framework, as we will describe and discuss in the rest of this paper.

3 Modeling User Preferences

Our preference language is largely based on the recent planning language PDDL3 [8]
that allows to incorporate user preferences in planning problems. In PDDL3, prefer-
ences are described as logical assertions over states and state trajectories by defining
basic preferences and temporal preferences. A basic preference (BP) is a logical for-
mula φ, or a formula built with logical connectives ¬, ∧, ∨ from other basic preferences.
Let φ be a basic preference. Then, a temporal preference (TP) is any of the following:1

〈TP 〉 :=(final 〈BP 〉) | (always 〈BP 〉) | (sometime 〈BP 〉) | (at most once 〈BP 〉) |
(sometime after 〈BP 〉 〈BP 〉) | (sometime before 〈BP 〉 〈BP 〉)

As the above definition demonstrates, we do not allow the nesting of temporal con-
straints in this paper. We assume that each temporal preference has a unique label; e.g.,
p1 : (final φ), where p1 is the unique label and φ is a basic preference.

The satisfaction of temporal constraints is defined with respect to a plan π and its
state trajectory S = 〈s0, . . . sn〉 in an initial state s0 as follows.

– If φ is a ground atom then 〈π, S, si〉 |= φ iff si |= φ;

1 This is the subset of all of the modalities proposed for PDDL3, which is semantically well-
developed and used in the International Planning Competition (IPC-5) [9].

– Quantifiers and logical connectives have the same meaning as in first-order logic.
For example, 〈π, S, si〉 |= φ ∧ φ′ iff 〈π, S, si〉 |= φ and 〈π, S, si〉 |= φ′;

– 〈π, S, si〉 |= always(φ) iff ∀j : i ≤ j ≤ n · 〈π, S, sj〉 |= φ;
– 〈π, S, si〉 |= sometime(φ) iff ∃j : i ≤ j ≤ n · 〈π, S, sj〉 |= φ;
– 〈π, S, si〉 |= final(φ) iff 〈π, S, sn〉 |= φ;
– 〈π, S, si〉 |= at most once(φ) iff (1) ∃j : i ≤ j · 〈π, S, sj〉 |= φ and 6 ∃k : i ≤
k · 〈π, S, sk〉 |= φ, or (2) there is no i ≤ j such that 〈π, S, sj〉 |= φ;

– 〈π, S, si〉 |= sometime after(φ, φ′) iff (1) ∃j : i ≤ j · 〈π, S, sj〉 |= φ and
∃k : j ≤ k · 〈π, S, sk〉 |= φ′, or (2) true, if 6 ∃j : i ≤ j · 〈π, S, sj〉 |= φ;

– 〈π, S, si〉 |= sometime before(φ, φ′) iff (1) ∃j : i ≤ j · 〈π, S, sj〉 |= φ and
∃k : i ≤ k ≤ j · 〈π, S, sk〉 |= φ′, or (2) true, 6 ∃j : i ≤ j · 〈π, S, sj〉 |= φ;

PDDL3 also allows for representing preferences with universal and existential
quantification. As an example, consider the following two different kinds of quantified
preferences specified in PDDL3 for a transportation domain:

p1A: sometime (forall (?t - truck) at(?t, loc1))

forall (?t - truck) (p1B: (sometime at(?t, loc1)))

The preference p1A suggests all trucks stay at location loc1 sometime in the plan
trajectory. If a truck does not satisfy the condition, the preference p1A is violated. The
preference p1B defines a group of preferences with different truck instantiation: e.g., if
there are three trucks in the problem defintion, p1B defines three independent prefer-
ences. Violation of one preference will not affect the satisfaction of the others.

4 Augmenting OWL-S with User Preferences

In this section, we describe a translation methodology that takes OWL-S descriptions of
Semantic Web services and PDDL3-style preferences as above, and maps them into our
planning formalism described in Section 2. The rationale behind this methodology is
to represent both the Web services and the preferences in a single unifying framework,
in which a planning algorithm could work to generate compositions of services while
satisfying the user preferences as much as possible.

From OWL-S to HTN-based Constraints. Our translation method for encoding
OWL-S in our HTN-based constraint language is very similar to the technique de-
scribed in [4] for encoding OWL-S in the input language of the SHOP2 planner [17].

Suppose K is a collection of OWL-S process models. First of all, for every process
C in K, we create a task of the form (C v u p e) where v and u are the list of input
and output parameters defined in DC , p and e are the preconditions and effects of DC ,
and a corresponding label nC for that task.

We translate each atomic process in K into a corresponding planning operator in
the same way as in [4]. The translation of a composite process C in K with a sequence
control construct is as follows. Let DC be the OWL-S definition of the process C.

Next, we define an HTN method m in our constraint language whose head is C and
whose inputs, outputs, preconditions, and effects are v, u, p and e, respectively. The
task network specified by the method m is translated from the process C as follows:

1. For each precondition p defined in DC , we create a state-constraint of the form
(p, nC) where nC is the label of the task corresponding to the process C.

2. For the sequence C1, C2, . . . , Ck of composite process defined in the sequence
control construct of C, we do the following.

• We define a task ti = (Ci vi ui pi ei) as above, and a corresponding task label
ni. The task network in the methodm contains the tasks defined as ((ni : ti))k

i=1.
• For each 1 ≤ i < k, we define an ordering constraint (ni ≺ ni+1) where ni and
ni+1 are task labels for the tasks that correspond to the processes Ci and Ci+1.

Both sets of constraints above go into the constraint definition ∆ of the task network
associated with the method m.

The translation of a process C with an if-then-else control construct is as follows.
Let Pif be the conditions for the if clause as defined in DC . We define two HTN meth-
ods mif and melse to encode C such that the heads of both methods are the same task
(Cv). Then, we do the following translation for the constraint part of those methods:

• For mif :
1. For each precondition p either defined in DC or in Pif , we define a state-

constraint (p, nC) where nC is the label of the task corresponding to C.
2. For the process Cthen defined for the then construct in DC , we define a task
t = (Cthen vthen uthen pthen ethen) as above, and a corresponding label n.
The task list of the task network associated with the method mif is ((n : t)).

• For melse:
1. For each precondition p defined in DC , we define a state-constraint of the form

(p, nC) where nC is the label of the task corresponding to the process C.
2. For each precondition p defined in Pif , we define a state-constraint of the form

(¬p, nC) where nC is the label of the task corresponding to the process C.
3. For the process Celse defined for the else construct in DC , we define a task
t = (Celse velse uelse pelse eelse) as above, and a corresponding label n. The
task list of the task network associated with the method melse is ((n : t)).

The translations for repeat-while, repeat-until, choice, and unordered constructs
that may appear in the processes in K are similar to the ones above.

For every HTN task-network constraint generated with our translation, we assign
a violation-cost of ∞, independent of the state and task network that the constraints
might be evaluated in. By doing so, we ensure that the translation generates a bijection
between the OWL-S process models (where such constraints must be satisfied with
absolute certainty) and the translated HTN constructs.

Proposition 1. The translation from OWL-S service process models into HTN con-
straints is correct, i.e. for each OWL-S process construct as described above, there is
a corresponding set of HTN constructs that specify the same process-model semantics.

Translating Preferences into HTN Constraints. We will now describe how to trans-
late a preference ψ to one compound task-network constraint Γ (ψ). With this transla-
tion, whenever we augment a task network w with Γ (ψ), we have a direct method to
evaluate if a state trajectory (i.e., a plan) satisfies or violates the preference.

In our translation, we use two special task symbols tstart and tend as the start and
end tasks that will be added to every initial task network w with labels nstart and nend.
We also add the ordering constraint nstart ≺ n and n ≺ nend for every n : t ∈ w.

We use the special symbol > to denote a trivially satisfiable HTN constraint and
⊥ to denote an unsatisfiable HTN constraint with the usual semantics that ¬> = ⊥,
¬⊥ = >, > ∧ φ = ψ, > ∨ ψ = >, ⊥ ∧ ψ = ⊥ and ⊥ ∨ ψ = ψ. If Γ (ψ) = >, then
every plan satisfies ψ and if Γ (ψ) = ⊥ there is no plan that can satisfy ψ.

Now we describe how we construct Γ (ψ) by analyzing the temporal preferences
separately:

• Γ (ψ) ≡ (nstart, φ, nend), if ψ ≡ always(φ), where φ is a basic preference.
• Γ (ψ) ≡ (?t, φ), if ψ ≡ sometime(φ), where φ is a basic preference.
• Γ (ψ) ≡ (φ, nend), if ψ ≡ final(φ), where φ is a basic preference.
• Γ (ψ) = (?t1, φ) ∧ (?t2, φ′) ∧ (?t1 ≺ ?t2), if ψ ≡ sometime after(φ, φ′).
• Γ (ψ) = (?t1, φ) ∧ (?t2, φ′) ∧ (?t2 ≺ ?t1), if ψ ≡ sometime before(φ, φ′).
• Γ (ψ) = (φ, ?t) and for every task t, (φ, t) =⇒ ?t = t, if ψ ≡ at most once(φ).

We translate the universally- and existentially-quantified preferences as follows:

• If ψ ≡ ∀(?x) · φ, where ?x is a variable symbol, then we apply the following rules:
1. If φ is a basic preference, then Γ (ψ) ≡ Γ (φ(?x = x1) ∧ φ(?x = x2) ∧ . . . ∧
φ(?x = xn)), for all possible instantiations xi of ?x, i = 1, . . . , n.

2. If φ is a temporal preference, then Γ (ψ) ≡ {Γ (φ(?x = x1)), Γ (φ(?x =
x2)), . . . , Γ (φ(?x = xn))}, for all possible instantiations xi of ?x, i = 1, . . . , n.

• We have ψ ≡ ∃(?x)(φ) as Γ (ψ) ≡ φ since existential quantification has the same
logical meaning for both basic and temporal preferences.

Proposition 2. The translation from preferences into HTN constraints is correct: if π =
〈a1, a2, . . . , ak〉 is a solution plan to a WSC planning problem (s0, w,D,Ξ) with a
violation cost of v, where the user preferences ψ are translated into HTN constraints
Γ (ψ) in the task network w, then v = Ξ(sk, w

∗, Γ (ψ)), where w∗ = (π,∆), sk is the
final state generated by applying π in s0 and Γ (ψ) ⊆ ∆.

5 SCUP: Service Composition with User Preferences

We are now ready to describe our new WSC planning algorithm, SCUP, for generating
service compositions while satisfying user preferences as much as possible. Figure 1
shows the abstract description of the SCUP algorithm. SCUP takes five inputs s0,
w0, D, ψ, and Ξ . s0 is the initial state and w0 is the initial task network. D is the

Procedure SCUP(s0, w0, D, ψ,Ξ)
1. π ← ∅
2. w = (τ,∆)← Preprocess(w0, D,R)
3. OPEN ← {(s0, w, π,Ξ(s0, w,∆))}
4. while OPEN 6= ∅ do
5. select the first node x = (s, w, π, v) from OPEN and remove it
6. if π is a solution then return π
7. Succ← Decompose(s, w, π, v,D)
8. OPEN ← OPEN ∪

{(s′, w′, π′, Ξ(s′, w′, ∆′)) | (s′, w′ = (τ ′, ∆′), π′) ∈ Succ}
9. sort OPEN in the ascending order based on the cost function Ξ

10. return failure

Fig. 1. An abstract description of the SCUP algorithm.

domain knowledge including the task-ontology definitions, HTN methods, and planning
operators. ψ is the set of user preferences and Ξ is the overall violation cost function.

The algorithm first generates the task networkw, where the tasks inw0 = (τ,∆) are
rearranged based on the ordering constraints in w0 and the ordering constraints in the
translation Γ (ψ) of the input preferences in ψ. The Preprocess subroutine is respon-
sible for this operation (Line 2 of the pseudocode in Figure 1). Preprocess first scans
all preferences and see if there are final, sometime before, sometime after,
and sometime preferences. If there are no such preferences in ψ, the algorithm simply
returns the original task network w0 with ∆ ∪ Γ (ψ). Otherwise, Preprocess checks
all of the preferences of the above types and verify if additional tasks will be added in
w0 in order to guarantee the satisfaction of these preferences in ψ as much as possible.

The rationale behind the preprocessing step is as follows:

• Preprocessing (sometime φ). If no task in τ can achieve the effect φ, there might
be still other tasks in the input task ontology, when/if decomposed into a primi-
tive HTN successfully, can achieve φ. Thus, Preprocess searches for such an addi-
tional task t whose effect entails φ. If there is such a task in the input task ontology,
Preprocess adds t in τ and the state constraint (t, φ) into ∆. The state-constraint
(t, φ) ensures that the condition φ is supposed to be achieved after the decomposition
of t is done. As a result, if the task t is accomplished successfully during planning,
then the preference φ will be satisfied as well.

• Preprocessing (sometime before φ φ′). In this case, Preprocess generates two
sets of tasks T1 and T2 that can accomplish the effect φ and φ′, respectively. For each
task t in T1 with a label n, the subroutine chooses a task t′ in T2 with a label n′, and
adds the task-network constraints (n ≺ n′), (n, φ), and (n′, φ′) to ∆.

The preprocessing of final and sometime after preferences are are similar
to sometime and sometime before as described above.

After adding all task-ordering constraints into the task network w0 based on the
preferences in ψ, the set of ordering and state constraints in w0 may not be satisfi-
able. For example, in a transportation-services domain as in [6], we may have both

(n1 : load(truck1, package1) ≺ n2 : drive(truck1)) and (n2 : drive(truck1) ≺
n1 : load(truck1, package1)) in ψ. As another example, we may also have a cyclic
constraint such as (n1 : drive(truck1) ≺ n2 : load(truck1, package1)), (n2 :
load(truck1, package1) ≺ n3 : deliver(package1)) and (n3 : deliver(package1) ≺
n1 : drive(truck1)) in w0. There is no solution plan which can satisfy these HTN
constraints during the planning process. Thus, Preprocess, in such cases, greedily
removes the constraint with less weight from w0 in order to satisfy more important
preferences (i.e., preferences with smaller costs).

A couple of remarks on Preprocess are in order. First, it is important to note that
the additional HTN constraints that Preprocess adds to ∆ is due to the translation Γ
of those preferences based on the additional tasks from the task ontology. Second, we
only work with final, sometime before, sometime after, and sometime
preferences in the preprocessing phase. The reason is that we can improve the cost
value by adding additional tasks for sometime and final, and rearrange task or-
derings for sometime before, sometime after, and sometime. As for other
preferences like always and at most once, we can only check their satisfaction in
decomposition and choose the best tuple in OPEN list by using best first search.

After rearranging the task network w = (τ,∆), the algorithm computes the overall
violation-cost value v = Ξ(s0, w,∆) and puts the tuple (s0, w, π, v) in the OPEN list
(see Line 3), where π is the current partial plan. As we mentioned above, SCUP is an
HTN task-decomposition planner that is based on a best-first search procedure. At each
iteration of the loop, SCUP first takes the first tuple (s, w, π, v) ∈ OPEN and removes
it. If π is a solution composition (i.e., plan), then SCUP returns π. Otherwise, the al-
gorithm decomposes the task-network w according to the task-decomposition methods
in D, generates the set Succ of successor state and task-network pairs, computes the
violation costs for those new pairs in Succ, and puts them back in OPEN (see Line
9). The tuples in OPEN are then sorted in the ascending order of their violation costs.
This process continues until SCUP finds a solution or fails to generate a plan.

In Line 8 of Figure 1, the Decompose subroutine first nondeterministically chooses
a task t in w with no predecessors and finds the set A of all applicable operators and
methods for task t. If it cannot find any applicable operators or methods, it simply
returns failure. Otherwise, for each item u in A, Decompose does the following:

• If u is an operator, Decompose first generates the action a by applying input bind-
ings to u. Then, it computes the next state s′ = γ(s, a), where s is the current state,
and the successor task-network w′ by removing t from w. It appends a to the partial
plan π.

• If u is a method, the subtasks w′′ will replace task t in w. The effects of each task in
w′′ is then used to check if any preference is satisfied or violated in the current state,
and thus, to update the overall cost. This helps us foresee the violation costs without
further decomposition, and decide whether we should continue on this task network.
Decompose adds in Succ the tuple with the same state s, the updated task nework
w′ by replacing t with w′′ in w, and the same partial plan π.

After the loop over all applicable operators and methods, Decompose checks and
removes duplicate tuples in Succ that are those which have the same task network and
partial plan, in order not to repeat the same decompositions during planning.

An example of how Decompose uses the task effects to compute the heuristic
violation costs is in order. First, recall that the preprocessing phase generates the post-
condition state-constraint (t, φ) for each task t that is inserted into the task network
due to a preference. Once the planner completely decomposes t into a primitive task
network, Decompose checks if the post-condition φ is satisfied in the current state.

For example, suppose we have a task SendPackage(package1, location3) with an
post-condition delivered(truck3, package1) due to a preference (p1 : sometime
delivered(truck3, package1)). The following is an HTN method for SendPackage:

method SendPackage
Inputs: (?pac ?loc)
Local: (?truck)
Preconditions: (available(?truck))
Subtasks: (load(?truck, ?package), deliver(?truck, ?pac, ?loc))
Effects: (delievered(?truck, ?pac))

Note that truck3 is not the input to SendPackage, and the method uses a vari-
able ?truck to match any available trucks near package1. Suppose the planner finds
three trucks truck1, truck2, truck3 in the current state. Then, it will create three tu-
ples in Succ each possible truck. However, since SendPackage has the post-condition
delivered(truck3, package1), only the tuple with the truck variable binding truck3
will satisfy the preference p1 and the others will violate it, increasing their cost values.
Thus, when the tuples in Succ are merged into the OPEN list and sorted based on the
costs of its tuples, SCUP will always consider the tuple that satisfies the preference p1.

6 Implementation and Preliminary Experiments

We have implemented a prototype of the SCUP algorithm. Our current prototype is
built on our previous system HTN-DL [15]. HTN-DL does not directly implement our
planning language as we described in Section 2. Thus, we assumed that the transla-
tion from OWL-S to HTN-DL has been done automatically as described in [15] and
we implemented the translation of user preferences from PDDL3 into HTN-DL’s in-
put language. Furthermore, we used the interface functionality between HTN-DL and
Pellet, an OWL DL reasoner [18], that we used in our SCUP prototype for knowledge
inference and ontological reasoning.

During planning, the size of SCUP’s OPEN list may get very large and this may
induce serious performance drawbacks for the SCUP algorithm. For that reason, we im-
plemented an additional input parameter k that bounds the size of the OPEN , which,
as a trade-off, may affect the solution plan quality. If k is too small, a tuple in OPEN
with prospective solution may be discarded in the first few decompositions. This hap-
pens when the local optimal search node is not the global optimal search node. In our
experiments described below, we used k = 20 as the size of the OPEN list and this
was sufficient to generate optimal (or in some cases, near-optimal) solutions.

We have conducted experiments with two benchmark planning domains used in
“Planning with Qualitative Preferences” track of the most recent International Plan-
ning Competition (IPC-5) (http://zeus.ing.unibs.it/ipc-5/): Trucks and
Rovers. In the Trucks domain, the goal is to move packages between locations by using
trucks. There are only four operators load, drive, unload, and deliver. Each truck may
have multiple truck areas so as to carry packages, but there are constraints and penalties
on the ordering of loading packages and the input user preferences model choices over
the trucks based on those constraints. Generally, loading multiple packages will result
in preference violations, and on the other hand, delivering only a single package at a
time may delay the delivering deadlines of other packages.

In the Rovers domain, the goal is to navigate the rovers on a planet surface, collect
scientific data such as rock and soil samples, and send them back to a lander. These
tasks need to be achieved by considering the input spatial constraints and temporal
preferences on the operation of a rover. Each rover has only a limited storage capacity
for the collected samples and it is only capable of sampling either soil, rock, image, or
some combination of them specified in the problem descriptions. A rover can only travel
between certain waypoints only when the path from source to destination is visible.

We used the exact planning domain and problem descriptions that were used in
IPC-5. For each planning domain, we have 20 problems with increasing number of
instances, goals and preferences. In our experiments, we compared the overall violation
cost values of the solutions generated by SCUP and SGPlan [10, 11]. SGPlan is an
AI planning algorithm that participated in the “Planning with Qualitative Preferences”
track of the IPC-5, and won the 1st place. We have not run the SGPlan ourselves for our
experiments; instead, we used the published results for it from the IPC-5 [9]. Note that
this does not affect our results since we are comparing SCUP with SGPlan on the costs
of their solutions and neither of the planners had any memory issues in our experiments.

Figure 2 shows our results in the Trucks domain. SCUP has generated solutions that
have cost values that are substantially less than SGPlan in all 20 problems, where SCUP
satisfied all preferences in 8 of the experimental problems. The average cost value for
SCUP is 2.00, less than one-third of SGPlan’s average 7.45. Most violations in SCUP
solutions result from the conflicts between preferences; e.g., delivering multiple pack-
ages on a particular truck is necessary to satisfy delivery deadline preferences that had
larger costs, and this unavoidably causes violations of using multiple truck areas.

Figures 3 and 4 illustrate how SCUP and SGPlan performed in the Rovers domain.
SCUP has outperfermed SGPlan in 19 out of 20 problems. In these experiments, we
found that as the size of the problems is increased, SCUP discarded possible solution
tuples due to the OPEN list size limitation. However, generally SCUP has higher
quality solutions with average cost value 888.645, compared to SGPlan’s 1608.378.

7 Related Work

There has been many advances in WSC planning in the recent years [2, 4, 6, 19–21].
Probably the first work in this research area is the one described in [2], where the states
of the world and the world-altering actions are modeled as Golog programs, and the
information-providing services are modeled as external functions calls made within

Fig. 2. The violation costs of the solutions generated by SCUP and SGPlan on the Trucks prob-
lems.

those programs. The goal is stated as a Prolog-like query and the answer to that query
is a sequence of world-altering actions that achieves the goal, when executed in the
initial state of the world. During the composition process, however, it is assumed that
no world-altering services are executed. Instead, their effects are simulated in order to
keep track of the state transitions that will occur when they are actually executed.

In [4], the WSC procedure is based on the relationship between the OWL-S process
ontology [7] used for describing Web services and Hierarchical Task Networks as in
HTN Planning [17]. OWL-S processes are translated into tasks to be achieved by the
SHOP2 planner [17], and SHOP2 generates a collection of atomic process instances
that achieves the desired functionality. [6] extended this work to cope better with the
fact that information-providing Web services may not return the needed information
immediately, or at all. The ENQUIRER algorithm presented there does not cease the
search process while waiting answers to some of its queries, but keeps searching for
alternative compositions that do not depend on answering those specific queries.

In all works above, search for desirable solutions have been incorporated into the
service-composition process as hard constraints; i.e., constraints that must be satisfied
by all of the solutions. Recently, several different approaches have been developed for
planning with preferences; i.e., soft constraints that are preferably but not necessarily
satisfied by a plan. There are various different approaches for integrating user prefer-
ences in the planning process. Examples include [22, 23, 10, 24].

In our experimental study here, we considered one of those state-of-the-art planners,
SGPlan [10, 11], that won the recent International Planning Competition in the “Plan-
ning with Qualitative Preferences” track. SGPlan is a planning algorithm that uses a
divide-and-conquer approach: the planner serializes a large planning problem into sub-
problems with subgoals, solves the sub-problems, merges the solutions to those sub-
problems, and tries to remove conflicts between them. It has been demonstrated in ex-

Fig. 3. The violation costs of the solutions generated by SCUP and SGPlan on the smaller Rover
problems.

perimental studies that this approach largely reduces the search space compared to the
state-space of the original problem.

In another work that is very related to our paper, Baier et al. proposed the heuristic-
search planner HPlan-P in [24]. They used a best-first search algorithm with a goal
distance function to find the first solution, and tried to improve solution by using other
heuristics. Unfortunately, we were not able to get the HPlan-P planner for experimenta-
tion due to its distribution-licensing problems at the time we personally communicated
with the authors of that planner, and since SGPlan significantly outperformed HPlan-P
in IPC-5, we have not included its results here.

8 Conclusions and Future Work

In many interesting Web Service Composition (WSC) problems, the goal is to generate
desirable solutions with respect to some user preferences that are not necessarily abso-
lute objectives or constraints, but a composition algorithm needs to try to satisfy them
as much as possible. In this paper, we have described a novel approach for incorporat-
ing user preferences in planning for Web Service Composition. We have first described
a way to take OWL-S service descriptions and PDDL3-style preferences, and trans-
late them into a planning language for Hierarchical Task Networks (HTNs). Based on
this translation, we have then described an HTN planning algorithm, called SCUP, that
combines HTN planning and best-first search for WSC planning with preferences.

Our preliminary experiments demonstrated that SCUP is a promising approach: our
prototype implementation of SCUP was able to generate solutions that satisfy more
user preferences and those preferences that have more value (i.e., less cost) than the
state-of-the-art planner SGPlan, the winner of the latest International Planning Compe-

Fig. 4. The violation costs of the solutions generated by SCUP and SGPlan on the larger Rover
problems.

tition in the “Planning with Qualitative Preferences” track. In the near future, we are
planning to conduct extensive theoretical and experimental evaluation of our approach.
In a particular future study, we will investigate the relationships between the amount
of information needs to be gathered during the composition process, and the time it
takes for SCUP to optimal and near optimal solutions. Furthermore, SCUP currently
handles different type of preferences separately, and this may result in local optimum
instead of global optimum in certain domains. We will investigate this hypothesis both
theoretically and experimentally in the near future.

References

1. McDermott, D.: Estimated-regression planning for interactions with web services. In: AIPS.
(2002) 204–211

2. McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In: KR-
2002, Toulouse, France (apr 2002)

3. Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments using
knowledge-based planning. In: Proceedings of the ICAPS-2004 Workshop on Planning and
Scheduling for Web and Grid Services. (June 2004) 62–69

4. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Journal of Web Semantics 1(4) (2004) 377–396

5. Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: International Semantic Web Conference. (2004) 380–394

6. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web services composition. In: ISWC-2004. (2004)

7. W3C: Owl-based web service ontology www.daml.org/services/owl-s/.
8. Gerevini, A., Long, D.: Plan constraints and preferences in pddl3 (2006)

9. Gerevini, A., Long, D.: The fifth international planning competition (2006) http://
ipc5.ing.unibs.it/.

10. Hsu, C.W., Wah, B.W., Huang, R., Chen, Y.X.: Handling soft constraints and preferences in
sgplan. In: ICAPS Workshop on Preferences and Soft Constraints in Planning. (June 2006)

11. Hsu, C.W., Wah, B.W., Huang, R., Chen, Y.X.: Constraint partitioning for solving planning
problems with trajectory constraints and goal preferences. In: IJCAI. (2007) 1924–1929

12. Erol, K., Hendler, J., Nau, D.S.: UMCP: A sound and complete procedure for hierarchical
task-network planning. In: Proceedings of the International Conference on AI Planning
Systems (AIPS). (June 1994) 249–254

13. Erol, K., Hendler, J., Nau, D.S., Tsuneto, R.: A critical look at critics in HTN planning. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). (1995)

14. Erol, K., Hendler, J., Nau, D.S.: Complexity results for hierarchical task-network planning.
Annals of Mathematics and Artificial Intelligence 18 (1996) 69–93

15. Sirin, E.: Combining Description Logic Reasoning with AI Planning for Composition of
Web Services. PhD thesis, Department of Computer Science, University of Maryland (2006)

16. W3C: Web ontology language (owl) (2004) www.w3c.org/2004/OWL/.
17. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An

HTN planning system. JAIR 20 (December 2003) 379–404
18. Sirin, E.: Pellet: The open source owl dl reasoner (2006) http://pellet.owldl.

com/.
19. Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments

using knowledge-based planning. In: ICAPS-2004 Workshop on Planning and Scheduling
for Web and Grid Services. (June 2004)

20. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring web
service composition. In: AIMSA. (2004)

21. Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: ISWC. (2004)

22. Son, T., Pontelli, E.: Planning with preferences using logic programming. In: Proc. LPNMR
2004. (2004)

23. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal preferences. In:
Proceedings of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR06). (2006)

24. Baier, J.A., Bacchus, F., McIlraith, S.A.: A heuristic search approach to planning with tem-
porally extended preferences. In: IJCAI. (2007)

