
Leak Finder: A tool for Dynamic Analysis of Android
Applications

Nikolaos Kofinas
University of Maryland, College Park

nikofinas@gmail.com

ABSTRACT
In this project we implemented Leak Finder, a tool for ex-
amining how Android applications use their granted permis-
sions. Leak Finder instruments Android applications with
custom log code, then it collects the logs from actual user
application runs and uses these logs to create an execution
graph. Auditors can use the executing graph to examine
when an applications tends to use its permissions. We used
Leak Finder to audit eight different Android applications.
From our results we verified that Leak Finder can give in-
sighting the way that the application handle their permis-
sions. We made an interesting observation that many per-
missions are used in a non-user interactive way.

1. INTRODUCTION
Android applications which use permissions can have ac-

cess sensitive user data such as the user’s location, contacts,
text messages, etc. The current Android permission system
asks the user only once to give permission to an application
to access their data, and then the application can do any-
thing with that data. This raises the question: how do we
know exactly what an application does with the permissions
it has acquired?

This question is very difficult to answer by reading the de-
scription page of an application. As an example, we can look
at a Battery Saving application,1 whose purpose is to en-
hance the battery life of the mobile device. Surprisingly this
application requires almost all Android permissions. While
it seems reasonable for it to acquire the Device & app his-

tory permission (which allows the application to gather in-
formation about the running applications), there is no obvi-
ous reason it needs permission to access the contacts, photos
and phone data of the user.

Another example is a wedding planner application,2 which
asks for the Contacts permission. By simply reading the
description of the application, it is not obvious why this
permission is needed. By navigating through the different
app screens after installation, though, we find a screen that
allows the user to create a list of their wedding guests. In
that screen, the user is presented with all their contacts and
is able to select who to add to their guest list. While this
seems to be a“correct”use of the Contacts permission, we do
not know if the application used the Contact permission only

1https://play.google.com/store/apps/details?id=com.
dianxinos.dxbs
2https://play.google.com/store/apps/details?id=com.
wepala.weddingplan

on that screen and not, for example, to send the contacts to
a server at some other time.

From these two examples we see that from the descrip-
tion alone we cannot determine if the applications use the
permissions in a “correct” way. Even when we start using
an application, we cannot know if it uses the permissions in
the places that we understand as the “correct” places to use
them. This is a problem with the current state of the An-
droid permission system because the users don’t know how
an application is handling their private data.

As a solution to this problem, in Section 2 we propose a
dynamic analysis of Android applications which shows when
and why each of its permission is used. Our goal is to find
out if there is a relation between permission usage and user
interaction with the GUI elements of the applications.

For our analysis we implemented a tool named Leak Finder.
Leak Finder works by injecting logging code inside an An-
droid application that we want to audit. The logs generated
from this application can then be used to visualize its ex-
ecution graphs. This graph contains nodes that represent
GUI calls, permission-protected calls and activities/threads
generation calls. The edges of the graph represent sequence
of events. As an example, an edge from a GUI node to a
permission Node represents that the user interacted with
the application and then a permission protected method
was called.Thus, auditors can use these graphs to determine
when each permission is used inside the application.

We conducted an internal survey between two people to
find out if by using Leak Finder we could understand where
and why each permission is used. The method that we fol-
lowed was to create a survey with questions about the usage
of permissions. Then we answered this survey twice, once
after looking at the description of the application and us-
ing it, and once by looking at the graphs generated by Leak
Finder.

From this survey we validated first that Leak Finder can
help auditors to decide if a permission is necessary for an ap-
plication to function. Also, we observed that programmers
tend to use permission-protected calls immediately when the
application start, even if this is not necessary, without a
specific user interaction first. In Section 3 we present the
methodology that we followed and our results.

2. IMPLEMENTATION
Our implementation of Leak Finder consists of various

parts that handle the application instrumentation with log
calls, log collection and log visualization. Figure 1 depicts
the architecture.

1

https://play.google.com/store/apps/details?id=com.dianxinos.dxbs
https://play.google.com/store/apps/details?id=com.dianxinos.dxbs
https://play.google.com/store/apps/details?id=com.wepala.weddingplan
https://play.google.com/store/apps/details?id=com.wepala.weddingplan

Figure 1: The architecture of Leak Finder

2.1 APK Manipulation
The first component of our implementation is the instru-

mentation of existing Android apps shown in the left box in
Figure 1. We use Redexer [4] to inject logging code which
surrounds every method call that we want to capture. Re-
dexer is a toolkit capable of transforming Dalvik, the byte-
code which is the compiled code found in an Android Ap-
plication APK file.

We implemented a static logging library in Java, and we
use Redexer to inject log calls around relevant Android API
calls and at the start/end of relevant user-written methods.
The logging library implements two general log methods, one
to log the entry and one to log the exit from the correspond-
ing method/API, with void return type. The signature of
the logging method for the entry is the following (it is the
same for the exit):

static void logEntry(String cname,

String mname,

Object... args)

These log methods take as input the callers object class
name, the name of the method, a reference to the caller
object, and all the arguments of that call, or in the case
of log exit method, the return value of the corresponding
method.

For each argument, if it is not a primitive type we log spe-
cific attributes corresponding to the type of that argument.
If it is primitive we log its actual value. Some examples of
such attributes for non primitive objects are the class name,
the object id, the resource id if the object is of type an-

droid.ui.view, the text if the object is an android.ui.view

item with a text field, a captured screen-shot of the current
activity if any of the arguments is a GUI element (such as
activity or view), etc. Finally, we log the thread id in which
the method was called. This allows Leak Finder to disam-
biguate between calls coming from the main UI thread and
and those that come from a running background thread.

Our first approach was to surround every API and method
call with logging code, but we found this adds too much
overhead to the execution of the applications. The reason
for this overhead is that the logging class investigates each
argument, extracts information from it, and finally prints
it. The overhead of doing this for each API call made
some applications unusable. Thus, we use a configuration
file to define regular expressions of methods/API calls that
we want to log. Currently for user methods, we only care
about GUI event handlers (such as onClick, onTouch, etc.),

activity life-cycle methods (such as onStart, onResume),
and thread starting methods (such as async.onPreExecute,
async.doInBackground, etc). In Section 2.3.1 we explain this
list in more detail.

We also need to log all API calls which are protected with
a permission by the Android system. We used the PScout [1]
permission mapping list, which contains a large subset of the
Android calls that are protected under the Android permis-
sion system. This mapping also includes method calls that
require a permission only when a specific argument is pro-
vided (e.g., a specific URI). An example of such a call is:

android.content.ContentResolver.query(...)

which when it is called with a specific URI equal to:
content://com.android.contacts/contacts

requires the READ_CONTACTS permission.
Additionally, we need to log all the methods that are in-

volved in the life-cycle of an activity but may not be im-
plemented by the programmer. While these methods may
not be necessary for the actual application, we need them
to determine the boundaries of each activity. We observed
a similar problem with the life-cycle of ASync Tasks. In
that case, the programmers only implemented the doIn-

Background method and not the onPreExecute and onPos-

tExecute methods which define the start and the end of
an ASync Task. For this reason, before the logging step,
Redexer injects an empty implementation of such missing
methods (the only code inside these methods is a call to the
super method of the parent class).

Having these configuration files, we can use Redexer to in-
strument the application. Redexer takes the following steps
to instrument an application are the following:

1. Unpack the application APK

2. Load the byte-code from the classes.dex file

3. Traverse all the classes

4. If class is of type Activity or ASyncTask, add missing
life-cycle methods

5. Use the configuration file to identify the methods of
interest

6. Surround them with our logging code

Figure 2 presents two examples of what the code looks
like inside the new APK. In the first example, there is a
user method that implements the onClick listener on a spe-
cific button. Redexer added code at the start and at the end
of the method body. As we mentioned above, the logging
method takes as input the callers class name, the method
name, and an object array which contains the caller object
and the input argument of the method. Similar, the logging
method at the end of the method body takes the same first
two inputs and an array containing only the caller object
reference since there is no return value for this method. In
the second example Redexer surrounded an API call with
our logging code. The main difference compare to the pre-
vious example is that the object array in the logExit meth-
ods contains the object that stored the return value of the
method, in this case the String s.

2.2 Back-end
After we create the final re-instrumented apk file, we dis-

tribute the application to users. At any time, we can collect

2

User Methods

button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {

...
}

});

button.setOnClickListener(new OnClickListener() {
@Override
public void onClick(View v) {

 Logger.logEntry(this.className(),
 “onClick”,
 new Object[] { this, v });

...
 Logger.logExit(this.className(), “onClick”,

 new Object[] {this});
} });

...
Logger.logAPIEntry(manager.className(), "getDeviceId",

new Object[] { manager });
String s = manager.getDeviceId();
Logger.logAPIExit(manager.className(), "getDeviceId",

 new Object[] { manager, s });
...

...
String s = manager.getDeviceId();
...

API Calls

Figure 2: Example of logging code

the generated logs from their device by using the adb log-

cat command that it is provided with the Android SDK and
redirect the output to a file. This procedure is illustrated in
the middle box of Figure 1.

We have implemented a back-end server to load these log
files, clean all the irrelevant log lines (e.g., system logs), and
pull the screen-shots that our code captured during the app
execution. The screenshot pulling can be done by using the
adb pull <filename> command from the Android SDK. It
is a separate step from the log collection because the screen-
shots are saved as .jpeg files in the user storage of the de-
vice. The back-end also provides the necessary data to the
front-end, which is designed as a web-app, to construct the
execution graphs.

The back-end is implemented in Ruby and uses the Sina-
tra REST API to handle HTTP requests from the front-end.
After it receives a request for a specific application log, it
first transforms the corresponding logs from our own format
into JSON format. During this transformation, it annotates
each method call as a “GUI”, “permission” or “other” call.

2.3 Front-end
Leak-finder comes with a front-end designed as a website

which a user can use to examine logs, explore the execution
graph and see the permissions that each application uses.
The implementation of the front-end is based on the angular-
js framework3 and we also use the CytoscapeJS library4 to

3https://angularjs.org/
4http://js.cytoscape.org/

visualize our execution graphs.

2.3.1 Graph Generator
Part of the front-end is responsible for transforming the

logs to the execution call graph. Figure 3 presents a sim-
ple graph created from logs that we collected from a test
application that we handcrafted. This graph presents the
following sequence of events:

1. User opens the application

2. ShareContact activity is instantiated

3. User clicks a button which code name is shareButton

with text Share

4. ShareContactFromCP activity is instantiated

5. User clicks a button which code name btnChooseContact
with text Choose Contact

6. An API call protected with the Read_Contacts per-
mission is executed

7. User clicks a button which code name btnShareFromCP
with text Share

From this graph we can see that the application accessed
the users contacts only after the user interacted with the
application.

More generally, the nodes of the graph represent events
which are logged method calls. The edges represent ordering
of events, e.g., an edge from node1 to node2 means that the
event encapsulated by node1 occurred just before the event
encapsulated by node2.

Graph Nodes. From Figure 3 we see that our execution
graphs contain three distinct kind of nodes:

1. GUI nodes which represent GUI method calls (onClick,
onTouch, etc). They are drawn with circular nodes.

2. Permission nodes which represent method calls that
require a permission. They are drawn with red rect-
angular nodes.

3. Outer Nodes, which represent an activity or a thread
and are drawn with light blue rectangular nodes and
contain sub-nodes. These sub-nodes are GUI and/or
permission nodes. The outer nodes encapsulate calls
that originate from an activity or thread.

Activities. To create an activity node we need to find out
when an activity came to the foreground and when it left.
We know from the life-cycle of an activity that onResume

is called before the activity comes to the foreground, and
the first method that is called when the activity leaves the
foreground is onPause. When we create the graph, we look
for these calls, and whenever we find an onResume call we
create a new activity node. Then we insert into it all the
future nodes that we will add to the graph until we observe
an onPause call. The Entry node inside each activity node
represents the entry point inside this sub-graph.

3

https://angularjs.org/
http://js.cytoscape.org/

Figure 3: An example of an application execution
graph

Threads. Android executes all the GUI-specific calls in the
main thread of the application. Programmers need to start
new threads whenever they want to execute a method which
may block the main thread and “freeze” the application. For
this reason, some calls protected under permissions must be
called in a thread because they will block the main thread
(e.g., loading an image from the users photo album, which
is protected under the READ_EXTERNAL_STORAGE permission).
To handle this kind of behavior, we need a different kind of
node to represent threads and the calls they contain. We
must also know where exactly a thread was created (not
where it started) to generate the correct graph. This is nec-
essary if we want to determine if there was a GUI interaction
before a thread with a permission call inside started.

While extracting the thread in which a method was called
is trivial since we log the thread id of each call, finding the
place where the thread was created is more complicated. In
the Android system users can create two type of threads,
normal Java threads and also Async tasks.

Async tasks have a lifecycle similar to activities. First
the onPreExecute method is called in the main thread, and
then the doInBackground method is called on a thread. The
onPreExecute method may or may not be implemented by
the program, and thus we again use Redexer to insert an
empty onPreExecute method if the programmer chose not
to insert one. When we find an onPreExecute call inside our
logs we create a new thread node and then we add to it all
the subsequent calls that happened in that thread.

Java threads do not have a similar life-cycle, but the pro-
grammer first needs to call the start method. Then when
the thread is ready the run method starts automatically. By

capturing these two calls, we can create the corresponding
thread nodes.

Node Merging. As application is used, the user may navi-
gate multiple times to the same activity and click the same
button more than once. Creating a new node for each of
these calls would create a large graph that is difficult to un-
derstand. Thus, we merge nodes which represent the same
activity, thread, GUI, or permission call.

Activity merging is trivial since we can coalesce activities
with the same name (note the class name is unique for each
activity). This is not true for GUI objects, which may be
inside multiple activities (the same object) or share resource
ids with other GUI objects that appear in other activities.
Merging two GUI nodes should happen only if they are in
the same activity, have the same resource id, and finally
have the same properties (e.g., same text, same image, etc.).
Having the same properties is important since it is possible
the programmer changed the appearance of a GUI element
after an event and thus, from the user’s perspective, it is a
different GUI element.

The logic behind merging permission nodes is different.
We observed that, with high probability, after a method
which is protected by a permission is called, there will be
more method calls protected under the same permission.
This leads to graphs with many permission nodes that do not
provide any useful information. Thus, we merge sequences
of permission nodes if they are for the same permission.

Thread Merging. In our execution graphs we merge threads
that contain the same code because it is easier for the end-
user to understand which threads are instantiated often.
Thread merging is similar to activity merging because we
know the two methods that are executed when a thread
starts, e.g., doInBackground and run. We use the name
of the class that contains these methods to find and merge
threads together.

2.4 Graph Interactivity
Users can observe more information by clicking each node.

For each node, we present to the user the method calls that
are represented by that node. If it is a GUI node we present
the screenshot we captured during the execution of the ap-
plication, annotated with the location of the GUI element
and the context of that node (e.g., the thread/activity in
which this event occurred). Figure 4 presents such an ex-
ample in which the user clicked on the GUI node inside the
“ShareContact” activity.

3. RESULTS
To test our approach, we conducted a study involving two

persons that worked on this project. For this study we se-
lected eight random applications from the Google Play store,
and for each one we filled out a survey. The questions inside
the survey were about the timing and the reason each per-
mission was used by each application. Some key questions
inside the survey are the following:

• Is there an obvious reason that the application needs
the permission Contacts, intrinsic to the app’s core
functionality?

4

Figure 4: Front-end of our implementation

• What do you believe is the use of the permission Con-

tacts in the application?

• Why do you think the permission Contacts is/isn’t
used in an interactive way?

These questions answered not only for Contacts but for
all the permissions that the corresponding application uses.
The complete survey can be found in the following link:
https://umdsurvey.umd.edu/SE/?SID=SV es12ExCennv9JOt.

We answered the questions of this survey twice, once by
only looking at the description and then using the applica-
tion and once after reviewing the output of Leak Finder.

3.1 Survey Results
Figure 5 presents the results for the question “Do you

think the app uses the permission in an interactive way?”.
We observe that when we first answered this question by
only reading the description and using the application, we
believed that most permissions were used only when we in-
teracted with GUI element of the application. Then, when
we explored the graphs generated by Leak Finder we were
surprised to observe that most of the permissions were ac-
cessed immediately when the application started and not in
the place that we thought the application used them. Also,
we observed that all access except these initial ones where
non user-interactive.

This was common for internet relative permissions since
most of the applications had advertisements but it is strange
that the same happened for the location permission. Our
belief was that the location will only get accessed when we
navigated into an activity which contained a map or loca-
tion base information but in reality the applications started
reading our location immediately. We don’t know exactly

the reason that the application behaved in that way since
we didn’t observe any indication that the location was used
for advertisement.

The second question that gave us interesting results is the
following: “Do you think the app uses this permission needs
this permission?”. Figure 6 visualizes the answers for this
question. Our initial answers and the answers that we gave
after we observed the output of Leak Finder were the same.
The execution graphs increased the confidence of our answer
because we observed were and for what each permission was
used.

As an example, the “Gas Buddy” application uses the Lo-

cation permission whenever we search for a gas station near
us. While it still reads the location at other irrelevant points
during the execution, this functionality is important for the
application to achieve what it advertises. Another interest-
ing example is the permission Bluetooth when it is used
from the Battery application. In that case we cannot be
absolute confident why it needs the permission. Our as-
sumption is that it needs that permission to calculate the
estimated battery life, but the execution graph did provide
us with enough evidence to support that our claim is right
or wrong.

Finally, we categorized each permission usage into five cat-
egories:

1. Used for location adds

2. Used in an interactive way

3. Used in a non-interactive way to update a GUI element

4. Used in an non-interactive way in the background but
the effect was observable by the user

5

https://umdsurvey.umd.edu/SE/?SID=SV_es12ExCennv9JOt

5. Used but not observable by the user

Figure 7 presents our visualized results for this question.
We observed that by using Leak Finder we increased our
confidence to our answers and also we ruled out some cate-
gories. An interesting insight is that as users we expect the
internet permission to be used for UI updating. What we
observed with Leak Finder though was that the applications
access the internet everywhere and the user does not have
an indication that this is happening.

4. RELATED WORK

Pegasus. Chen et al. [2] defined the Permission Event Graphs
(PEGs) which present what permission may be used after
each event. They define events in the same way that we
do. The created a tool named Pegasus which they use to
build this graphs, and then they use an auditor which cre-
ates linear-time temporal logic (LTL) policies [7] to define
when a permission is used inside the application. The main
difference of this tool compare to Leak Finder is that it does
a data-flow analysis on the target application and for that
reason it cannot be used for examining large applications.

Pidgin. Johnson et al. [5] designed a tool to explore the
information flow of various Android applications in an in-
teractive way. The tool, Pidgin, allows an auditor to use a
query language to find possible ways that sensitive informa-
tion leaks from the application. It also allows the auditor
to ensure that inputs of the applications are declassified be-
fore they released. The main difference of Pidgin with Leak
Finder is that our tool is based on the user’s perspective of
events sequence while Pidgin is a information flow represen-
tation on a source level.

TaintDroid. Enck et al [3] implemented a system named
TaintDroid which tracks the information-flow during the ex-
ecution of an Android application. It can detect when sensi-
tive information is sent over insecure channels (e.g., internet
connections). Leak Finder doesn’t track the information
flow of variables during the execution containing sensitive
information but instead it tracks sensitive method calls.

Interaction-Based Declassification Policies. Micinski et
al [6] introduced a formal way to define policies that allow
release of sensitive information base on user interaction. In
their work, a user can define using LTL formulas specifying
when a secret input can be released. Leak Finder can be
used along side their work to examine the execution graph
of applications and then, base on the observations, a user
can design such LTL formulas.

5. CONCLUSION
In this project, we implemented Leak Finder, a tool that

contacts dynamic analysis on Android applications. Tested
Leak Finder on eight applications downloaded from the Google
Play store. we found that programmers prefer to call per-
mission protected method in a non interaction-based way,
which contradicts the way that we believe users want their
private data to be accessed.

Future Work. We need to find out if the statement that
we made when we defined our problem holds, are the user
expect the permission usage to be interacted-based? To an-
swer this question we will design a survey which we will
present to auditors. The survey will contain a slide-show of
screen-shots from actual application runs. After some spe-
cific screen-shots we will asks the user to answer questions
about permission usage. These questions will state some
permissions, and user picks which of them should be used
by the application at the current state. To avoid the con-
fusion of the users, we will not use the actual permission
names but instead a more user-friendly description of each
permission.

We will upload this survey to MTurk,5 and we will ask
from approximately 200 users to answer it. We will inves-
tigate the users answers to find out how users believe an
application should handle their permissions.

6. REFERENCES
[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie.

Pscout: analyzing the android permission specification.
In Proceedings of the 2012 ACM conference on
Computer and communications security, pages 217–228.
ACM, 2012.

[2] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai,
K. MacNamara, T. R. Magrino, E. X. Wu, M. Rinard,
and D. X. Song. Contextual policy enforcement in
android applications with permission event graphs. In
NDSS, 2013.

[3] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2):5,
2014.

[4] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein. Dr. android
and mr. hide: fine-grained permissions in android
applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and
mobile devices, pages 3–14. ACM, 2012.

[5] A. Johnson, L. Waye, S. Moore, and S. Chong.
Exploring and enforcing security guarantees via
program dependence graphs. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 291–302. ACM,
2015.

[6] K. Micinski, J. Fetter-Degges, J. Jeon, J. S. Foster, and
M. R. Clarkson. Checking interaction-based
declassification policies for android using symbolic
execution. In Computer Security–ESORICS 2015, pages
520–538. Springer, 2015.

[7] A. Pnueli. The temporal logic of programs. In
Foundations of Computer Science, 1977., 18th Annual
Symposium on, pages 46–57. IEEE, 1977.

5https://www.mturk.com/mturk/welcome

6

https://www.mturk.com/mturk/welcome

Location Identity Contacts Microphone Internet Bluetooth Device & App History

Battery

Wedding

Gas Buddy

Ringtone Maker

Hookah Lounge After a user input

Madrid Maps Maybe after

Tickets I cannot say

Event guide Maybe without

Without any user inpu

Permission not used

Location Identity Contacts Microphone Internet Bluetooth Device & App History Acquired but not used

Battery

Wedding

Gas Buddy

Ringtone Maker

Hookah Lounge

Madrid Maps

Tickets

Event guide

Without Leak Finder

With Leak Finder

Figure 5: Answers for the question: Do you think the app uses the permission in an interactive way?

Location Identity Contacts Microphone Internet Bluetooth Device & App History

Battery Yes

Wedding Maybe

Gas Buddy No

Ringtone Maker Not used

Hookah Lounge Acquired but not used

Madrid Maps

Tickets

Event guide

Both with and without Leak Finder

Figure 6: Answers for the question: Is this permission required for a core functionality?

Changed to apply

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Changed to don't apply

Battery Not Used

Wedding Stayed the same

Gas Buddy Permissions is not used

Ringtone Maker 1 Location based Ads

Hookah Lounge 2 Interactive

Madrid Maps 3 Update UI

Tickets 4 Background but user observable

Event Guide 5 Use not observable by user

Location Identity Contacts Microphone Internet Bluetooth D & A History

Figure 7: Categorization of each permission usage

7

	1 Introduction
	2 Implementation
	2.1 APK Manipulation
	2.2 Back-end
	2.3 Front-end
	2.3.1 Graph Generator

	2.4 Graph Interactivity

	3 Results
	3.1 Survey Results

	4 Related Work
	5 Conclusion
	6 References

