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Abstract

There has been a significant amount of interest in recent years on how to reason
about inconsistent knowledge bases. However, with the exception of three papers by
Lozinskii, Hunter and Konieczny and by Grant and Hunter, there has been almost
no work on characterizing the degree of dirtiness of a database. One can conceive of
many reasonable ways of characterizing how dirty a database is. Rather than choose
one of many possible measures, we present a set of axioms that any dirtiness measure
must satisfy. We then present several plausible candidate dirtiness measures from the
literature (including those of Hunter-Konieczny and Grant-Hunter) and identify which
of these satisfy our axioms and which do not. Moreover, we define a new dirtiness
measure which satisfies all of our axioms.

1 Introduction

It is an open secret that most commercial databases are dirty and in fact, there is a wide range
of companies (e.g. SAS, Ascential – previously known as Informix) that offer data cleaning
services. However, to date, with the exception of some ground-breaking work [Loz94, HK05,
GH06], we are not aware of any work that attempts to actually characterize how dirty a
database is, and thus there is no objective measure to assess whether an allegedly cleansed
database is in fact significantly cleaner than the original.

In this paper, we focus on a more restricted scenario than [Loz94, HK05, GH06]. We focus
on inconsistency in just relational databases (i.e. tables of tuples) with associated functional
dependencies [Ull89] that form one of the most important types of integrity constraints used
in databases. Intuitively, functional dependencies say that when certain attribute values are
equal, then other attribute values must be equal as well. A good example of a functional
dependency is one which says that in the same database, each person’s salary is unique. We
also assume the existence of a total order on attributes (i.e. columns) in the relational table
that indicates how “reliable” those attributes are. Thus, in an employee database, we may
choose to believe that the social security number attribute is more reliable than the salary
attribute. However, unlike Hunter-Konieczny’s and Grant-Hunter’s work which is primarily
symbolic, our work is geared to inconsistency in numerical data – this is critical in real world
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databases as they almost always contain numeric data such as salary data, sales figures,
shipping costs, etc.

We then propose a general set of three axioms that we believe any measure of database
dirtiness must satisfy when a single functional dependency is present. We subsequently assess
several dirtiness measures, both naive and from the past (including the Hunter-Konieczny
and Grant-Hunter measures) to see how they comply with the axioms and show that they
all fail to satisfy all the axioms. We finally define a new dirtiness measure which satisfies all
the axioms. Subsequently, we show how any such single FD dirtiness measure can be used
to build a dirtiness measure that handles multiple functional dependencies and we present
a couple of example measures of this type.

2 Syntax and Notation

We assume the existence of a relational schema R = (A1, . . . , An) [Ull89] where the Ai’s
are attributes. Each attribute Ai has an associated domain, dom(Ai). A tuple over R is a
member of dom(A1)×· · ·×dom(An). A database DB is any finite set of tuples over R. In the
rest of this paper, we assume R is arbitrary but fixed. For example, Fig. 1 shows a database
over the schema (Name,Age,Height) with the obvious domains. Each row in the figure is a
tuple. We assume the existence of a set of symbols called tuple variables that range over
the tuples in DB . A functional dependency for database DB is any expression of the form
∀t, t′ ∈ DB , t.Ai1 = t′.Ai1 ∧ . . . ∧ t.Ait = t′.Ait ⇒ t.Ait+1 = t′.Ait+1 ∧ . . . ∧ t.Aim = t′.Aim.
For instance, in Fig. 1, t.Name = t′.Name ⇒ t.Age = t′.Age is an example of a functional
dependency saying that two tuples about the same person should agree on age.

DB

16330John

16030John

17437Paul

17137Paul

17237Paul

17032Matthew

17032Matthew

17228Mary

17028Mary

HeightAgeName

16330John

16030John

17437Paul

17137Paul

17237Paul

17032Matthew

17032Matthew

17228Mary

17028Mary

HeightAgeName

c1

c2

c3

c4

c5

Figure 1: An example database

Without loss of generality, we assume two functional dependencies cannot have the same
antecedent. We assume that the attributes in a table are totally ordered by a reliability
ordering >r (that can be derived, e.g., from inherent properties of attribute domains or from
historical error statistics). We write Ai >r Aj iff attribute Ai is more reliable than attribute
Aj.
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3 Culprits, Clusters, and Dirtiness Functions

Our notion of database dirtiness is based on the concepts of culprits and clusters. Culprits
are just the duals of maximal consistent subsets which have been widely studied [Loz94,
HK05, GH06, BKMS92]. Clusters, on the other hand, do not seem to have been studied
much in AI. Both of these parameters will be used in our axiomatic characterization of the
dirtiness of a database.

Definition 3.1 Let DB be a database and F a set of functional dependencies. A culprit is
a set c ⊆ DB not satisfying F such that ∀ c′ ⊂ c, c′ satisfies F .

Thus, culprits are minimal sets of database tuples that cause a functional dependency vio-
lation. Let culprits(DB ,F) denote the set of culprits in DB w.r.t. F .

Example 3.1 Consider a functional dependency fd stating that ∀t, t′ ∈ DB , t.Name =
t′.Name ⇒ t.Age = t′.Age ∧ t.Height = t′.Height. The relation in Fig. 1 has five culprits
w.r.t. fd, denoted by c1, c2, c3, c4, c5.

The following proposition states that the culprits(DB ,F) function is monotonic w.r.t. DB .

Proposition 3.1 If DB ′ ⊆ DB, then culprits(DB ′,F) ⊆ culprits(DB ,F).

Definition 3.2 Let DB be a database and F a set of functional dependencies. Given two
culprits c, c′ ∈ culprits(DB ,F), we say that c and c′ overlap, denoted c 4 c′, iff c ∩ c′ 6= ∅.

Definition 3.3 Let 4∗ be the reflexive transitive closure of relation 4. A cluster is a set
cl =

⋃
c∈e c where e is an equivalence class of 4∗.

We denote with clusters(DB,F) the set of all clusters in DB w.r.t. F . We now present an
example of overlapping culprits and clusters.

Example 3.2 In Fig. 1, the pairs of overlapping culprits in database DB are
(c1, c1), (c2, c2), (c3, c3), (c4, c4), (c5, c5), (c3, c4), (c3, c5), (c4, c5), and all of
the symmetric pairs. Therefore, the clusters in DB are the sets cl1 =
{(Mary, 28, 170), (Mary, 28, 172)}, cl2 = {(John, 30, 163), (John, 30, 160)}, and cl3 =
{(Paul, 37, 172), (Paul, 37, 171), (Paul, 37, 174)}.

Clusters are important because they localize the inconsistencies. For instance, clusters
cl1, cl2, cl3 above tell us that there is something wrong with the Mary, John and Paul triples
respectively.

We now define single-dependency and multiple-dependency dirtiness functions.

Definition 3.4 A single-dependency (resp. multiple-dependency) dirtiness function δ takes
a database instance DB, a functional dependency fd (resp. a finite set F of functional depen-
dencies), and a reliability ordering >r and returns as output a real number in the left-closed,
right-open interval [0,∞).
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4 Axioms

Our first axiom on single-dependency dirtiness functions δ says that consistent databases
have a dirtiness level of 0.

Axiom S1. If culprits(DB, {fd}) = ∅, then δ(DB, fd , >r) = 0.

Our second axiom is based on the statistical notions of standard deviation and variance
(which is the square of s.d.), which have been used for decades by the statistics community
as a measure of dirtiness in a data set, to define an axiom dirtiness functions should satisfy.

We first generalize the notion of variance to string attributes. Given a numeric at-
tribute A, let varianceA : 2dom(A) → IR+ be the variance of A. When dom(A) is a set
of strings, varianceA builds on top of string similarity-evaluation function (e.g. edit dis-
tance, Hamming distance, Levenshtein distance). Given a set of strings S and a similarity-
evaluation function sim : string × string → IR+, let smin be the first string appearing in S
according to lexicographic order. The varianceA(S) function returns the variance of the set
D = {sim(smin, s) | s ∈ S}.

From now on, the sequence of attributes in a functional dependency fd , ordered w.r.t.
>r, is denoted {Afd ,1, . . . , Afd ,m}. Thus, Afd ,1 is the most reliable attribute in fd , Afd ,2 is
the second most reliable attribute in fd , and so forth.

Definition 4.1 Let fd be a functional dependency, and cl, cl′ be two clusters. We say
that cl′ vfd

var cl, read “cl′ is less or equally varied than cl w.r.t. fd” iff ∃j ∈ [1, m]
s.t. varianceAfd,j

(cl′.Afd,j) ≤ varianceAfd,j
(cl.Afd,j), and ∀i < j, varianceAfd,i

(cl′.Afd,i) =
varianceAfd,i

(cl.Afd,i). We also say that cl′ @fd
var cl, read “cl′ is less varied than cl

w.r.t. fd” iff ∃j ∈ [1, m] s.t. varianceAfd,j
(cl′.Afd ,j) < varianceAfd,j

(cl.Afd ,j), and ∀i <
j, varianceAfd,i

(cl′.Afd ,i) = varianceAfd,i
(cl.Afd,i).

The above definition says that cl′ is less or equally varied than cl w.r.t. fd iff as we examine
the attribute in fd in decreasing order of reliability, the first attribute on which they have
differing variances is one where cl′ has a lower variance than cl.

Definition 4.2 We say that DB ′ is preferable to DB w.r.t. the dependency fd, denoted
DB ′ �fd DB, iff there exists a function

α : clusters(DB ′, {fd}) → clusters(DB, {fd})

such that ∀cl′ ∈ clusters(DB ′, {fd}) it holds that:

• cl′ vfd
var α(cl′);

• cl′ and α(cl′) agree on all attributes that appear in the body of fd;

and at least one of the following conditions holds:

• ∃cl′ ∈ clusters(DB ′, {fd}) such that cl′ @fd
var α(cl′);
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• ∃cl ∈ clusters(DB, {fd}) such that @cl′ ∈ clusters(DB ′, {fd}), α(cl′) = cl.

Intuitively, DB ′ is preferable to DB with respect to variance if there is a mapping between
the clusters of DB ′ and the clusters of DB such that (i) each of the clusters in DB ′ shows
less or equal variance than its image; (ii) either there exists a cluster in DB ′ having strictly
less variance than its image in DB , or there exists a cluster in DB that does not belong to
the codomain of the mapping.1 This definition leads us directly to:

Axiom S2. If DB ′ �fd DB , then δ(DB ′, fd , >r) < δ(DB , fd , >r).

Example 4.1 Consider the databases in Fig. 2. Cluster cl4 shows lower variance than cl1;
Clusters cl2 and cl5 are equal; Cluster cl6 shows lower variance than cl3. Therefore, Axiom
S2 dictates that DB ′ has a lower dirtiness degree than DB.
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Figure 2: According to Axiom S2, DB ′ has a lower dirtiness degree than DB

We also consider a weaker variant of Axiom S2 called S2′:

Axiom S2′. If DB ′ �fd DB and ∀cl′ ∈ clusters(DB ′, {fd}) cl′ ⊆ α(cl′), then δ(DB ′, fd , >r

) < δ(DB , fd , >r).

The condition that ∀cl′ ∈ clusters(DB ′, {fd}) cl′ ⊆ α(cl′) is not satisfied by the databases
in Fig. 2. Hence, Axiom S2′ does not impose any restrictions on δ. However, if (Mary, 30,
170.5) and (Paul, 35, 171.5) were not present in DB ′, then Axiom S2′ would instead require
δ(DB ′, fd , >r) < δ(DB, fd , >r).

5 Examples of Single-Dependency Dirtiness Functions

In this section, we present some single-dependency dirtiness functions.

1It has been argued that when the values of disagreeing attributes are too far apart, they should simply
be considered inconciliable [BDP+02]. In our case the objective is that of assessing the degree of dirtiness,
so we still look at variances.
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5.1 Naive Culprits-based Single-Dependency Dirtiness Functions

The following two simple dirtiness functions are based on culprits:

1. |culprits(DB, {fd})|

2.
∑

c∈culprits(DB ,{fd}) |c|

The first measure above just counts the number of culprits, the second sums up the number
of tuples in each culprit.

Proposition 5.1 The naive culprits-based dirtiness functions satisfy Axioms S1 and S2′.

It is easy to see that these two measures, both of which seem reasonable at first
sight, do not satisfy Axiom S2. To see why, consider the databases in Fig. 2.
Here, we have |culprits(DB , {fd})| = |culprits(DB ′, {fd})| and

∑
c∈culprits(DB,{fd}) |c| =∑

c∈culprits(DB ′,{fd}) |c|, whereas Axiom S2 states that DB ′ should have a lower dirtiness de-
gree.

5.2 Naive Cluster-based Single-Dependency Dirtiness Functions

We now define two cluster-based dirtiness functions:

1. |clusters(DB, {fd})|

2.
∑

cl∈clusters(DB ,{fd}) |cl|

As in the case of the culprit based dirtiness functions, the first measure simply counts the
number of clusters, while the second counts the sum of the number of tuples in each cluster.

Proposition 5.2 Dirtiness function 1 above satisfies Axiom S1.

It is easy to see that dirtiness function 1 above satisfies neither Axiom S2 nor S2′. To see why,
consider the databases shown in Fig. 2. Here, |clusters(DB, {fd})| = |clusters(DB ′, {fd})|,
whereas Axiom S2 states that DB ′ should have a lower dirtiness degree. Now consider DB ′

without tuples (Mary, 30, 170.5) and (Paul, 35, 171.5). We still have |clusters(DB, {fd})| =
|clusters(DB ′, {fd})|, whereas Axiom S2′ states that DB ′ should have a lower dirtiness
degree.

Proposition 5.3 Dirtiness function 2 above satisfies Axioms S1 and S2′.

Unfortunately, dirtiness function 2 above does not satisfy Axiom S2. To see why, consider
the databases shown in Fig. 2. In this case,

∑
cl∈clusters(DB ,{fd}) |cl| =

∑
cl∈clusters(DB ′,{fd}) |cl|,

whereas Axiom S2 states that DB should have a higher dirtiness degree.
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5.3 Functions Proposed in the Literature

In this section, we see how certain dirtiness functions proposed in the literature measure up
w.r.t. the axioms we have proposed. The following function was proposed in [HK05]:

|culprits(DB ,F)|
|DB ∪ F|

This function looks at the ratio of the total number of culprits to the size of the database
and functional dependencies.

Proposition 5.4 The dirtiness function above satisfies Axiom S1.

However, this dirtiness function does not satisfy either Axiom S2 nor S2′. The main reason
is that this function does not look at the tuples inside a cluster. We consider the two axioms
in turn:

(S2) Consider the databases shown in Fig. 3. We have |culprits(DB,{fd})|
|DB|+1

= 3
10

and
|culprits(DB ′,{fd})|

|DB ′|+1
= 1

3
, thus contradicting Axiom S2 which states that DB ′ should have

lower dirtiness than DB .

(S2′) The same example used for S2 shows that this function does not satisfy Axiom S2′.

15325Matthew

17436Paul

17136Paul

16636Paul

16333John

16333John

15325Matthew

17030Mary

17030Mary

HeightAgeName

15325Matthew

17436Paul

17136Paul

16636Paul

16333John

16333John

15325Matthew

17030Mary

17030Mary

HeightAgeName

17436Paul

17136Paul

HeightAgeName

17436Paul

17136Paul

HeightAgeName

DB DB’

Figure 3: A case where the Grant-Hunter measure does not satisfy neither axiom Axiom S2
nor S2′

The following dirtiness function was proposed in [GH06]:

|culprits(DB ,F)|
|DB | + |ground(F)|

This function looks at the ratio of the number of culprits to the sum of the size of the
database and the number of ground instances of the functional dependencies.

Proposition 5.5 The dirtiness function above satisfies Axiom S1.
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However, this dirtiness function does not satisfy either Axiom S2 nor S2′ because of the fact
that it does not examine clusters. We consider the two axioms in turn:

(S2) Consider the databases shown in Fig. 3. Suppose DB contains x > 2k − 1 more tuples
which do not add to the number of inconsistencies that were already present. In this
case we have |culprits(DB ′ ,{fd})|

|DB ′|+k
= 1

3+k
> |culprits(DB,{fd})|

|DB |+k
, thus contradicting Axiom S2

which states that DB ′ should have lower dirtiness than DB .

(S2′) The same case considered for Axiom S2 shows that Axiom S2’ is also contradicted.

The following function was proposed in [HK05, Loz94]:

|DB | + |ground(F)| − log2|
⋃

∆∈MCS(DB∪F)

mod(∆)|

where MCS(DB ∪F) are the maximally consistent subsets of DB ∪F and mod(∆) is the set
of models of ∆. This function measures cleanliness with respect to functional dependencies,
thus Axiom S1 is not applicable. If we take the negative of this function, the resulting
dirtiness function does not satisfy Axioms S2 nor S2′. This can easily be seen by observing
that adding or removing consistent tuples has a linear impact on the dirtiness measure while
not changing the set of clusters.

5.4 A New Single-Dependency Dirtiness Function

Coming up with a single-dependency dirtiness function satisfying the axioms is a challenge.
We now propose a new single-dependency dirtiness function δvar. Let DB be a database,
fd a functional dependency over DB , {Afd ,1, . . . , Afd ,m} the sequence of attributes in fd
ordered w.r.t. >r, and variancemax(i), with i ∈ [1,m], be the maximum possible variance
for attribute Afd ,i. Let B > 1 be any integer. Then:

δvar(DB , fd , >r) =
∑

cl∈clusters(DB ,{fd})

wtV ar(cl, fd, >r)

where

wtV ar(cl, fd, >r) =
m∑

i=1

Bm−i · var′Afd,i
(cl.Afd,i);

var′Afd ,i
(cl.Afd,i) = (B − 1) ·

varianceAfd ,i
(cl.Afd,i)

variancemax(i)
.

Intuitively, we first compute the variance of each attribute Afd ,i in each cluster cl, and
normalize it to the range [0, (B − 1)] (this value is denoted as var′Afd,i

(cl.Afd ,i)). Then, for
each cluster cl, we sum up the normalized variances of the attributes in fd , with exponentially
decreasing weights (with base B) when going from the most reliable attribute to the less
reliable one (this sum is denoted as wtV ar(cl, fd , >r)). The value of δvar is finally computed
as the sum of the wtV ar’s of all the clusters. The following result says that δvar satisfies all
three axioms.
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Theorem 5.1 Function δvar satisfies Axioms S1, S2, and S2′.

Proof 5.1 Axiom (S1) is trivial to show. Axiom (S2’) immediately follows from Axiom (S2)
whose proof we show below.

Consider two databases DB, DB ′ such that DB ′ �fd DB, and let P be the set of pairs
(cl, cl′) such that cl ∈ clusters(DB, fd), cl′ ∈ clusters(DB ′, fd), and cl = α(cl′) (note that
there cannot exist cl′1, cl

′
2 ∈ clusters(DB ′, fd) such that α(cl′1) = α(cl′2)). Moreover, let P≤,

P<, and S be the sets defined as follows:

• P≤ = {(cl, cl′) ∈ P | cl′ vfd
var cl};

• P< = {(cl, cl′) ∈ P | cl′ @fd
var cl};

• S = {cl ∈ clusters(DB, {fd}) |@cl′ ∈ clusters(DB ′, {fd}), α(cl′) = cl}.

Note that P = P≤ ∪ P<. By definition of �fd , we have that:

• for each (cl, cl′) ∈ P≤, ∃j ∈ [1, m] s.t. varianceAfd,j
(cl′.Afd,j) ≤ varianceAfd,j

(cl.Afd,j),
and ∀i < j, varianceAfd,i

(cl′.Afd,i) = varianceAfd,i
(cl.Afd,i);

• for each (cl, cl′) ∈ P<, ∃j ∈ [1, m] s.t. varianceAfd,j
(cl′.Afd ,j) < varianceAfd,j

(cl.Afd,j),
and ∀i < j, varianceAfd,i

(cl′.Afd,i) = varianceAfd,i
(cl.Afd,i).

Since ∀i ∈ [0,m] var′Afd,i
is proportional to varianceAfd,i

, for each (cl, cl′) ∈ P we have that:

• the first j − 1 terms of wtV ar(cl, fd, >r) and wtV ar(cl′, fd , >r) are equal;

• the j-th terms are multiplied by Bm−j ;

• the terms from the (j+1)-th to the m-th are multiplied by factors ranging from Bm−j−1

to 1.

Thus, as var′Afd,i
always ranges between 0 and B − 1, we have:

• if (cl, cl′) ∈ P≤, then wtV ar(cl′, fd , >r) ≤ wtV ar(cl, fd, >r);

• if (cl, cl′) ∈ P<, then wtV ar(cl′, fd , >r) < wtV ar(cl, fd , >r).

Finally, since by definition of �fd , either P< or S are not empty, we have that

δvar(DB , fd , >r) − δvar(DB ′, fd , >r) =
∑

(cl,cl′)∈P≤

[wtV ar(cl, fd, >r) − wtV ar(cl′, fd , >r)] +

∑

(cl,cl′)∈P<

[wtV ar(cl, fd, >r) − wtV ar(cl′, fd , >r)] +

∑

cl∈S

wtV ar(cl, fd , >r) > 0.

Table 1 summarizes which dirtiness functions satisfy which axioms. Note that the only
dirtiness function that satisfies all axioms is δvar.
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S1 S2 S2′

|culprits(DB , {fd})| X × X
∑

c∈culprits(DB,{fd}) |c| X × X

|clusters(DB , {fd})| X × ×
∑

cl∈clusters(DB ,{fd}) |cl| X × X
|culprits(DB,F)|

|DB∪F| [HK05] X × ×
|culprits(DB ,F)|
|DB|+|ground(F)| [GH06] X × ×

|DB | + |ground(F)|−
log2|

⋃
∆∈MCS(DB∪F) mod(∆)| n/a × ×
[HK05, Loz94]

δvar X X X

Table 1: Single-dependency dirtiness functions

6 Combining Dirtiness w.r.t. Multiple Functional Dependencies

Most databases will have multiple functional dependencies. In the previous sections, we
have looked at the situation where only one functional dependency is present. Combining
dirtiness w.r.t. multiple functional dependencies can lead to anomalies.

Example 6.1 Consider the database in Fig. 4(a) and the following functional dependencies:

(fd1) ∀t, t′ ∈ DB , t.Name = t′.Name ⇒ t.Age = t′.Age ∧ t.Salary = t′.Salary ∧
t.P osition = t′.P osition

(fd2) ∀t, t′ ∈ DB , t.Salary = t′.Salary ⇒ t.P osition = t′.P osition

Here, clusters(DB, {fd1}) = {cl1, cl2}, and clusters(DB, {fd2}) = {cl3}. If we
look at the clusters with respect to both functional dependencies, i.e. if we consider
clusters(DB, {fd1, fd2}), then we obtain the set of all five tuples.

The following definition specifies what it means for a database to be “clearly cleaner”
than another database.

Definition 6.1 Given a single-dependency dirtiness function δ, we say that DB ′ &F DB,
read “DB ′ is clearly cleaner than DB with respect to the set of dependencies F”, iff ∀fd ∈
F , δ(DB ′, fd , >r) ≤ δ(DB , fd , >r).

Suppose τ is a function that measures the dirtiness of a database DB based on a reliability
ordering >r and a set of functional dependencies, and suppose τ uses a single-dependency
dirtiness function δ to measure dirtiness in a database w.r.t. a single functional dependency.
Then we hypothesize that τ needs to satisfy the following axiom.
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Figure 4: (a) A case where a single cluster may comprise tuples violating different functional
dependencies; (b) According to Axiom M1, DB ′ is clearly cleaner than DB

Axiom M1. If DB ′ &F DB , then τ (DB ′,F , >r) ≤ τ (DB ,F , >r).

This axiom merely says that if DB ′ is clearly cleaner than DB , then τ must assign a lower
(or equal) level of dirtiness to DB ′.

Example 6.2 Consider the databases in Fig. 4(b) and the following functional dependencies:

(fd1) ∀t, t′ ∈ DB , t.Name = t′.Name ⇒ t.Age = t′.Age ∧ t.Salary = t′.Salary

(fd2) ∀t, t′ ∈ DB , t.Salary = t′.Salary ⇒ t.Bonus = t′.Bonus

Here, clusters(DB , {fd1}) = {cl1, cl2}, clusters(DB, {fd2}) = {cl3}, clusters(DB ′, {fd1}) =
{cl4}, and clusters(DB ′, {fd2}) = {cl5}. We can clearly see that δ(DB ′, fd1, >r) <
δ(DB, fd1, >r) and δ(DB ′, fd2, >r) < δ(DB , fd2, >r). Therefore, Axiom M1 dictates that
τ (DB ′,F , >r) ≤ τ (DB ,F , >r).

We now propose two dirtiness functions that support multiple functional dependencies,
both of which build on top of a single-dependency dirtiness function. Thus, even though
our axioms on multiple-dependency dirtiness functions are weak (because there is only one
axiom), things are actually more constrained than might be immediately apparent because
they are required to build on top of a single-dependency dirtiness function.

The first function we propose makes the conservative choice of taking the maximum
among the values returned by the single-dependency function.

Definition 6.2 (Pessimistic multiple-dependency dirtiness function) Let DB be a
database, F a set of functional dependencies over DB, >r an ordering of the attributes
of DB, and δ a single-dependency dirtiness function: We define function τmax as

τmax(DB ,F , >r) = maxfd∈Fδ(DB , fd, >r)

It is immediate to see that this multiple-dependency dirtiness function satisfies Axiom M1.

Proposition 6.1 Function τmax satisfies Axiom M1.
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The second dirtiness function takes into account the fact that some functional depen-
dencies might be more important than others, so violations of less important dependencies
should contribute less to dirtiness.

Definition 6.3 (Preference-based multiple-dependency dirtiness function) Let
DB be a database, F a set of functional dependencies over DB, >r an ordering of the
attributes of DB, δ a single-dependency dirtiness function, and weight : F → IN+: We
define function τwt as

τwt(DB ,F , >r) =

∑
fd∈F weight(fd) · δ(DB, fd , >r)∑

fd∈F weight(fd)

The following straightforward result says that τwt also satisfies Axiom M1.

Proposition 6.2 Function τwt satisfies Axiom M1.

A special case of τwt takes the average of the dirtiness values returned by the single-
dependency function:

τavg(DB ,F , >r) =

∑
fd∈F δ(DB, fd , >r)

|F|

obtained by setting in τwt, ∀fd ∈ F , weight(fd) = k for any fixed k ∈ IN+.

7 Related Work and Conclusions

There has been a tremendous amount of work in inconsistency management since the 60s
and 70s when paraconsistent logics where introduced [dC74] and logics of inconsis-
tency [Bel77, Gra78] were developed. Subsequently, frameworks such as default logic [Rei80],
maximal consistent subsets [BKMS92] and inheritance networks [Tou86] and others were used
to generate multiple plausible consistent scenarios (often called “extensions”), and methods
to draw inferences were developed that looked at truth in all (or some) extensions. Argumen-
tation methods [AC02] were used to reason about how certain arguments defeated others.
Methods to clean data and/or provide consistent query answers in the presence of incon-
sistent data are also quite common [JDR99, SS03, Cho07, BFFR05]. For instance, [Cho07]
addresses the basic concepts and results of the area of consistent query answering (in the
standard model-theoretic sense). They consider universal and binary integrity constraints,
denial constraints, functional dependencies, and referential integrity constraints. [BFFR05]
presents a cost-based framework that allows finding “good” repairs for databases that ex-
hibit inconsistencies in the form of violations to either functional or inclusion dependencies.
They propose heuristic approaches to constructing repairs based on equivalence classes of
attribute values; the algorithms presented are based on greedy selection of least repair cost,
and a number of performance optimizations are also explored.
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However, we are aware of very few works on measuring the degree of inconsistency in
a database. All three methods deal with culprits only or with maximal consistent sub-
sets [Loz94, HK05, GH06]. We believe we have made two important conceptual contributions
in this paper. First, we draw attention to the notion of a cluster and explain that clusters
are very important in measuring cleanliness of the database. Second, we have drawn atten-
tion to the fact that well known statistical measures for measuring variation in a dataset
(such as standard deviation and variance) have a role to play in measuring the dirtiness of
a database. Based on these two ideas, we have developed single-dependency axioms that
we believe a dirtiness measure should satisfy when one functional dependency is considered
in isolation. We subsequently look at some obvious dirtiness measures based on culprits
and clusters, as well as past work, and show that these methods do not satisfy our axioms.
We then develop our own dirtiness measure that satisfies these axioms. Subsequently, we
propose a single axiom for dirtiness functions that handle multiple functional dependencies
– however, such dirtiness functions are supposed to be built on top of a dirtiness function
for single dependencies. We present a couple of alternative dirtiness functions that satisfy
this axiom.

Future work will focus on the development of other multiple-dependency dirtiness func-
tions and experimental evaluations of how these dirtiness functions work in practice in terms
of computational overhead they impose. Moreover, we plan to build “cleaning” operators
that provably reduce dirtiness.
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