
Supervised Image Hashing with Proximal Methods

Cyrus Teng, Ganesh Sivaraman, Varun Manjunatha

December 21, 2014

Abstract

We present a supervised binary encoding scheme for
image retrieval that learns projections using a prox-
imal optimization algorithm. We first formulate the
problem to minimize reconstruction error between
a Gramian matrix formed by binary codes, and a
similarity matrix obtained from ground truth labels.
We optimize our convex objective using a forward-
backward splitting algorithm with a proximal func-
tion that forces the reconstruction to get boxed be-
tween -1 and 1 for each step of descent. Thus, diverg-
ing from other hashing methods, our method pro-
duces naturally binary projections. We evaluate our
method on the Cifar-10 image retrieval dataset, and
obtain results which strongly compete with state-of-
the-art hashing methods.

1 Introduction

Given a database of images, image retrieval is the
problem of returning images from the database that
are most similar to a query. The proliferation of
images on the internet due to ubiquity of mobile
phone cameras means that performing image re-
trieval on databases with billions of images is chal-
lenging. This is mainly due to linear time complex-
ity of nearest neighbor retrieval algorithms. Image
hashing[3, 11, 20, 13, 12, 14] alleviates this problem
by obtaining similarity preserving binary codes which
represent high dimensional floating point image de-
scriptors, and offers both efficient storage and scal-
able retrieval with sub-linear search times. These bi-
nary hash-codes can be learned in both unsupervised
and supervised settings. Unsupervised hashing algo-

Figure 1: In this illustration, the images belong-
ing to the “Taj Mahal” class have the same binary
hash-code, unlike the image belonging to the “Eiffel
Tower” class.

rithms map nearby points in a metric space to similar
binary codes. On the other hand, supervised hashing
algorithms try to preserve semantic label information
in the Hamming space. This is illustrated in Figure
1.

Images are often accompanied with a class label
- these give the identity of the object in the image,
under the assumption that the image contains only
one object. The aim of supervised image retrieval is
to retrieve images which belong to the same class as
that of the query. For example, if the query is the
image of a dog, then, it would be desirable that the
retrieval algorithm returns other images of dogs. The
aim of this work is to transform image features into
binary hash codes, which enables such a supervised
retrieval.

Supervised image hashing entails learning binary
hash codes that best preserve class label information,
and this involves solving an optimization problem.

1

There are many ways of formulating this problem,
but we use an approach identical to [13]. Our solution
to this optimization problem is unique and gives com-
parable performance to many state-of-the-art hash-
ing algorithms. The time our algorithm takes in the
training phase is a fraction of the time taken by [13].
We use a forward-backward splitting method, taken
from [18] which ensures that the codes generated are
naturally binary. This is opposed to other approaches
which compute real-valued hash projections, and per-
form a zero-thresholding to convert them to binary.

The contributions of our paper are as follows :

• We learn binary-hash codes on a training sam-
ple using a novel forward-backward splitting ap-
proach.

• We use a method similar to the kernel trick [16]
to construct binary codes for queries.

• We perform image retrieval on queries from the
Cifar-10 [8] dataset to evaluate our approach.

In Section 2, we consider related work. In Section
3, we discuss the formulation of the problem and our
solution to this problem in detail. In Section 4, we
perform experiments to evaluate our method. We
conclude in Section 5.

2 Related Work

Work on image hashing can be divided into unsuper-
vised and supervised methods, but for the purpose
of brevity, we only mention the latter. Examples of
supervised hashing algorithms include [7, 13, 12, 14].
Supervised hashing algorithms are based on objective
functions that minimize the difference between ham-
ming distances and similarity of pairs of data points.
Liu et al. [13] use the class label to determine simi-
larity. A pair of points is considered ‘similar’ if they
belong to the same class and ‘dissimilar‘ otherwise,
with similarity value of ‘1’ and ‘-1’ respectively. They
utilize a simplified objective function using the rela-
tion between hamming distance and inner products
of the binary codes. A sequential greedy optimiza-
tion is adapted to obtain the supervised projections.
FastHash [12] also uses a KSH objective function but

employs decision trees as hash functions and utilizes
a GraphCut based method for binary code inference.
Minimal loss hashing [14] uses a structured SVM
framework to generate binary codes with an online
learning algorithm.

3 Method

The pipeline of our method is as follows :

• We have a dataset of N images, from
which we extract d dimensional features like
GIST[15], Bag-of-Words[17], Convolutional Neu-
ral Networks[9], etc. We split these into Ndb
database images and Nquery query images.

• Out of the Ndb database images, we choose
Ntrain images to train our hashing algorithm.
At the end of this step, we have learned hash
functions for each of Ntrain images.

• We designate Nanc out of Ntrain points as “an-
chor points”. We use these anchor points to con-
struct hash-codes for the remaining Ndb−Ntrain
database images as well as the Nquery query im-
ages.

• We now perform evaluation of our hashing algo-
rithm using the mean-average-precision (mAP)
metric on the Nquery query images.

3.1 Problem Formulation

Consider Ntrain randomly sampled images out of Ndb
images. Since our method is a supervised hashing
approach, we create a matrix S such that :

Sij =

{
+1 if ith and jth image belong to same class

−1 otherwise

It is quite apparent that S is a symmetric matrix
of dimension Ntrain ×Ntrain. Let X be a Ntrain × b
matrix that contains the binary hash-codes. The ith

row of X represents the b bit binary hash-code of the
ith training sample. The aim of the training phase
is to learn the optimal X. The matrix G = XXT

2

is a Gramian matrix whose element Gij contains the
inner product between the binary hash-code of the
ith and jth training sample. Thus, we would like this
inner product (similarity product) Gij to reflect the
class similarity Sij . This is done using the following
formulation (suggested by [13]) :

min f(X) = ||XXT − bS||2fro (1)

In the above equation, we are trying to minimize
the sum of the squared reconstruction error while try-
ing to force Gij to emulate Sij for all pairs of train-
ing samples (hence, Frobenius norm). The matrix S
is multiplied with the number of bits b because the
elements in S are either -1 or 1, whereas the elements
of the Gramian matrix G fall in the interval [−b, b].
This objective function is convex for the following
reason: we can rewrite f(X) =

∑
ij fpair(xi, xj),

where fpair(xi, xj) is the reconstruction error for the
ijth pair. If fpair is convex, then so is f , because
the sum of convex functions is also convex. Thus,
fpair = ||xixTj − Sij ||2 is the composition of a qua-

datric function (convex, since xix
T
j = xiIx

T
j and I is

positive-semidefinite, and also non-decreasing), and
the l2 norm, which is also convex. Thus, by the vec-
tor composition rule [1], fpair is a convex function,
and it follows that f is also convex.

3.2 Forward-Backward Splitting Al-
gorithm

The optimization problem described in Section 3.1
is solved using an implemention of what is known
as forward-backward splitting method which is de-
scribed in detail in [4, 6]. The particular algorithm
is called Fast Adaptive Shrinkage/Thresholding Al-
gorithm (FASTA) [6]. In this section, we provide a
brief summary of the general methodology.

The optimization problem has the following form:

minimize f(x) + g(x) (2)

where f is convex and differentiable with a Lipschitz-
continuous gradient and g is a lower semicontinuous
convex function. Because g is not differentiable, the
problem cannot be solved using the general class of
gradient descent methods. However, it can be shown

[5] that a problem of this type has at least one solu-
tion and that its solutions are characterized by the
fixed point equation

x = proxγg(x− γ∇f(x)) (3)

where γ > 0 and proxγg : Rn → Rn is the proximal
operator of g defined by

proxγg(y) = argmin
x

γg(x) +
1

2
‖ x− y ‖22 (4)

Hence, proxγg takes a point y and find a minimizer
of g that is not too far from y. Equations (3) suggests
an iterative method of solving (2), using the following
recursive equation [4]:

xn+1 = proxγng(xn − γn∇f(xn)) (5)

where xn − γn∇f(xn) is a gradient descent at xn
with step size γn and proxγng takes the result of the
gradient descent of f and find a minimizer of g that
is close to this point.

The solution x∗ of equation (4) must satisfy the
optimality condition [6]

γG + (x∗ − y) = 0 (6)

where G ∈ ∂g(x) is a subgradient of g. This implies
that

proxγg(y) = x∗ = y − γG (7)

which shows that the proximal operation is a descent
step along a subgradient of g.

Therefore, each iteration in the process described
by equation (5) involves a gradient descent on f fol-
lowed by a descent along a subgradient of g. The
gradient descent step is called the forward step and
the subgradient descent step is called the backward
step and this type of scheme is known as a forward-
backward splitting algorithm (FSB).

Convergence of FSB is guaranteed if the step size
γn satisfies certain stability bounds which depend on
the Lipschitz constant L of ∇f . [6]. Because L is
seldom known with precision, in practice, one often
incorporates a backtracking line search in the algo-
rithm which also guarantees convergence [6].

3

3.3 Hashing Algorithms

Our hashing algorithm utilizes the FBS method de-
scribed in the previous section. Our unique approach
solves the following problem:

minimize ‖ XXT − bS ‖2fro +IC(X) (8)

where C denotes the set [−1, 1]Ntrain×b and IC is the
indicator function

IC(X) =

{
0 if X ∈ C
∞ otherwise

Hence, we replace f in equation (2) with ‖ XXT −
bS ‖2fro and g with IC(X). In our FBS algorithm we
thus evaluate the proximal operator

proxγIC (Y) = argmin
X∈C

1

2
‖ X − Y ‖22 (9)

The solution to equation (9) is the point in C that
is closest to Y . This means that each iteration of our
hashing algorithm involves two steps. First, we min-
imize the distance between our Gramian matrix and
the similarity matrix using gradient descent where
the gradient of f is

∇f(X) = 4(XXTX − SX) (10)

In the second step, we project the result from the first
step onto IC . This step forces each element in our
Gramian matrix to take a value between −1 and 1 be-
fore the next gradient descent step. These two steps
are repeated until the residual falls below a specified
tolerance level.

3.4 Out-of-sample Extension

The procedure described in Section 3.3 creates bi-
nary hash-codes for only the training samples. For
the remaining images, we construct hash-codes using
a heuristic method similar to kernel SVMs[16]. We
refer to this as our out-of-sample extension. Recall
that the matrix X now contains Ntrain binary hash-
codes, each of length b bits. We designate Nanc out of
these Ntrain points as anchor points, and these points
are used to perform the out-of-sample extension. Let

Figure 2: In this toy example, the point q is out of
sample and ai represent anchor points. Obviously,
the binary hash code of q should resemble a1, a2 and
a3 more closely than a4 and a5

the original (GIST) feature for the ith anchor point
be ai. Given a data point q for which we would like
to obtain the binary code, we perform the following
steps:

1. We compute wi = e−
(||q−ai||)

2

σ2 for i =
1, 2, ..., Nanc. We fix σ = 0.5. Clearly, wi ∈ [0, 1]

2. We now compute xq (the binary hash-code for

q) as sign(
∑
wiai∑
wi

)

This technique considers the binary hash for a
given point q as a linear combination of binary hashes
of the anchor points, which have already been com-
puted in the training phase. The weights of this lin-
ear combination are dependent on the Euclidean dis-
tance between the data point and the anchor points
in Euclidean space (Figure 2). Although this creates
a computational overhead, the overhead is small as
long as the number of anchor points is reasonable
(Nanc << Ndb).

4

4 Experiments

4.1 Evaluation metric and Dataset

In Section 3, we formulate an objective function
that can be optimized to provide binary hash-codes
X for a given similarity matrix S. We perform
the optimization using a forward-backward splitting
method. Then, we use the out-of-sample exten-
sion to produce binary hash-codes for all images
in the database and query images. We now per-
form retrieval experiments using the mean-average-
precision (mAP) metric which is defined as : mAP =∑Q

q=1 AveP (q)

Q , where Q is the number of queries.

Here, AveP =
∑
k=1 n(P (k)×rel(k)

number of relevant images . Intuitively,
average-precision for a query image is high if the re-
trieval system returns relevant images (in our case,
belonging to the same class) that are ranked higher
than irrelevant images (in our case, belonging to dif-
ferent classes). Mean-average-precision simply com-
putes the mean of average-precision over all query
images.

We perform experiments on the Cifar-10 dataset
[8], which consists of 60,000 color images of size 32x32
in 10 classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck), with 6,000 images
per class. There are 50,000 database images and
10,000 query images. We extract GIST [15] features
from these images, which is of dimension 512. We
investigate the following :

1. How does mAP vary with b, the size of the binary
hash-code?

2. How does mAP vary with the number of training
examples?

3. How does mAP vary with Nanc, the number of
anchor points used in the out-of-sample exten-
sion?

4.2 Results and Analysis

Table 1 shows mean-average-precision (mAP) for
varying number of anchor points (Nanc) and length

b|Nanc 300 500 1000 2000 5000
12 0.189 0.187 0.182 0.189 0.193
16 0.186 0.177 0.183 0.198 0.198
24 0.190 0.192 0.194 0.205 0.215
48 0.195 0.196 0.191 0.207 0.209
64 0.195 0.193 0.191 0.207 0.213

Table 1: Comparing mAP with number of bits and
number of anchor points

method 12 bits 24 bits 48 bits
LSH[3] 0.1122 0.1245 0.1188

PCAH[19] 0.1368 0.1133 0.1271
SH[20] 0.1330 0.1317 0.1352

KLSH[11] 0.1212 0.1425 0.1602
SSH[19] 0.1514 0.1595 0.1755
LDAH[2] 0.1380 0.1334 0.1267
BRE[10] 0.1817 0.2024 0.2060
MLH[3] 0.1545 0.1932 0.2074
Ours 0.1814 0.2021 0.1978

KSH0[13] 0.1846 0.2047 0.2181
KSH1[13] 0.2325 0.2588 0.2836

Table 2: Comparing mAP with other state of the
art methods. 1000 training samples were used for all
methods.

Ntrain 100 1000 2000 5000
12 bits 0.163 0.181 0.193 0.182
16 bits 0.180 0.191 0.178 0.183
24 bits 0.179 0.202 0.187 0.193
48 bits 0.180 0.197 0.198 0.191
64 bits 0.182 0.195 0.198 0.191

Table 3: Comparing mAP while varying the number
of training examples

5

of the binary hash code (b). A reasonable conclu-
sion here is that the performance of the algorithm
increases with the number of bits, and the number
of anchor points. However, as mentioned previously,
both of these operations add to runtime of the algo-
rithm. We perform these experiments on 5000 train-
ing samples, i.e., Ntrain = 5000.

In Table 2, we compare the performance of our
method with state of the art methods until 2014.
We notice that our method (highlighted in bold) per-
forms competitively with other methods. It is beaten
by KSH[13], however, the training time of our method
is much shorter than the training time of KSH, which
uses a sequential greedy training approach. We
have not compared our method with FastHash [12],
as their method uses many more training examples
(50,000 as compared to our Ntrain = 5000). The
comparison would not be fair.

In Table 2, we observe that the number of examples
that our optimization algorithm is trained on has an
impact on retrieval performance. However, the effect
of Ntrain is more pronounced from 100 to 1000, than
from 1000 to 5000. We can perhaps conclude that the
performance of the retrieval system will improve with
an order of magnitude increase in number of training
samples.

5 Conclusion

In this project, we seek to project image features into
a binary embedding space so that images belonging
to the same class are nearby in Hamming distance
metric. To do this, we formulate an unconstrained
convex optimization problem that involved minimiz-
ing a reconstruction error. To optimize the objec-
tive function, we use a proximal forward-backward
splitting algorithm, where the proximal method was
approximated by a box constraint, which restricted
the projection to a value between -1 and 1. In prac-
tice, a majority of the projections took exactly the
values of -1 and 1. Therefore, unlike other meth-
ods which obtain binary codes by thresholding real
valued projections, our method obtains natively bi-
nary projections. We also devise an out-of-sample
extension, so that data points other than the train-

ing points can be projected into binary. Experiments
performed on a standard dataset for hashing showed
that this algorithm outperformed many state-of-the-
art approaches.

References

[1] Stephen Boyd and Lieven Vandenberghe. Con-
vex Optimization. Cambridge University Press,
New York, NY, USA, 2004.

[2] M. M. Bronstein C. Strecha, A. M. Bronstein
and Pascal Fua. LDAHash: Improved Matching
with Smaller Descriptors. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
34(1), 2012.

[3] Moses S. Charikar. Similarity estimation tech-
niques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on
Theory of computing, STOC ’02, pages 380–388,
New York, NY, USA, 2002. ACM.

[4] Patrick L. Combettes and Jean-Christophe Pes-
quet. Proximal Splitting Methods in Signal Pro-
cessing in Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, chap-
ter 10, pages 185–212. Springer, 2011.

[5] Patrick L. Combettes and Valérie R. Wajs.
Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation,
4(4):1168–1200, 2005.

[6] Tom Goldstein, Christopher Studer, and
Richard Baraniuk. A field guide to forward-
backward splitting with FASTA implementa-
tion. November 2014.

[7] Yunchao Gong and S. Lazebnik. Iterative quan-
tization: A procrustean approach to learning bi-
nary codes. In Proceedings of the 2011 IEEE
Conference on Computer Vision and Pattern
Recognition, CVPR ’11, pages 817–824, Wash-
ington, DC, USA, 2011. IEEE Computer Soci-
ety.

6

[8] Alex Krizhevsky. Convolutional deep belief net-
works on cifar-10, 2010.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E.
Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural
Information Processing Systems, page 2012.

[10] Brian Kulis and Trevor Darrell. Learning to hash
with binary reconstructive embeddings. In in
Proc. NIPS, 2009, pages 1042–1050.

[11] Brian Kulis and Kristen Grauman. Kernel-
ized locality-sensitive hashing for scalable image
search. In IEEE International Conference on
Computer Vision (ICCV), 2009.

[12] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and
D. Suter. Fast supervised hashing with decision
trees for high-dimensional data. In IEEE Con-
ference on Computer Vision and Pattern Recog-
nition (CVPR’14), Columbus, Ohio, USA, 2014.

[13] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-
F. Chang. Supervised hashing with kernels. In
Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[14] Mohammad Norouzi and David Fleet. Minimal
loss hashing for compact binary codes. In Lise
Getoor and Tobias Scheffer, editors, Proceedings
of the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 353–360,
New York, NY, USA, June 2011. ACM.

[15] Aude Oliva and Antonio Torralba. Modeling the
shape of the scene: A holistic representation of
the spatial envelope. International Journal of
Computer Vision, 42:145–175, 2001.

[16] Bernhard Scholkopf and Alexander J. Smola.
Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Be-
yond. MIT Press, Cambridge, MA, USA, 2001.

[17] J. Sivic and A. Zisserman. Video Google: A
text retrieval approach to object matching in
videos. In Proceedings of the International Con-
ference on Computer Vision, volume 2, pages
1470–1477, October 2003.

[18] Richard Baraniuk Tom Goldstein, Ernie Esser.

[19] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang.
Semi-supervised hashing for large scale search.
Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2012.

[20] Yair Weiss, Antonio Torralba, and Robert Fer-
gus. Spectral hashing. In NIPS, pages 1753–
1760, 2008.

7

