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Abstract
A user may collaborate and share data with many other
users, and across many devices. Replicated storage sys-
tems have traditionally treated all sharing equally and as-
sumed that security can be layered on top. On the con-
trary, we show that security needs to be integrated into
the consistency and replication mechanisms to prevent
information leakage.

We describe the design and evaluation of T.Rex, a sys-
tem that uses role-based access control and novel syn-
chronization and consistency protocols to control sharing
and information access across a variety of users, devices,
and roles. We show that the overhead of such integration
is low by characterizing the CPU, network, and storage
overheads caused by supporting our security goals.

1 Introduction

The proliferation of mobile devices has resulted in per-
sonalized computing “ecosystems,” wherein users em-
ploy whichever device suits their needs at the moment:
a mobile phone while on the move, a desktop computer
while at home, a tablet while in front of the TV, and so
on. Users have come to expect that their data be avail-
able and consistent across all of their devices. Moreover,
as collaborative software like Google Docs has become
popular, users have grown to expect the data they share
to be available and consistent, even as their collaborators
perform modifications.

Replicated data systems are the canonical approach to
achieving consistency across multiple devices. Gener-
ally speaking, they function as follows: When a user
modifies a document, the system updates a local ver-
sion vector, and records the change. This increases the
“entropy” in the system until other devices know about
this modification. When two devices (be they owned by
the same user or not) encounter one another, they per-
form an anti-entropy session: they compare their version

vectors, inform one another of whatever modifications
they are missing, and update their version vectors. En-
tropy decreases with each anti-entropy session, and as
updates spread from user to user, the entropy eventually
approaches zero. This is the basic underlying mecha-
nism behind both user-to-user replication systems like
Bayou [48] and more recent cloud-based services like
Dropbox [13]. We use topology independence to de-
scribe both cases. The salient point is that data does not
go directly from the source to its eventual destination.
Instead, it may be staged elsewhere in the network, in-
creasing risk of exposure.

The traditional assumption in such systems is that all
interacting users trust one another. In the case of TI
replication systems, this can severely limit performance:
if users only perform anti-entropy sessions with those
they trust, then updates can only propagate as quickly
as trusted users encounter one another. It would be far
more efficient to use untrusted users to “ferry” updates
between trusted ones. In the case of cloud-based repli-
cation systems, users are required to trust the third-party
cloud provider.

In this paper, we present T.Rex, a replicated data sys-
tem that achieves various forms of consistency without
requiring all interacting users to trust one another. At
first glance, it may appear that simply encrypting the data
is enough. While this prevents any information leakage
from the data itself, it does not prevent leakage from the
metadata that users share during anti-entropy sessions.
As we discuss, this metadata can reveal user trust rela-
tionships, behaviors, and update frequency.

T.Rex uses role-based access control [16] to enable
flexible and secure sharing among users with widely
varying collaboration types: both users and data items
are assigned roles, and a user can access data only if
they share at least one role. Building on top of this ab-
straction, T.Rex includes several novel mechanisms: We
introduce role proofs to prove role membership to oth-
ers in the role without leaking information to those not
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Figure 1: (a) A personal sharing system might schedule the desktop’s updates to be delivered to the laptop via the
tablet. Both the desktop and the laptop access X and Y , while the tablet only accesses (has rights for) object Y . The
data shown inside a box is potentially leaked, in that the tablet not only can see that the desktop just modified X , but
might also be able to see the contents of the update. (b) Cloud services add cloud replicas to the set of user replicas
that might stage data for which they have no access rights. Data, and information about data, might leak to any of the
user or cloud replicas.

in the role. We introduce role coherence to prevent up-
dates from leaking across roles. Finally, we use Bloom
filters as opaque digests to enable querying of remote
cache state without being able to enumerate it. We be-
lieve these to be generally applicable beyond replicated
data systems.

We combine these mechanisms to develop a novel,
cryptographically secure, and efficient anti-entropy pro-
tocol. To demonstrate its general-purpose use, we have
built several different consistency schemes on top of it,
including eventual consistency [48], PRAM [28], causal
consistency [6], and causal+ consistency [29]. We have
implemented T.Rex and these consistency schemes, and
with an evaluation on a local testbed, we demonstrate
that it achieves security with modest computational and
storage overheads.

The rest of this paper is organized as follows. Sec-
tion 2 describes our model and security goals. Section 3
describes T.Rex’s overall design. Section 4 describes
the implementation, and how this implementation meets
security challenges. Section 5 covers the experimental
evaluation of T.Rex, Section 6 describes application of
our approach to cloud services, and we present related
work and conclude in Sections 7 and 8.

2 Motivation and model

Topology independent protocols [48, 9] allow replicas to
push updates to any other replicas in the system, effec-
tively using them as data relays. This approach is flexi-
ble, and can handle varying connectivity while maximiz-
ing the use of scarce resources. However, data relays at
least temporarily host updates for objects in which they

are not interested, and potentially have no rights to ac-
cess. We show that such data placement exposes con-
ventional replication and consistency protocols to data
leakage.

Figure 1(a) demonstrates an example of this process in
an anti-entropy [48] protocol. We assume a replication
protocol that supports TI with three participating repli-
cas: a desktop, a laptop and a tablet. Both the desktop
and the laptop store objects X and Y . The third device,
a tablet, stores only object Y and is owned by a second
user: Bob.

The system starts with a consistent set of states: both
X and Y have the same values everywhere. The desktop
updates X and Y , creating new versions X ′ and Y ′.

The figure shows the desktop sending new updates X ′

and Y ′ to the laptop, using Alice’s tablet as a data relay.
The issue is whether the tablet learns anything untoward
as it passes X ′ on to the laptop. If X ′ is not encrypted,
Alice learns about its existence and contents. If it is en-
crypted, Alice could learn the metadata of the file. Fi-
nally, if data and metadata are both encrypted naively,
Alice’s tablet would have no way to determine where to
send the update.

Cloud based replication protocols also take advantage
of TI in moving updates among cloud replicas, and be-
tween cloud replicas and clients (T.Rex replicas, for ex-
ample). Figure 1(b) shows a similar example in which
the Desktop again creates new updates X ′ and Y ′. A
cloud software agent running on the desktop, for ex-
ample Dropbox [13], propagates the updates to a cloud
server, which then updates Alice’s other device, the lap-
top. The cloud is acting as a data relay, resulting in the
updates potentially being pushed to all of Alice’s client
replicas, and to an arbitrary number of servers of the
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cloud provider.
Whereas the anti-entropy protocol in Figure 1a poten-

tially leaks information to the tablet, the cloud scenario
potentially leaks data to replicated cloud servers. Addi-
tionally, complex relationships among devices might not
be reflected in the cloud service’s data schedule, open-
ing further possibilities for data leaks. For example, the
tablet might also be owned by Alice, but used with dif-
ferent roles. The tablet could again receive unneeded up-
dates Unless these differences are exposed to the cloud
interface.

2.1 System model
T.Rex is a storage management system designed to man-
age user and application data on personal or cloud servers
and mobile devices. Every participating device or server
acts as a replica that eagerly replicates all or part of the
total data collection.

T.Rex sharing is defined and constrained through in-
teraction between possibly overlapping roles. A role
consists of a unique name, a secret key, and the role
predicate. The role predicate is defined over per-file
meta-information called labels. A predicate for the col-
lection of tax documents might be filetype=pdf &&

context=taxes, for example. A role defines data col-
lections, via the predicates, and access groups, via the
group of devices that participate in the role.

Replicas periodically push data (created either locally
or received from other replicas) to other replicas through
one-way anti-entropy sessions [48]. The choice of des-
tination could be random, or determined by availability,
stability, or available bandwidth. Data is eventually re-
layed from where it is created to all interested replicas
through a succession of such anti-entropy sessions.

The system as a whole contains many devices and
users. We distinguish between T.Rex replicas, those run-
ning the protocol, and cloud replicas, which replicate
cloud data under the control of cloud service providers.
We assume that devices each play only a small number
of roles (<10), and are single-user, with the usual con-
vention of a multi-user machine being treated as multiple
virtual devices. Each device hosts a single replica, so we
use the two terms interchangeably, depending on context.

2.2 Security goals
We assume Byzantine failures [26]. Replicas may mali-
ciously and arbitrarily deviate from correct protocol exe-
cution in an attempt to subvert the protocol. By contrast,
software running in cloud services is often assumed to
be “honest-but-curious” [20]. Such replicas would fol-
low the protocol honestly but might analyze the protocol
messages to infer information about users and their data.

However, given the multitude of reports of cloud services
inadvertently exposing data [31, 41, 23, 12, 33, 22, 46],
together with recent disclosures of national intelligence
agencies compelling data disclosure, there seems little
reason to differentiate the cloud failure model from that
of the standard T.Rex Byzantine model.

Our security goals are to provide data confidential-
ity, data integrity, and to prevent information (including
metadata) leakage. More specifically, we attempt to pre-
vent the following types of information flow:

• replica or user roles - Other than roles common to
both, replica ri should not be able to learn which
roles r j plays.

• data written in object updates - Any data written in
the context of role ri should not be visible in plain-
text to a replica that does not play role ri.

• role activity - For roles that it does not play, a replica
should not be able to identify the roles of encrypted
data.

3 T.Rex design

This section provides a high-level overview of the T.Rex
system. A T.Rex “group” consists of a set of de-
vices, possibly owned by many users, each with a T.Rex
replica. Replicas interact in the context of a set of roles
defined by a single, distinguished role master, though
this responsibility can be delegated. The role master de-
fines roles and their keys, maps rights and capabilities
onto roles, and maps roles onto users or devices. The
role master also generates and disseminates certificates
for the public keys of devices and users. Interaction be-
tween groups (different role masters) is possible,but they
share in the context of a single group.

The role master is also responsible for key revoca-
tion. We follow an approach similar to SPORC [15]. A
replica is removed from an existing role by creating a
new update-role-key message signed by the role master.
This message contains a new role key and a timestamp,
encrypted with the public keys of the replicas that remain
in the role. Replicas removed from the role can still see
old updates but not those created after the update-role-
key message.

Replica state Each replica has a global unique ID
named RID. Each replica also has a clock, which is a
counter that is incremented each time a local object up-
date occurs. Every object in the replica has a version
consisting of the triple <OID,RID,clock> where OID is
a unique ID for the object. Each object also has a set of
key-value attributes defining the object’s labels. Repli-
cas also have version vectors, which describe the latest
updates seen from the rest of the systems replicas.
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A data item consists of two parts: metadata (label,
size, permissions) and the actual data of the item. Each
object stored by a replica must have labels that satisfy at
least one of the replica’s role predicates.

Replica updates The time between two anti-entropy
sessions is called the update period, During the update
period, a replica merely records object updates created
locally. Updates include object creations, deletions, and
modifications, and object label definitions and deletions.

At the end of an update period, a replica gathers the
actions created in the previous period and creates two
types of per-role entities: kernels, which contain meta-
information describing the actions of the previous period,
and shards, which include the same meta-information as
well as any actual update data. The kernel contains a
unique GUID, a role ID, connection information about
the replica, and the version vectors of the replica at the
beginning and the end of the current period.

Update periods are always non-overlapping, as consis-
tency protocols are otherwise quite complex and can du-
plicate information flow (Section 3.1). We enforce this
invariant by ending the current periods when data is re-
quested by another replica or when metadata arrives from
another replica in an anti-entropy session.

Update policies A replica’s update policy determines
whether it will send kernels or shards when communi-
cating with other replicas. These choices are analogous
to choosing an invalidate or update policy in a shared
memory multiprocessor. Currently, T.Rex supports three
policies. Under the kernel policy replicas exchange only
kernels (metadata). A replica locally invalidates copies
of objects specified by incoming kernels, requiring the
corresponding data to be demand-fetched before they can
be used again. The shard policy sends both where data
and metadata together. Finally, kernel-shard-based dur-
ing which the source replica of the update sends shards,
data and metadata for the roles that shares with the target
replica and only kernels (metadata) for the rest.

3.1 Ramifications of consistency in T.Rex
T.Rex implements several different consistency proto-
cols, including eventual consistency [48], PRAM [28],
causal consistency [6], and causal+ consistency [29].
The choice of consistency protocol is not strictly relevant
to this work. More relevant is whether these consistency
protocols are supported at the object or role level.

Users might creating overlapping roles. This choice is
necessary, as roles are defined by high-level user-defined
predicates. Ensuring that logical predicates are non-
overlapping is difficult, and may not always be possible.

Consider a replica, ri, that plays two roles: rolex and
roley, and suppose that the intersection of rolex and roley

is object oa. If ri receives an update for object oa in the
context of rolex, a straightforward implementation would
immediately apply it to the local copy of oa, assuming
consistency requirements are met. However, if ri now
reads oa in the context of roley, it sees the altered value.
Worse, its copy of oa is now different from copies on
replicas that only play roley, and the distinct versions will
never converge. This violates the base consistency model
supported by nearly all mobile storage systems, eventual
consistency, which requires that all copies of the same
object eventually converge.

One way to support eventual consistency is to trans-
fer the update from one role to another. However, this
transfer raises several questions. First, might two repli-
cas playing both rolex and roley each transfer the same
update? How are the two resulting updates to be recog-
nized as the same?

Second, a model like causal consistency demands that
if update u1 is read at a replica before u2 is created, u1
happens-before u2, and must be applied before u2 any-
where u2 is applied. If updates are transferred from one
role to another, the transferred updates must obey the
same consistency constraints. However, this effectively
implies that two updates of rolex might be ordered only
through updates that were created in an entirely differ-
ent role. The correctness criteria in such situations is not
clear. Further, additional ordering constraints can also
affect performance.

A more damning critique is that moving updates
among roles can be seen as a leak of information from
one role to another. Users should have the option of
allowing updates to leak across roles, but the system
should be able to enforce the stronger semantics.

For all of these reasons, we take a second approach:
splitting any object that is updated in the context of more
than one role into two physical representations, effec-
tively forking the object’s version history.

4 T.Rex implementation

This section describes protocol and mechanism detail of
our implementation. T.Rex’s protocols differ from that of
“personal” sharing systems [42, 37, 17, 35, 39] in the use
of cryptographic primitives, extra handshakes for crypto-
graphic challenges, and in guiding consistency transfers
through opaque digests.

4.1 Replication and information leakage

A conventional replication protocol handshake consists
of the target replica t initiating a session with a request
for the target’s version vector. The source replica com-
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pares its version vector with the target’s vector to deter-
mine the set of updates that should be sent to the target.

T.Rex’s handshake is designed to make this determina-
tion without allowing either the source or target learn in-
formation data held by the other, except for roles in com-
mon. The first three messages of the handshake shown
in Figure 2 are used by the source and target to authenti-
cate each other. However, the third message also contains
the role challenge and session ID (AEid), and the fourth
allows the target to respond with role proofs. The chal-
lenge is just a random nonce. A proof is an HMAC of
the nonce and the role key (rki is the role key for role
i): a per-role key shared by all devices that play that
role. Aside from HMAC proofs, the key is also used
to encrypt data and updates for that role1. A device that

1Our implementation currently uses an AES key as a role key, but

plays multiple roles will return a proof for each role. The
source compares the target’s proofs against locally cre-
ated proofs to identify roles in common.

The challenge and proofs allow the target to prove it
plays specific roles, but only to other replicas that also
play those roles. A source replica does not learn of
any target role that it does not also share. This is a
fundamental difference between T.Rex and existing anti-
entropy protocols, where targets completely summarize
their state for arbitrary sources in the very first message.

The fourth message also contains the target’s Bloom
filter. We term these Bloom filters opaque digests to
point out that the Bloom filters have security value. The
Bloom filter is constructed with a cryptographic hash,
and values in the filter are kernel GUIDs chosen uni-
formly at random from a large (128-bit) space. The
source gains no information about any kernels present
at the target unless it has those kernels as well. This
Bloom filter summarizes IDs of kernels known to the tar-
get, much like a summary cache [14]. The source queries
the Bloom filter for kernel IDs cached locally, sending to
the target any not contained in the filter.

Bloom filters are used to obfuscate data cached by
the target. Kernels are encrypted to prevent information
leaking to other roles. In more detail:

An encrypted kernel reveals neither the role in
which it was created, nor the local clock value
when it was created, nor the replica at which it
was created.

This update anonymity means that a target only learns

in the future we may use a public key, with hybrid encryption for con-
fidentiality.
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explicit information about kernels, or updates, of roles
shared with the source. Replica i does not know which
kernels it has seen from replica j, as kernels created by j
for roles not shared by i will be encrypted.

A target can only describe its state by enumerating
all kernels seen locally, or by using some sort of sum-
mary data structure. An enumeration is not bandwidth-
efficient, but more importantly would reveal explicit in-
formation about the target. A listing of kernels cached at
the target reveals its target policy (how it chooses part-
ners for anti-entropy), and caching policy (which kernels
to cache for forwarding to other replicas in subsequent
anti-entropy sessions). A replica’s local caching policy
will often prefer kernels of roles it shares. Therefore, a
snapshot of cached kernels at replica i, when compared
with a snapshot of cached kernels at replica j, could re-
veal commonalities. These commonalities, in turn, could
show that either the target or cache policies of the two
replicas are similar, giving good evidence that the repli-
cas share at least one role.

The final step of the protocol is data transfer. The
source identifies roles in common with the target by com-
paring role proofs. Call this set of common roles Rcom.
Kernel kr,i, j is the jth kernel created by replica i for role
r. All kernels kr,i, j, such that kr,i, j 6∈BFt and r ∈ Rcom, can
be sent to the target without extra encryption by the role
key rki, since both source and target share role rolei. The
data will still be encrypted with the session key before it
is sent out over the network. Kernels for roles not com-
mon to both the source and target are doubly encrypted:
first with the role key, and again with the session key.

Kernels not common to both the source and target still
might be in a role played by the target. The target there-
fore must try to decrypt the header of each unknown ker-
nel with each of it’s keys. This is not a large overhead
given our assumption that devices play only a small num-
ber of roles.

Figure 3 shows the outline of two complete anti-
entropy sessions in T.Rex. Replica r1 initiates a session
with r2, with which it shares no roles. Two kernels are
sent to r2, and at some future point in time r2 makes a
local decision to drop kernel 86 from it’s cache. Hence,
kernel 86 never makes it to r3. Replica r3 will discover
this omission when it later learns of subsequent updates
in the same role, or by the same device.

4.2 Role Coherence and object forking
We term the object-forking approach role coherence.
Objects are initially created tagged with all roles in
which they are visible. An object updated in the con-
text of one role is forked into a version history for that
role, and a version history for all other roles that can
see the object. At the limit, an object visible in n roles

is forked into n logically distinct objects, each of which
may continue to be updated. Inside a role, all of the con-
sistency schemes work as before. This approach is simi-
lar to that of Qufiles [51], in which a single file can have
multiple physical instantiations, transcoded for different
bandwidth requirements.

Role coherence requires accesses to be associated with
a single role. Updates from remote replicas are carried in
role-specific containers (shards), and therefore have ex-
plicit role associations. An early version of T.Rex han-
dled local reads and writes by passing the role context
through the POSIX file system interface as a modifier
on the base filename, as in “filename@role”. We cur-
rently handle local reads and writes by defining an inter-
face that allows applications to specify a current role, and
use this role to implicitly tag object reads and writes. La-
beling could also be done automatically [44] or by using
the hints of a provenance tracking subsystem [32].

Object forking creates overhead in both metadata and
object data. A straightforward implementation of the un-
derlying object-forking storage mechanism would fork a
new copy of an object with each incoming update, caus-
ing storage overheads to increase rapidly with the num-
ber of roles.

Instead, we represent objects as recipes, which are or-
dered lists of block hashes [49, 19]. An object’s data con-
sists of the concatenation of the blocks from the recipe,
in order. Instead of replicating the whole object to cre-
ate a new version, we only update the recipe (metadata)
of the object to include the new blocks, and save only
modified blocks to disk.

4.3 Attacks

In this section we describe how T.Rex defends against a
variety of attacks.

Passive eavesdropping: Anti-entropy sessions use
public keys to establish secure channels. The secure
channel is established before replicas reveal any infor-
mation about replica identity or state.

Impersonation: Session establishment is secure
against replay attacks because of fresh nonce challenges.
An attacker could replay the first message from an earlier
exchange. However, replaying the third message would
fail because the target’s challenge nonce in message two
will change.

Role Leakage: In this family of attacks a malicious
replica tries to find role commonality among two other
replicas. Trudy could initiate anti-entropy sessions with
both Alice and Bob, using the same role challenge, Nr,
with both. Both would return vectors of role proofs (mes-
sage 4 in Figure 2), one for each role they play. Trudy
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could determine how many roles the two play in com-
mon by comparing the proof vectors.

T.Rex prevents this attack by tying the challenge to the
current session. Nr is defined as being equal to Ns⊕Nt .

Activity Inference: We define activity inference as a
replica learning about updates in roles that it does not
share. Assume Trudy and Alice participate in an anti-
entropy session, but do not share any roles. The protocol
should allow Trudy to update Alice without Alice reveal-
ing anything about her state, or what she knows about
other replicas. This is a fundamental difference between
T.Rex and other anti-entropy protocols, which require the
target of an update to summarize its state to the source.
T.Rex lets Alice summarize state through an opaque di-
gest, revealing nothing about updates unknown to Trudy.

Drop out-of-role updates: Trudy could discard all up-
dates that do not belong to her roles. This will not affect
either liveness or correctness, but it will impact perfor-
mance.

4.4 Freshness
We use Bloom filters to compare replicas’ cache con-
tents without revealing unnecessary information. Bloom
filters may be efficiently queried without allowing enu-
merations, but they can grow large if they contain many
objects, or are required to have low false positive rates.
Our Bloom filters are currently structured to have false
positive rates of less than or equal to 0.5%.

Constantly adding newly-seen kernels to a Bloom fil-
ter with a constant false positive rate would result in ever-
increasing filter sizes. We bound this growth by defining
a freshness ( f ) interval. The target is constrained to in-
clude in his Bloom filters all cached kernels not older
than the freshness interval, and kernels older than the
freshness interval are dropped from the cache once they
have been applied locally.

Freshness allows us to bound Bloom filter growth,
but admits the possibility that kernels may not survive
long enough to be propagated everywhere. T.Rex’s con-
sistency module eventually detects these events and re-
quests the shards directly from the creator, which is guar-
anteed to hold onto locally-created shards for some tun-
able, but long, period of time.

For example, a replica with f =10 is interested in up-
dates that have been created (or received, since repli-
cas can act relays) from the source during its last 10
anti-entropy periods. If a target is tuned to initiate one
anti-entropy session each minute, then f =10 means that
the replica is interested for updates that are at most 10
minutes old. In other words, freshness is a metric of
time, defined as the number of anti-entropy sessions
since an update was created, or received. Systems in

highly-connected environments might use a low value of
freshness, since high connectivity allows them to quickly
learn of newly created updates. On the other hand, de-
vices and systems with low connectivity might use higher
values of f. By default, freshness is a per-device attribute,
but T.Rex also supports per-role f values.

4.5 Prototype

T.Rex’s primary interface is the POSIX file system in-
terface, using FUSE to bind our user-level servers to
the Linux kernel’s VFS interface. The T.Rex prototype
consists of approximately 24,000 lines of C code com-
piled with gcc-4.6.3. The prototype uses Google protocol
buffers 2.5 [50] to serialize messages exchanged between
replicas, and the ZMQ-2.2.0 [4] networking library to
communicate. We use libTomcrypt-1.17 [2] to imple-
ment all cryptographic operations, with 160-bit SHA-1
hashes, 256-bit AES for payload encryption, and 2048-
bit RSA keys. Metadata is stored in sqlite3. We also
use several data structures provided by the UTHash li-
brary [3].

T.Rex is divided into a set of high-level, communicat-
ing modules. The net module handles all network com-
munications, and implements T.Rex-Sync logic. The con-
sistency module checks consistency-related prerequisites
of incoming kernels and applies or blocks them. The
sk-factory module produces and manages the storage of
shards and kernels, both locally and remotely created.
Finally, the FS module provides a file system interface
for the system by plugging into the kernel’s virtual file
system (VFS) layer.

In more detail, an incoming kernel is passed by the
net module to sk-factory. If the kernel matches a local
role, sk-factory will decrypt it, verify it, and pass it to the
consistency module. Kernels that do not match any lo-
cal role are sent to disk. The consistency module checks
whether the kernel can be applied without violating con-
sistency invariants. If so, each non-stale (overwritten by
a logically later update) update contained in the kernel is
applied to the local object store. If not, it is stored on a
pending queue until later kernels unblock it, or supersede
it. Updates are generally applied by replaying appropri-
ate file system operations from the FS module. Finally,
the state of the replica is updated in the database.

Outgoing kernels are created by sk-factory at the start
of an anti-entropy session (Section 4.1). The net mod-
ule, implementing T.Rex-Sync, determines whether each
kernel should be pushed to the target.
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Figure 4: Shard creation CPU costs, and shard sizes.

5 Performance evaluation

Our goal in building T.Rex is to explore the potential for
eliminating information leaks in replicated storage sys-
tems. Sections 3 and 4 discuss new functionality in our
replication and consistency protocols; this section quan-
tifies the cost of supporting that functionality.

We evaluate three categories of overhead. First, CPU
overheads arise from the extra cryptographic opera-
tions used for authentication and confidentiality. Sec-
ond, our protocols include extra authentication messages,
and potentially send duplicated data because of update
anonymity. Finally, the new functionality adds space
overhead both because of new data structures, and be-
cause of duplicated data across roles.

We drive our evaluation through a dataset modeled
on a large collection of images from the online picture-
sharing site 500px [1]. There are 18,315 files, with mean
size of 358.1 KBytes and median size of 335.1 KBytes.

5.1 CPU costs

The goal of our first experiment is to compare T.Rex-
Sync with existing synchronization protocols. Existing
protocols roughly follow the same approach. The repli-
cas exchange version vectors to inform each other of up-
dates they have seen. Next, the source uses the target’s
version vector to determine which locally seen updates
should be sent to the target. Our first experiment com-
pares T.Rex-Sync with a stripped down version of T.Rex-
Sync called trad-sync, which models the conventional
anti-entropy approach.

We use two replicas, residing on different machines
and communicating over a 100-Mbit local area network

(LAN). During each 60-second period, the source selects
10,000 files from the initial dataset and performs ran-
dom data and metadata updates. The source then initi-
ates an anti-entropy with the target. The total duration
of a single run of this experiment is five hours. We vary
the number of roles, R, that the two replicas play, where
R∈ [1,32]. For each R we performed three runs, each us-
ing a different distribution of updates in update periods.
The distributions we used are uniform, zipf with s = 2,
and Poisson with λ = 50. We present results only for
the uniform case, as the other results were qualitatively
similar. Both machines run Linux Ubuntu 12.04 with an
Intel i5-7502.67 GHz for the source and an Intel Core 2
Duo-E84003.00GHz for the target.

5.1.1 Shard creation

Figure 4 shows the average data exchanged over the
course of the 300 anti-entropy sessions, with varying
number of roles. The average shard is 40MB in size,
and requires approximately 100ms to be created for runs
where the replicas participate in 4 or fewer roles, or
120ms or more when R is higher. The extra cost is caused
by larger R values increasing the percentage of updates
that must be role-encrypted. A creation time of 100ms
to 140ms is large, but is amortized across 10,000 distinct
updates, 4k bytes each.

As shown by the left bars, roughly comparable por-
tions of shard creation time are spent on public-key en-
cryption (the initial handshake, plus signature generation
and verification for shards), and AES encryption (all out-
going and incoming data). The remaining time, marked
‘other’ on the figure, includes disk accesses to store shard
data and metadata, serialization of messages to and from
protocol buffers, and miscellaneous copying. This lat-
ter category increases linearly as a function of R. The
public-key overhead is constant.

5.1.2 Anti-entropy

Figure 5a shows the average time needed to complete a
single anti-entropy session for trad-sync (the bar on the
left) and T.Rex-Sync (the bar on right). Version vector
check (“vvc”) is the time spent by the source in checking
for shards needed by the target, as indicated by the tar-
get’s version vector. This cost is associated only with
trad-sync since T.Rex uses Bloom filters to determine
this information. Database (“db”) is time spent by the
source in loading all the metadata needed to construct
shards. Disk is the overhead of loading the shard’s ac-
tual data from the disk. Network (“net”) is the aggre-
gate time-on-the-wire network costs throughout an anti-
entropy session, minus the network latency of sending
the shard data. The actual sending of data can happen
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Figure 5: Cryptographic overhead.

asynchronously (if using kernels rather than shards), and
is therefore not strictly relevant here. Note, however, that
the cost of sending 40MB of updates dwarfs all of these
costs, even that of the public-key crypto. Handshake
(“hnds”) is the time to create the first two messages of the
handshake in Figure 2. This cost is dominated by the cre-
ation and verification of the public-key challenges, and
only exists in T.Rex-Sync. Role exchange (“rxchng”) is
the duration of the role-exchange procedure, as described
in Section 4.1. As in the case of the handshake, the value
of rxchang represents the time spent on local computa-
tions at the replicas, rather than time on the wire. Tasks
include role proof creation and verification, database op-
erations to retrieve role keys, and message preparation
costs. The cost of the extra RPCs is shown in net. Bloom-
Check (“bloom”) is the time needed to query the target’s
Bloom filter.

As Figure 5a indicates, the largest overheads incurred
by either T.Rex-Sync or trad-sync are from disk accesses.
Our current implementation saves all file data, including
new updates, on disk. This performance could be im-
proved by writing to the disk asynchronously, and possi-
bly through use of a cache in DRAM. However, as much
of the data is merely being relayed among multiple repli-
cas, a cache might have little locality to exploit.

Handshake cost is insensitive to the number of roles,
as the number of public-key cryptographic operations
is constant. On the other hand, the cost of checking
role proofs does increase with roles, as the number of
available roles determines the number of HMAC oper-
ations needed by the source and target. Network costs
(net) are higher for T.Rex, as T.Rex-sync requires more
RPCs during an anti-entropy session. The cost of using

Bloom filters (bloom) is comparable to that of using ver-
sion vectors (VVC). However, T.Rex’s “freshness” con-
straint allows the costs associated with Bloom filters to
be bounded (Section 5.2.1).

Figure 5b shows the data another way, breaking down
costs of cryptographic operations with varying numbers
of roles. Public-key operations are the most expensive,
but as discussed above, do not vary with the number of
roles. The numbers of HMAC and AES operations do
vary. HMAC operations are needed for each role proof
during the role exchange step, and all data is encrypted,
but data for roles not known to either of the source and
target is doubly encrypted. As the number of roles in-
creases, the odds that a given role is not played by both
replicas increases, implying that more data is doubly en-
crypted.

The new overheads are not negligible, but only be-
come significant with many roles. However, recent user
studies [24] have shown that even a static allocation of
four roles serves many users well. While four roles might
not suffice for the more expansive vision of sharing as-
sumed by this work, the number of roles that can usefully
be used in a group is likely to remain relatively low. Ad-
ditionally, Figure 5 does not consider the costs of sending
data, which dwarfs the overhead we consider.

5.2 Costs of update anonymity

T.Rex has update anonymity in that kernels for roles not
played locally are opaque; the local replica knows liter-
ally nothing about them other than the randomly-created
kernel GUID. While a conventional protocol can summa-
rize known kernels through version vectors, T.Rex uses
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Figure 6: Bloom filter overhead with varying freshness.

Number of Replicas Version Vector (Bytes)
5 118

15 360
35 836
55 1295

Table 1: Representative version vector sizes (after serial-
ization)

Bloom filters and local caches to store and forward ker-
nels obliviously. This section investigates the overhead
of this oblivious approach. We measure the direct over-
head of using and sending Bloom filters instead of the
more common version vectors.

5.2.1 Bloom filters versus version vectors

Figure 6 shows the size of the Bloom filters needed by
T.Rex to support a false positive error rate of less than
0.5%. The number of elements in a Bloom filter is the
number of roles multiplied by the degree of freshness,
e.g., the largest Bloom filter shown in Figure 6 contains
128x32= 212 elements. The figure demonstrates a worst-
case cost, as kernels are only generated for those roles
with activity during an update period. Hence, actual
Bloom filter sizes are usually smaller than the numbers
shown.

Version vectors grow linearly with the number of
replicas that participate in the system. Our prototype
implements vectors a set of tuples, each containing two
integers. However, their final size is determined based
on serialization algorithm of the protocol buffer imple-
mentation. Table 1 shows the size of the version vectors

Roles Baseline(MB) Role Based (MB) Cost (%)
1 30.08 38.93 29.4%
2 30.44 41.06 34.62%
4 30.96 45.88 45.54%
8 31.08 55.27 77.93%

16 34.26 73.52 114.59%
32 38.62 110.05 184.95%

Table 2: Absolute values of metadata storage overhead
between the baseline case and the storage mechanism
supporting the role based consistency. The intersection
level is at 50% over the total number of files. Role-based
overhead scales linearly with the number of roles.

with different group sizes. These numbers were collected
after the version vectors were serialized into protocol
buffers. Protocol buffers shrink the space consumed by
integers by representing them in as few bits as possible.

5.3 Storage costs

A final type of overhead is increased storage costs. Most
of our protocol adds only small constant overheads, but
role coherence duplicates objects across roles, and there-
fore potentially increases storage costs by a factor of R.
However, this only occurs if objects are shared and mod-
ified in all roles, an unlikely worst-case scenario.

To summarize, updates to objects shared by multiple
roles are forked (split into two distinct versions), rather
than allowing updates from one role to be seen in another
role. Assume rolex and roley have intersection Ix,y. An
update Ui ∈ Ix,y, created in role rolex, will not be seen in
role roley.

We quantify the overhead of role coherence by directly
measuring the increase in storage costs as the number
of roles increases. Our experimental setup consists of
1,000 randomly selected objects from our dataset, with
differing intersection sizes, I. We varied I from 25% of
the original group, to 50%, and finally to 100%.

Files that fall into the intersection are assigned every
available role r in the system with r ∈ [1− 32]. The re-
maining files are each placed into a single, randomly se-
lected role. Each run consists of 10,000 4KB file up-
dates. Files to be updated are selected using a zipf dis-
tribution that biases towards smaller files. This is in-
tended to model “hot” files, small files that are used and
updated frequently. We also ran experiments selecting
files uniformly at random, but the results were similar.
We selected 4KB as the update size by observing block
changes as image filters are applied to image files.

Table 2 shows the absolute overhead for storing the
role-based versions when the intersection I = 50%. Fig-
ure 7a shows the relative overhead of the role-based ap-

10



1 2 4 8 16 32
number of roles

0

1

2

3

4

5

ra
tio

I= 25%
I= 50%
I=100%
baseline

(a) Metadata overhead with varying number of roles.

1 2 4 8 16 32
Number of roles

0

2

4

6

8

10

12

Si
ze

 (G
Bs

)

 25% ext4
 50% ext4
100% ext4
trex
blk

(b) Total data consumption with varying number of roles. blk
and trex are flat.

Figure 7: Data overheads after 10000 updates determined to 1000 files. The x axis is log-scale, while y is not.

proach over the baseline case, where objects are shared
among all intersecting roles. Metadata costs for the role-
based approach are roughly twice those of the baseline
case for all I size and up to 4 roles, but rises to nearly six
times as much for 32 roles with 100% intersection.

Again, however, these numbers represent worst-case
overheads. For example, 32 roles with 100% intersec-
tion describes a system with 32 absolutely identical roles,
neither useful nor likely in practice.

Figure 7b shows the computed overhead in file data
storage for the experiment described in Figure 7a, for
three distinct types of systems. We use ext4 as a
straw-man to represent a generic whole-file forking ap-
proach. Assume a file x is present in both roles friends
and colleagues, and then written in the context of
friends. The whole-file approach of ext4 would du-
plicate the entire file and then modify one version, re-
sulting in an overhead of 100%. The more sophisti-
cated blk represents files as ordered sets of fixed-size
blocks [38, 19], and only duplicates blocks that differ.
A 4KByte update might only modify a single file block.
Finally, trex represents our prototype, which uses the
blk approach, but also retains blocks from prior file ver-
sions. There are three different lines for ext4, as the
overhead for the whole-file approach varies according to
how much overlap there is among roles. Storage require-
ments of systems using a block-based approach, how-
ever, are unaffected by the number of roles. The storage
costs of trex are slightly higher than those of blk be-
cause of the need to store old blocks.

6 T.Rex on the cloud

Thus far, we have presented T.Rex from the perspective
of users who directly interact with one another. Recall
from Figure 1, however, that many of the same issues
encountered with local replicated services also present
with cloud providers. Both data and metadata can leak
to replicated cloud servers. The T.Rex mechanisms deal
with these issues effectively, so it is natural to explore
whether T.Rex mechanisms can be used effectively in
concert with cloud providers.

T.Rex potentially addresses another issue with cloud
services: consistency. Cloud services vary greatly in
their guarantees. Some guarantee response times, some
make session guarantees [47], and at least one makes
global guarantees of single-object coherence.

T.Rex makes hard consistency guarantees, and could
potentially be used to regularize guarantees across mul-
tiple clouds similarly to bolt-on consistency [7]. Our ap-
proach would differ in that the consistency guarantees
would be made along with security guarantees.

A paper design T.Rex-Cloud would differ from stan-
dard T.Rex mostly in that all communication would be
through the cloud. If each T.Rex replica is connected to
the same cloud services account, we can effectively use
the cloud as a fast and wide communication channel.

The use of cloud services would allow us to dispense
with the anti-entropy protocol. Kernels and shards would
be created as in T.Rex, and then deposited into cloud stor-
age where they would be retrieved by other T.Rex repli-
cas.

Clouds and shards contain encrypted dependency in-
formation. A replica pulling a shard out of the cloud
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channel only applies if the consistency criteria in Sec-
tion 3.1 are met. Security guarantees would also still be
enforced, as kernels are created and encrypted as before.

Versus T.Rex, T.Rex-Cloud might have more dura-
bility; cloud updates would be present on many cloud
servers, and might be backed up. T.Rex-Cloud also gets
communication scheduling for free, and is simplified by
the elimination of the anti-entropy protocol.

7 Related work

Many of the ideas in replicated storage systems were
pioneered by Bayou [48, 36], which first used ver-
sion vector-limited anti-entropy sessions to replicate data
across weakly-connected devices. Our work is also in-
spired by work in personal data management systems,
which use predicates to define high-level policies for
data placement and device transparency [40, 42, 45, 39],
replication [37], energy conservation and data move-
ment [35, 34]. UIA [17] pioneered the idea of context-
specific namespaces. More recently, HomeViews [18]
mixed capabilities with SQL to create user-specific read-
only views over data. This work identified security issues
that would need to be solved in a multiple-user environ-
ment, but it is not a replicated storage system. PADS [10]
and PRACTI [9] are a policy architecture and a replica-
tion framework that can be used to build highly flexible
replicated storage systems. Finally, ZZFS [30], is an-
other storage system with full metadata replication that
its novelty is a new low-power network interface that is
able to wake-up devices and inform them about new data
placements.

As demonstrated in the previous paragraph, most of
the work in this area concentrates on data placement,
consistency, and coherence. The assumption is that se-
curity issues like access control, authentication, confi-
dentiality are orthogonal to issues of data replication and
consistency, and could be handled by mechanisms in
higher levels. Another common assumption is that all
participating devices have the same access control poli-
cies. In this work we have shown that straightforward
application of these assumptions come with the cost of
leaking information.

One exception is the access control extension of Cim-
biosys [52] that defines access rules through SecPal [8].
This approach, when used with Cimbiosys [39], may be
problematic because policies are propagated as regular
objects, and Cimbiosys does not support eventual con-
sistency. However, though SecPal statements are signed,
data is unencrypted, the system assumes a single trusted
authority, and the underlying system relies on a tree-

structured replica topology.
Finally, our object coherence has similarities to

Qufiles [51], and SUNDR [27]. Qufiles are a system
abstraction that gives a server the ability to support dif-
ferent transcoded versions of a file under one common
umbrella. SUNDR proposed fork consistency, which al-
lows attacks to be constrained to forking version histo-
ries, which can then be detected.

At the other end of the spectrum are replicated object
systems that tolerate Byzantine faults, like PBFT [11],
Farsite [5], and even Oceanstore [25]. These systems dif-
fer from T.Rex in their use (T.Rex is designed for sharing
and collaboration, with roles defined by high-level predi-
cates) and in their goals (T.Rex adds information leakage
to access control and confidentiality).

8 Conclusion

Traditional replicated data systems have assumed that all
interacting users trust one another. In this paper, we have
challenged this assumption by arguing that it can lead
to suboptimal performance and, particularly in the case
of cloud-based systems, can lead to information leak-
age. Moreover, we have demonstrated that various con-
sistency schemes can be efficient and secure without re-
quiring all interacting users to trust one another. T.Rex
makes this possible by combining several novel mecha-
nisms to create a cryptographically secure, efficient anti-
entropy protocol. Our implementation and testbed evalu-
ation of T.Rex demonstrate that it achieves security with
modest computation and storage overheads.

We view T.Rex as the first step towards securing repli-
cated storage systems; there remain many interesting
open problems. Users worried about metadata leakage
might also worry about visible communication paths and
other subtle issues; combining T.Rex’s techniques with
anonymous communication systems like Onion Rout-
ing [21] is an interesting area of future work. We have
sketched the design of a cloud-enabled T.Rex: one that
would allow users to benefit from the reliability and
availability of the cloud while maintaining control over
the privacy and consistency of their data. The basic ap-
proach we take in doing so is to treat the cloud provider
as a communication channel, one that potentially in-
creases reliability. Another interesting area of future
work is to understand how well consistency schemes
“layer” upon one another. Moreover, with a system like
T.Rex implementing end-to-end consistency, it is worth
investigating whether cloud systems must invest in so-
phisticated consistency schemes of their own, or if the
end-to-end argument [43] should be applied.
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A., SOULÉ, R., DAHLIN, M., AND GRIMM, R.
PADS: A policy architecture for distributed stor-
age systems. In NSDI (2009), J. Rexford and E. G.
Sirer, Eds., USENIX Association, pp. 59–74.

[11] CASTRO, M., AND LISKOV, B. Practical byzantine
fault tolerance. In Proceedings of the third sympo-
sium on Operating systems design and implemen-
tation (1999), OSDI ’99.

[12] DHIRU KHOLIA, P. W. Looking inside the (drop)
box. In 7th Usenix Wokshop on offensive Technolo-
gies (2013).

[13] DROPBOX. Your stuff anywhere. http://

dropbox.com.

[14] FAN, L., CAO, P., ALMEIDA, J., AND BRODER,
A. Z. Summary cache: a scalable wide-area web
cache sharing protocol. IEEE/ACM Trans. Netw. 8,
3 (June 2000), 281–293.

[15] FELDMAN, A. J., ZELLER, W. P., FREEDMAN,
M. J., AND FELTEN, E. W. Sporc: group collab-
oration using untrusted cloud resources. In Pro-
ceedings of the 9th USENIX conference on Operat-
ing systems design and implementation (Berkeley,
CA, USA, 2010), OSDI’10, USENIX Association,
pp. 1–.

[16] FERRAIOLO, D., AND KUHN, R. Role-based ac-
cess control. In National Computer Security Con-
ference (1992).

[17] FORD, B., STRAUSS, J., LESNIEWSKI-LAAS, C.,
RHEA, S., KAASHOEK, F., AND MORRIS, R. Per-
sistent personal names for globally connected mo-
bile devices. In OSDI (Seattle, Washington, Nov.
2006).

[18] GEAMBASU, R., BALAZINSKA, M., GRIBBLE,
S. D., AND LEVY, H. M. Homeviews: peer-to-
peer middleware for personal data sharing applica-
tions. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data
(2007), SIGMOD ’07.

[19] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.
The Google file system. In Proceedings of the nine-
teenth Symposium on Operating Systems Principles
(SOSP’03) (Bolton Landing, NY, USA, Oct. 2003),
ACM, ACM Press, pp. 29–43.

[20] GOLDREICH, O., MICALI, S., AND WIGDERSON,
A. How to play any mental game. In Proceedings of
the nineteenth annual ACM symposium on Theory
of computing (1987), ACM, pp. 218–229.

[21] GOLDSCHLAG, D., REED, M., AND SYVERSON,
P. Onion routing. Communications of the ACM 42,
2 (1999), 39–41.

[22] KASSNER, M. Researchers reverse-engineer the
dropbox client: What it means. http://goo.gl/

YVdguD.

[23] KHOLIA, D. Long promised post module for
hijacking dropbox accounts. https://github.

com/rapid7/metasploit-framework/pull/

1497, 2013.

[24] KIM, T. H.-J., BAUER, L., NEWSOME, J., PER-
RIG, A., AND WALKER, J. Challenges in access
right assignment for secure home networks. In Pro-
ceedings of the 5th USENIX conference on Hot top-
ics in security (Berkeley, CA, USA, 2010), Hot-
Sec’10, USENIX Association, pp. 1–.

13



[25] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZ-
ERWINSKI, S., EATON, P., GEELS, D., GUM-
MADI, R., RHEA, S., WEATHERSPOON, H.,
WEIMER, W., WELLS, C., AND ZHAO., B.
Oceanstore: An architecture for global-scale per-
sistent storage. In ASPLOS (2000).

[26] LAMPORT, L., SHOSTAK, R., AND PEASE, M.
The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems
(TOPLAS) 4, 3 (1982), 382–401.

[27] LI, J., KROHN, M., MAZIÈRES, D., AND
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