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1 Abstract

Enabled by the increasingly low cost of computers and Internet connectivity, a new form of eco-friendly
public transportation has emerged: automated bikeshare programs, where users “check out” or “check in”
bicycles automatically using a membership identifier (e.g., RFID dongle). The first contemporary system
began in Lyon, France in 2005, and bikeshare systems are available in over 712 cities worldwide as of June
2014 [17]. Despite this success, bikeshare operators and city transit planners continue to face two interrelated
challenges: determining (i) where to strategically place stations in a city and with what docking capacity,
and (ii) how to load balance the system to achieve the optimal distribution of bicycles and free docking slots
at stations throughout the day.

To better understand expected demand for bikeshare services, some transportation planners are turning
to Internet-mediated crowdsourcing where citizens can vote and comment on potential station placement
before deployment. While this approach allows for large-scale and diverse input from citizens, it has not
been fully empirically evaluated. We provide an analysis of two crowdsourced bikeshare planning efforts:
14,336 votes in Washington D.C. (Capital Bikeshare) across 4,405 user-suggested stations and 65,075 votes
in New York City (Citi Bike) across 10,086 user-suggested stations. We analyze the correspondence between
crowdsourced vote data, actual station size and placement by the operator, and actual station usage, as
well as looking at temporal patterns of bicycle usage across both cities. Our preliminary findings suggest
that there appears to be a moderate correlation between crowdsourced suggestions and station usage, and
a smaller but still generally present correlation between station size and station usage. Our results have
implications for the design of future transit planning approaches and citizen crowdsourcing decision making
systems.

2 Introduction

Bikesharing is a unique form of public transportation that has existed since 1965, but has relatively
recently entered a new age. We are currently in the third generation of bikesharing programs, which is
characterized primarily by an increased use of technology to improve the accessibility of the systems [10].
The increased technological element to these systems also enables a level of analysis not previously possible.

Two such third generation programs, Capital Bikeshare and Citi Bike, began operations in 2008 [1] and
2013 [2], respectively. Both are operated by Motivate, previously known as Alta Bicycle Share [3]. For both
bicycle share systems, crowdsourced input from the public was collected at some point during the lifetime
of the project. For Citi Bike, this input was invited between September 2011 and April 2012, before any
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stations were created [16]. Capital Bikeshare, on the other hand, did not invite suggestions on such a scale
until 2011, significantly after they began operations [4], and the crowdsourcing map is still available for users
to suggest stations [5].

In spite of these differences, both systems provide a great opportunity to look at the effect crowdsourcing
has on the direction taken by the operator. The combination of the crowdsourced data, the actual station
location data, and station usage data provides us with the ability to understand how heavily the population’s
requests were considered. It also helps us to understand how much the population knows what it needs, as
well as whether the operator knows best.

Separate from the role of the crowdsourcing process, the existence of these systems allows for more
granular analysis of movement patterns in their cities. The analysis benefits from bikeshare systems having
certain properties: there are many stations spread out fairly evenly around the city, and “routes” are entirely
determined by the users. This is unlike a metro system, for example, where there is not a direct route between
every pair of stations. If someone is trying to get between two points using bikeshare, they will very likely
get on at the closest station to their source, and off at the closest station to their destination, unless their
ideal start station is empty or their ideal end station is full. Another advantage is that we can see exact
numbers of people leaving from and arriving at stations. Each bike is guaranteed to be carrying one and
only one person, so the data is fully granular.

3 Related Work

The availability of rich data from bikeshare systems and from crowdsourcing implementations all over the
world has unsurprisingly resulted in different analyses from different angles by many groups and individuals.

Many researchers have looked at how crowdsourcing fits into urban planning and transportation decisions,
particularly with the technology we now have access to. Brabham et al. discuss crowdsourcing methods
applied by the Federal Transit Administration to bus stop design at the neighborhood scale [8]. Brabham
also looks into crowdsourcing as it is used to help urban planners [7]. Evans-Cowley presents a case study
in which crowdsourcing was used to solve planning problems [11]. These papers are more focused on the
benefits—and to a lesser extent the limitations—of crowdsourcing, and discuss proposals for leveraging it
to a greater extent in various contexts. However, they demonstrate the importance of crowdsourcing as an
emerging strategy, and reinforce the importance of analyzing its use and its usefulness.

Other researchers have started to use transportation data to gain insights into the populations that use
public transportation and the locations in which they exist. Neumann et al. discuss methods for detecting
occurrences of specific events, using just communication and transportation data. Specifically, they use data
from cell phone towers and shared bicycle rentals in Barcelona to detect rainy days, holidays, and days with
special events [15]. Somewhat similarly, but approaching from the other direction, Mahmoud et al. look at
the effects of weather, socio-demographic characteristics, land use, built environment, and levels of service
attributes on ridership in Toronto’s bikeshare system [14].

There are also examples of predicting trends using available bikeshare data. Kaltenbrunner et al. use data
from Barcelona’s bikesharing program to detect temporal and geographic mobility patterns. They calculate
activity cycles and produce distinctive patterns for working days and weekends, as well as how the bikes
flow to and away from stations geographically. They discuss how this information could be used to predict
activity and guide future expansion [13]. Froehlich et al. also uncover temporal and spatiotemporal patterns
in Barcelona’s bikeshare system. They present a prediction system with 80% accuracy up to two hours in
the future, demonstrating the strength of models produced from these patterns [12].

A particularly data-driven example of analysis comes from Borgnat et al., who uncover patterns in Lyon’s
bikesharing system by analyzing it as a complex network [6]. Vogel et al. use data mining to gather large
amounts of data from Vienna’s bikesharing system, and uncover spatiotemporal patterns and relationships
between station placement and usage [18]. Daddio provides an extensive empirical analysis of usage data
from Capital Bikeshare in October 2011. He attempts to determine the association between ridership and
various environmental and socioeconomic factors, provide recommendations for expanding the system, and
develop a replicable framework for analyzing bikeshare data in various systems [9].
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4 Data

The data used in this investigation is comprised mostly of three datasets. Each of these datasets is
separated between Citi Bike data and Capital Bikeshare data, but because there are roughly analogous sets
for each, we will discuss them together.

4.1 Existing Stations

Both bikeshare systems we investigated have realtime station information that we scraped from their
websites. We used this available data to get a snapshot of both systems at the beginning of our analysis.
This data was not useful for observing trends, since it was only the state of all the stations at one particular
moment. However, this contained information regarding the existing stations in the systems, including the
location and size of each station (in terms of how many bicycles it held).

Location D.C. NYC
Number of stations 308 331
Total number of bikes 2435 3358
Total number of docks 5047 11525
Average station capacity 16.4 35.8
Date of collection 02/11/2014 07/08/2013

Table 1: Statistics about existing stations in D.C. and NYC bikeshare systems.

4.2 Suggested Stations

Although they appeared at different times, both systems had available crowdsourcing utilities for members
of the public to suggest and vote on potential station locations. Citi Bike’s crowdsourced data was available
in archived form, as all of the public input took place before the system was set up. Capital Bikeshare’s
public data was being collected using a live web utility, so we took a snapshot of the votes up to when we
began the investigation.

Location D.C. NYC
Number of suggested stations 4405 10086
Total number of votes 14336 65075
Start of crowdsourcing June 2011 September 2011
End of crowdsourcing Ongoing April 2012
Date of collection 02/05/2014 07/08/2013

Table 2: Statistics about station suggestions for D.C. and NYC bikeshare systems.

4.3 Scraped Fullness Data

Oliver O’Brien has been collecting data on each bikeshare station in multiple systems, including Citi Bike
and Capital Bikeshare, for several years. The data he gave us access to consists of a series of timestamped
station IDs with the number of empty bike slots at that station at that time. He collected this data every
two minutes dating back to October 2010 for Capital Bikeshare and May 2013 for Citi Bike.

Two example snippets can be found in the appendix. Appendix A shows what this looked like for D.C.
stations. Each entry consists of the station ID, the number of available bikes, the number of available docks,
the date, and the time. Appendix B shows what this looked like for NYC stations. Each entry consists of
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the station ID, the number of available bikes, the number of available docks, the total number of docks, the
date, and the time.

Location D.C. NYC
Total timestamps 770,691 28,983
Stations at start of collection 73 199
Stations at end of collection 238 214
Maximum number of stations during collection 238 322
Data collection start date 10/06/2010 05/24/2013
Data collection end date 07/04/2013 07/04/2013

Table 3: Statistics about scraped station data from D.C. and NYC bikeshare systems.

5 Analysis

This data included a lot of points, particularly the suggestion data, so looking at points individually was
not a feasible way of deriving any conclusions about the relationships in the data. In order to be able to
recognize trends in the data to guide more objective analysis, our initial analysis centered around various
methods of clustering the data. We looked at both geographic clustering—combining points based on their
location on the map—and temporal clustering—combining events based on when they occurred.

5.1 Geographic Clustering

The existing stations and station suggestions were primarily geographic information, as they were lo-
cations on a map with meta data, so we first clustered the data based on geographic properties. We
geographically clustered the maps in three different ways.

We first geographically clustered the data by dividing the regions by zip codes. These regions are already
defined, so it was reasonable to use them as a way of subdividing the city. Once the map was divided, we
could look at how many stations and suggestions or votes on suggestions were in each region. Figure 1 shows
what this looked like for Capital Bikeshare station suggestions in D.C. and Citi Bike station suggestions in
New York City.

The second way we geographically clustered stations and station suggestions was with a fixed-size grid.
We chose this after realizing that because the zip code divisions differ so widely in size, any comparative
analysis between regions was almost meaningless. The fixed-size grid is a more uniform way to divide up
the regions. We tried several different grid sizes (400, 300, and 200 meters), but in Figure 2 and Figure 3
we present just the 200 meter grid. Again, we could look at how many stations, suggestions, or votes were
in each region.

The last method of geographic clustering we leveraged is that of dendrogram clustering. We wanted to
try a clustering method not based on geographic regions, but just based on the locations of the data points.
This method does not predefine regions within which to combine points, but instead iteratively combines the
points that are closest together. We used a maximum clustering distance to define an end condition for this
process. In the clustering we did, points would only be combined if they were less than 200 meters apart.

The purpose of dendrogram clustering is to reduce the number of points of data in order to make
qualitative analysis easier. It allows easy observation to determine the most extreme points in the data.
Figure 4 shows the results of dendrogram clustering both sets of station suggestion data. It is easy to see
that an area near Takoma Park got a lot of votes in D.C., and a particular site on Roosevelt Island got a
lot of votes in New York City.
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Figure 1: We divided votes for suggested stations by zip code regions and shaded the regions by the number of
votes contained in them, in order to get a sense of the relative concentrations of votes. We shaded D.C. regions (left)
linearly and NYC regions (right) logarithmically by number of suggested stations as we found these scales more easily
represent the ranges of values in each city.

Figure 2: We then divided D.C. into 200 meter grid regions, and shaded these regions logarithmically by the number
of votes in them (left) and linearly by the number of actual stations (right). This allowed for an easier comparison
of where stations and station suggestions lie in the city.

5.2 Correlations

In order to determine if people used stations near where they requested them, and whether the operator
prioritized building stations that ended up being used, we needed to look at correlations between usage or
activity metrics and how large or requested each station was. The scraped fullness data we had access to
allowed for a quantitative measure of the activity of a given station or set of stations. We look at this activity
with three slightly different activity metrics, which will be discussed in detail later. We plotted each activity
metric against two simpler metrics: the station size, which is the total number of bike docks available at
the station, and the request value, which is a quantitative measure of the extent to which the station was
requested by station suggestion votes. The request value was calculated by totaling up a score of all nearby
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Figure 3: We also divided NYC into 200 meter grid regions, and shaded these regions logarithmically by the number
of votes in them (left), and linearly by the number of actual stations (right). Stations and station suggestions could
be compared in the city by comparing these regions.

Figure 4: We used dendrogram clustering to combine bicycle station suggestions in D.C. (left) and NYC. (right) By
combining nearby station suggestions and summing their votes, we were able to better recognize areas with greater
concentrations of votes, even if they were distributed around several nearby stations.

station suggestions inversely proportional to their distance from the existing station
The first activity metric we used was an average of the change in fullness between each sample. This

information was sampled every two minutes, so it would capture a number reasonably close to the total
number of times individual people used the station. If two people take a bike and one different person
returns one within the same two-minute interval, however, this would be counted as one usage instead of
three, so the number will be slightly lower than real usage. The basis of the idea behind this activity metric
is discussed by Froehlich et al. [12]. The results of this metric plotted against station size and against the
request value can be seen in Figure 5 for Capital Bikeshare and in Figure 6 for Citi Bike.

There appears to be a correlation, however this activity metric is not normalized in any way for station
size. We would expect a larger station to have a higher activity score, as there are more bikes that can be
taken and returned. The other two activity metrics attempt to mitigate this potential bias.
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Figure 5: Station size and request value versus average total change for Capital Bikeshare stations. Both have some
correlation, but the correlation with request value seems to be stronger than the correlation with station size.

Figure 6: Station size and request value versus average total change for Citi Bike stations. Neither correlation is
especially strong, but the correlation with request value is stronger than the correlation with station size.

The next metric we used was a Boolean metric for whether or not the fullness of the station changed at
all between two samples, represented as a 1 or a 0, averaged over every sample. Because this information
was sampled every two minutes, it seems reasonable to believe this would capture most of the times that
the station was used, but not consider events such as a group taking several bikes at the same time as being
any different from a single person taking just one. This metric would miss occasions in which someone takes
a bike just after one is returned, or returns one just after one is taken, but as long as the number of bikes
at the station changes at all between samples, it counts towards the total. This weakens the power of large
stations, as even if, for example, eight bikes are taken from a large station, it is considered just as much of
a change as if one bike is taken from a small station. The results of this metric plotted against station size
and against the request value can be seen in Figure 7 for Capital Bikeshare and in Figure 8 for Citi Bike.

Somewhat surprisingly, this has almost no impact on any of the correlations. This probably means that
enough of the changes between samples were just chances of one bicycle being taken or returned that the
Boolean metric and total metric measure almost the same thing.

The last activity metric treated the change between each sample as a percentage. Between each sample,
the absolute value of the change in the number of bicycles was recorded as a percentage of the total number
of docks at the station, and then these values were averaged. The results of this metric, again plotted against
station size and against the request value, can be seen in Figure 9 for Capital Bikeshare and in Figure 10
for Citi Bike.

This had a noticeable negative impact on the correlations between station size and activity. This makes
sense, as it is harder for big stations to have a significant percentage of their bikes used. More bikes would
need to be used for the same change percentage as just one bike use would have on smaller stations. The
negative relationship in NYC, however, does imply that perhaps in some cases the big stations are larger
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Figure 7: Station size and request value versus average Boolean change for Capital Bikeshare stations. The correlation
with request value is stronger than the correlation with station size.

Figure 8: Station size and request value versus average Boolean change for Citi Bike stations. The correlation with
request value is stronger than the correlation with station size, although both are fairly weak.

Figure 9: Station size and request value versus average percentage change for Capital Bikeshare stations. The
correlation with request value is stronger than the correlation with station size.

than they need to be.
This correlation data is useful for attempting to answer the initial questions about planning and crowd-

sourcing. The correlation between request value and activity is always present and the relationship is always
positive. This implies that people seemed to accurately report what they needed. The stations that are
closest to heavily requested station suggestion sites actually see significant activity. In addition, activity and
station size correlated for the most part, indicating that the operator had some idea what the people would
use, or used the crowdsourced data to this effect. This is still confounded by the fact that bigger stations
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Figure 10: Station size and request value versus average percentage change for Citi Bike stations. Both correlations
are weak, but the correlation with request value is stronger than the correlation with station size, and relationship
with stations size is actually negative.

may be used more, simply due to having higher supply. A big station, for example, might take overflow
traffic from nearby smaller stations that are too popular for their size and therefore get depleted quickly.

Despite these potential confounding factors, activity seemed to correlate more strongly with the request
value than with station size in all cases. This indicates that the data from crowdsourcing did capture the
desires of the public to some degree, as those stations that were requested the most tended to get the most
use, even if they weren’t the largest.

5.3 Temporal Clustering

We next tried to uncover patterns in the data based around temporal information, as the usefulness
of stations throughout the day might have been a factor in the crowdsourced suggestion of stations. The
scraped fullness data allowed us to plot each station’s fullness over the course of a day, and average together
days to get a profile of that station. We focused on weekday profiles, as they had much stronger shapes due
to commuting patterns. Once we had an average weekday graph for each station, we used Dynamic Time
Warping (DTW) with a window size of one hour (30 minutes in either direction) to group together stations
with similar graphs. This concept is discussed by Froehlich et al. as a way of combining DayViews, which
have the same form as these station profiles [12].

Interestingly, these resulted in two very striking visual patterns for the average daily fullness profiles.
One of these patterns is characterized by a deep plateaued valley in the middle of the day, with much higher
fullness on either side, and steep sides. The other is exactly the opposite, a steep high plateau in the middle
of the day, with low values around it. The low plateau seems to indicate a commuting source. People most
likely live near these stations, so they empty it of bicycles when they commute to work, and fill it up when
they return home in the afternoon. The high plateau seems to indicate that a station is a commuting sink.
People commute to it in the morning, and it fills up with bikes. In the afternoon, people take bikes from it
and commute home, leaving it relatively empty.

To verify this, we color coded the stations on a map according to what group they belong to. Even though
these groups were determined entirely through temporal clustering, they result in well defined geographic
regions on the map. This implies, unsurprisingly, that there is a geographic reason for differing daily station
usage. Furthermore, these regions seem to be consistent with the idea of commuting sinks and sources.

Figure 11 shows what these groups look like in Washington, D.C., along with their constituent stations’
locations on a map. The blue stations seem to be in residential areas, and the green areas seem to be in
commercial areas. There are also a lot of red stations, which look like weak commuting sources. They
are more on the outskirts of the city, as well as between the residential and commercial regions, so this is
reasonable. The remaining groups have very few stations, but had profiles too different from the other groups
to be combined into them. The black stations on the map did not have enough fullness data to include in
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Figure 11: We grouped D.C. bicycle stations using Dynamic Time Warping methods based on average weekday
fullness profiles. We then colored the stations on a map according to these groups. This revealed that the groups
occupied distinct geographic areas, despite being formed based on purely temporal patterns. Green stations likely
represent areas where people work and blue areas represent where people live, and the graph shows the flow of bicycles
from one group to the other during commuting times.

the analysis, and the purple group consists of two stations that could not be combined into any of the other
groups with the thresholds being used.

Figure 12: We also grouped NYC bicycle stations using Dynamic Time Warping methods based on average weekday
fullness profiles. We again colored the stations on a map according to these groups, and they revealed that just as in
D.C. the temporal groups formed geographic regions. The graph again shows the flow of bicycles from blue stations
near where people live to green stations where people work and back again during commuting times.

Figure 12 shows what the groups look like in New York City, along with the color coded map. Here,
the blue stations again look like residential areas, and the green stations look like commercial areas. The
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red stations this time follow no particularly well-defined pattern. They seem to gain bicycles very slightly
in the morning, lose them throughout the day, and then gain some back in the evening. It is possible that
this is just an artifact of averaging together many stations that did not have strong enough patterns, so not
much could be determined about this group. The purple group consists of just one station that could not
be combined into any of the other groups with the thresholds being used.

This categorizing of stations using temporal clustering can also be used to extract other observations
using other metrics. For example, Figure 13 is a graph of request values plotted against station sizes in D.C.
with the points color coded based on the temporal groups they belong to. The red stations, those that did
not clearly belong to the group of commuting sources or sinks, are generally smaller and less requested than
those that belonged to the more well-defined groups. This makes a lot of sense, as people are more likely to
request stations near where they live or work, and the operator is likely to build bigger stations in heavily
commercial or heavily residential areas, rather than areas in between.

Figure 13: We color coded a scatterplot of D.C. station request values versus station sizes. The colors of the
points represent their membership in the temporal groups based on average weekday fullness profiles. This reveals a
relationship between these groups and the station sizes, as well as the crowdsourcing results.

6 Limitations

As discussed earlier, one of the main limitations of our investigation was in detecting activity from the
scraped fullness data. Because the scraped fullness data was collected once every two minutes, and not at
every change, there could be cases of it failing to capture a change because the same number of bicycles were
returned as were taken between two samples.

We were also limited by the fact that we could only study actual usage of existing stations. It is entirely
possible that what would be the most popular station in a city has not been built, and so we do not know
that it would have such high usage. Because of this limitation, we can only confirm the accuracy of the
crowdsourced data in terms of how well used stations are that have been built near requested areas. We
can, however, use this information to inform whether potential stations might be well used if they were to
be built.

Throughout the investigation, we attempt to compare patterns in crowdsourcing between Washington
D.C.’s Capital Bikeshare and New York City’s Citi Bike. This provided insight, as both were examples of
large bikeshare programs that used crowdsourcing with significant participation in order to make planning
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decisions. However, the uses of crowdsourcing differ significantly between the two cities, as it was used in
NYC to plan Citi Bike’s initial deployment, but used in D.C. after Capital Bikeshare had been established
for a few years. We used the suggestion data from these two systems as if they were the same thing, but we
should expect a difference due to the difference in collection time frames.

7 Future Work

There are other bodies of data that are available, and could lead to interesting results. One body of data
we had access to but did not use in this investigation was flow data from Capital Bikeshare. This consisted
of start and end points and times for every trip made by individual bikes over a period of a few years. Such
data for Citi Bike was not available at the time of this investigation, but could possibly be requested, and
even without it some analysis could be done using the Capital Bikeshare flow data.

More analysis could also be done using the weekend fullness profiles. Currently, we have only looked
extensively at the weekday profiles, as they were more likely to capture commuting profiles, and we expected
that commutes would guide the crowdsourced suggestions more than other temporal patterns. However,
a combination of temporal and geographic analysis could reveal where people might request stations for
recreational biking on weekends, for example.

A lot more work could likely be done by opening up a dialogue with the operators of various bikesharing
systems. Offering analyses to help with the problems faced, such as load balancing and station planning, in
exchange for more rich and detailed data could further the state of the research and of bikeshare programs.

8 Conclusion

Now that many cities have large bicycle sharing systems in use, there is a new body of data available for
investigating patterns in cities. The fact that both of the bicycle sharing systems investigated in this paper
also utilized crowdsourcing for a portion of their planning increases this body of data even further. The data
enables us to look at the planning and use of these systems, as well as enabling us to look at the commuting
patterns of cities.

Exploratory analysis using geographic clustering of stations and suggestion data allowed for a broad
interpretation of where people seem to want stations, and where stations have actually been placed. This
analysis guided the investigation, but the later analyses revealed more interesting patterns in the data.

Furthermore, quantitative analysis revealed correlations between the use of existing bicycle stations and
the size of these stations. This indicates that the operator behind the systems knows what the population
needs, and therefore where the larger stations should be. This is confounded by other potential reasons for
bigger stations getting more traffic, including the fact that smaller stations may be depleted of bicycles more
easily than larger stations. The investigation also revealed stronger correlations between the concentration of
suggested station locations near a station and its use, indicating that the crowdsourced data was something
of a predictor for bicycle use, and that the public did accurately report what it wanted in terms of stations
placement.

Temporal clustering of fullness data enabled us to group the stations by daily commuting patterns. This
separated the stations into clearly defined groups, the most clear being those of commuting sources, in
residential areas, and commuting destinations (or sinks) in commercial areas. Analyzing the fullness data
over the course of the day showed that bicycles were moved by commuters from source stations to sink
stations in the morning, and back to the source stations in the afternoon. Separate geographic areas and
their characteristics can be identified on a map based on these temporal groupings of stations. The data
can also be split along these group lines for further analysis of other metrics, including station size and
crowdsourced request values. On average, stations in the commuting source and sink groups were more
heavily requested than non-members.

Bicycle sharing systems are continuing to grow and gain users, as are crowdsourcing methods. Studying
the intersection of them reveals interesting things about patterns in cities and the accuracy of crowdsourced
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information. Findings like these can potentially be used to improve the mechanism for using crowdsourcing
to inform decisions regarding public transportation like bikesharing.
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A Sample of D.C. Scraped Fullness Data

1 5 6 2010-10-06 16:38:02

2 11 8 2010-10-06 16:38:02

3 6 5 2010-10-06 16:38:02

4 7 4 2010-10-06 16:38:02

5 5 6 2010-10-06 16:38:02

6 10 1 2010-10-06 16:38:02

7 4 7 2010-10-06 16:38:02

8 1 18 2010-10-06 16:38:02

9 5 4 2010-10-06 16:38:02

10 6 5 2010-10-06 16:38:02

11 7 4 2010-10-06 16:38:02

12 2 5 2010-10-06 16:38:02

13 5 6 2010-10-06 16:38:02

14 10 5 2010-10-06 16:38:02

15 6 13 2010-10-06 16:38:02

17 3 12 2010-10-06 16:38:02

18 5 10 2010-10-06 16:38:02

19 5 14 2010-10-06 16:38:02

20 3 16 2010-10-06 16:38:02

21 0 15 2010-10-06 16:38:02

22 7 8 2010-10-06 16:38:02

23 11 4 2010-10-06 16:38:02

24 9 6 2010-10-06 16:38:02

25 11 4 2010-10-06 16:38:02

26 7 8 2010-10-06 16:38:02

27 10 17 2010-10-06 16:38:02

28 7 8 2010-10-06 16:38:02

29 6 5 2010-10-06 16:38:02

30 7 8 2010-10-06 16:38:02

31 18 1 2010-10-06 16:38:02

32 5 10 2010-10-06 16:38:02

33 7 8 2010-10-06 16:38:02

34 4 7 2010-10-06 16:38:02

35 3 12 2010-10-06 16:38:02

36 5 6 2010-10-06 16:38:02

37 5 6 2010-10-06 16:38:02

38 4 7 2010-10-06 16:38:02

39 6 5 2010-10-06 16:38:02

40 4 7 2010-10-06 16:38:02

41 2 9 2010-10-06 16:38:02

42 6 5 2010-10-06 16:38:02

43 11 4 2010-10-06 16:38:02

44 1 10 2010-10-06 16:38:02

45 6 21 2010-10-06 16:38:02

46 9 6 2010-10-06 16:38:02

47 5 10 2010-10-06 16:38:02

48 8 3 2010-10-06 16:38:02

49 2 15 2010-10-06 16:38:02

51 12 3 2010-10-06 16:38:02

52 8 7 2010-10-06 16:38:02
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B Sample of NYC Scraped Fullness Data

72 0 39 39 2013-05-24 19:32:02

79 15 15 32 2013-05-24 19:32:02

82 0 11 11 2013-05-24 19:32:02

83 0 61 63 2013-05-24 19:32:02

116 0 39 39 2013-05-24 19:32:02

120 0 19 19 2013-05-24 19:32:02

127 16 13 31 2013-05-24 19:32:02

128 8 15 30 2013-05-24 19:32:02

137 7 18 30 2013-05-24 19:32:02

143 0 25 25 2013-05-24 19:32:02

144 0 19 19 2013-05-24 19:32:02

146 0 39 39 2013-05-24 19:32:02

147 0 33 33 2013-05-24 19:32:02

150 0 31 31 2013-05-24 19:32:02

151 11 16 33 2013-05-24 19:32:02

153 0 3 25 2013-05-24 19:32:02

157 0 23 23 2013-05-24 19:32:02

161 12 22 35 2013-05-24 19:32:02

195 12 32 45 2013-05-24 19:32:02

217 0 37 39 2013-05-24 19:32:02

218 0 39 39 2013-05-24 19:32:02

224 0 31 31 2013-05-24 19:32:02

225 0 35 37 2013-05-24 19:32:02

228 0 38 39 2013-05-24 19:32:02

229 0 27 27 2013-05-24 19:32:02

233 0 39 39 2013-05-24 19:32:02

237 0 39 39 2013-05-24 19:32:02

238 0 31 31 2013-05-24 19:32:02

239 14 16 31 2013-05-24 19:32:02

242 7 12 23 2013-05-24 19:32:02

243 11 8 19 2013-05-24 19:32:02

244 0 31 31 2013-05-24 19:32:02

245 0 23 23 2013-05-24 19:32:02

248 9 11 23 2013-05-24 19:32:02

250 0 39 40 2013-05-24 19:32:02

251 0 27 27 2013-05-24 19:32:02

252 0 18 33 2013-05-24 19:32:02

253 14 28 47 2013-05-24 19:32:02

254 3 24 31 2013-05-24 19:32:02

257 0 39 39 2013-05-24 19:32:02

258 11 11 23 2013-05-24 19:32:02

261 0 27 27 2013-05-24 19:32:02

262 10 11 24 2013-05-24 19:32:02

264 15 11 27 2013-05-24 19:32:02

265 0 35 35 2013-05-24 19:32:02

266 8 9 24 2013-05-24 19:32:02

270 0 23 23 2013-05-24 19:32:02

271 12 19 39 2013-05-24 19:32:02

274 0 31 31 2013-05-24 19:32:02

275 0 18 19 2013-05-24 19:32:02
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