
LeechLock: Preventing Selfish Clients in the BitTorrent Protocol

John Locke
john.b.locke@gmail.com

University of Maryland, College Park

Russell Moriarty
rmoriarty@gmail.com

University of Maryland, College Park

May 1, 2011

Abstract
Although the BitTorrent protocol incentivizes sharing by in-
creasing a peer’s download rate, tools have demonstrated that
the tit-for-tat mechanism alone is insufficient to prevent peers
from downloading content without reciprocation. We propose
an enhancement to the BitTorrent protocol, called Leechlock,
which uses globally shared tables to track peers’ ratings over
time within the swarm. The selfish peers who contribute suffi-
ciently little to the swarm will be marked as non-contributors,
and denied further requests for pieces. We show that with
LeechLock enabled in a BitTorrent swarm, selfish peers are
able to download only a small amount of data before they are
locked out of the swarm with 100% accuracy. Finally, we run
simulation tests to explore the effects of additional swarm pa-
rameters in a controlled fashion.

1 Introduction
The rise in popularity of the BitTorrent protocol in re-
cent years has led to further advances in the optimiza-
tion of content distribution. However, its popularity has
also attracted selfish users interested in downloading as
much as possible while uploading as little as possible.
By leeching content without reciprocating with their own
upload bandwidth, these users violate one of the original
goals of the protocol. Such tools as BitTyrant [1] and
BitThief [2] have been successful in strategically manip-
ulating BitTorrent.

One issue that must be addressed in any peer-to-peer
file sharing protocol is the development of a bootstrap-
ping mechanism that simultaneously encourages new
members to join a swarm and prevents newcomers from
freeloading. Obviously, when a leech first joins a swarm,
he has no data to share. It is inevitable that a peer will
have to supply this user with some small amount of data
without hope of reciprocation, otherwise the user has no
means to prove he is well-intentioned. This is the reason
that this vulnerability has been so tricky to solve [3] [12].
If a user must be allowed to receive data without upload-
ing, then he is always able to receive some amount of
data without uploading a single block [3].

One proposed solution to the bootstrapping problem
is to encrypt a block of data to ensure a newcomer for-
wards the data before gaining access to it [4]. Unfortu-

nately, this approach demands increased overhead and a
imposes a requirement that all members of a swarm have
the same client software implementing the encrypt-and-
forward scheme.

Levin et al. [5] explore the feasibility of using an al-
ternative incentive mechanism, called PropShare, whose
intent is to ensure that users are motivated to upload
their own data in order to receive more. But PropShare
is plagued by a similar problem to the original BitTor-
rent protocol; its bootstrapping mechanism is suscepti-
ble to freeloaders, or peers who leech data with no in-
tent to provide upload bandwidth. As much as 20% of
PropShare’s bandwidth is dedicated to researching new
neighbors by optimistically uploading blocks to peers. A
knowledgeable user could exploit this vulnerability by
designing a client that uses only this research bandwidth,
hopping from peer to peer until its download is complete.
However, PropShare does make it significantly more dif-
ficult for BitTyrant-type clients to siphon bandwidth, and
is certainly an improvement to the BitTorrent protocol.
We propose a BitTorrent enhancement that goes further
to lock out selfish peers.

We propose a wire-protocol compatible modification
of BitTorrent, called LeechLock, to further encourage
sharing without the downsides of an encryption mecha-
nism via a peer review mechanism by which clients share
information about potential freeloaders. Each client
maintains a table of peers with whom it has participated
in uploading and/or downloading. For each peer, the
client maintains a rating of that peer based on its re-
turn on investment (i.e., how much content the client
has downloaded from the peer vs. how much it has up-
loaded). Once the rating of a peer drops below a thresh-
old, peers will refuse to provide data to the leech. By
sharing these rating tables with other clients, members
of the swarm can learn about freeloaders, including ones
that they personally haven’t dealt with before, and avoid
uploading blocks to them until they start cooperating.
While the ability of a client to share its ratings table re-
quires a modification of the protocol, our approach does
not strictly require all swarm members to share, and hav-

1

ing at least a fraction of the swarm implementing the ta-
ble sharing mechanism boosts the overall swarm’s resis-
tance to freeloading.

We evaluate the performance of LeechLock both in
terms of its efficiency and in terms of its susceptibility
to freeloading. First, we modify an existing popular Bit-
Torrent implementation, the Rasterbar libtorrent library
[6], to explore the feasibility of such a modification in
a real-world application. Further, we develop an easily
modified protocol similar in function to BitTorrent, Bit-
Sim, which optionally includes a separate prototype of
LeechLock to further analyze LeechLock behavior in an
environment free from common unpredictable variables.
The libtorrent implementation determines the ability for
a LeechLock-modified libtorrent client to properly weed
out the selfish peers. Our control BitSim experiment con-
sists of simulating a fixed number of malicious leeches
among a swarm of standard leeches, and then measur-
ing the time required for each peer to obtain the entire
file, then the same experiment is then performed in the
BitSim simulation with LeechLock turned on. We show
that when clients do not share their tables, as is the case
with standard BitTorrent, freeloaders are able to down-
load the entire file from the swarm at a rate faster than the
honest clients. However, when these malicious leeches
operate within the LeechLock prototype, they are only
able to download the entire file when the file size is suf-
ficiently small, and at a slightly slower rate. This shows
that the table sharing mechanism of LeechLock is effec-
tive in locking out freeloading clients, and will likely be
a valuable addition to BitTorrent.

In this paper, the following definitions are used for the
purposes of introducing LeechLock. A swarm is the set
of all peers sharing the same file. Seeders or seeds are
peers that join the swarm with all pieces. Leeches, leech-
ers, peers, nodes, and clients are used interchangeably to
refer to any type of participant in the swarm. Freeload-
ers and selfish peers are peers who do not contribute to
the swarm. A tracker is an HTTP agent that tracks all
peers currently in the swarm and responds to requests for
peers.

The rest of the paper is organized as follows: In Sec-
tion 2 we give a more detailed account of attempts to
game the BitTorrent protocol, and other proposals for
preventing them. In Section 3 we present the motivation
for developing LeechLock, and contrast it with some of
the proposals given in Section 2. In Section 4 we present
the basics of the LeechLock enhancement, and in Sec-
tion 5 demonstrate why it should be resistant to certain
types of strategic gaming. Section 6 details our libtorrent
LeechLock implementation as well as the results of the
experiment. Section 7 details our BitSim experimental
simulation and its results. Potential avenues for future
work are given in Section 8, and concluding remarks are

given in Section 9.

2 Related Work
Some peers, particularly those that are new to a swarm,
necessarily must upload a block to a node with which it
does not have a previous relationship. Traditional BitTor-
rent refers to this as optimistic unchoking [7], and Prop-
Share refers to this as research bandwidth [5]. In both
cases, the sending node has no way of knowing whether
the receiving node plans to play by the rules and perform
uploads or if it is attempting to freeload.

Freeloading clients such as BitThief [2] have been suc-
cessful in downloading files from swarms without pro-
viding any upload bandwidth in return. Such clients do
so by requesting to be optimistically unchoked by many
members of the swarm. Once a client uploads a block to
the newcomer and then learns that it is not cooperating,
it can shun the freeloader and never upload to him again.
However, if the number of clients in the swarm is large
enough, a freeloader may request only a limited number
of blocks from each client (depending on the swarm size
and total file size) and it will be able to download the
complete file without ever uploading a block.

2.1 Super-seeding
Super-seeding, first implemented in the BitTornado
client [8], appears to solve the bootstrapping problem
by forcing the newcomer to prove its worth before it re-
ceives anything more than the original block. A new-
comer is required to prove it is not a freeloader by up-
loading the block it just received from the unchoker to
some other member of the swarm. Once the original un-
choker observes that some other client has that block, it
will then allow itself to upload another block to the new-
comer.

However super-seeding wasn’t actually designed to
solve the bootstrapping problem. It is meant as a per-
formance optimization for the initial seeder, particularly
when there is a single seed, allowing the initial seeder
to upload fewer blocks before another client obtains the
entire file and thus is able to act as another seeder. The
lead developer of BitTornado has even stated that super-
seeding mode is “not recommended for general use” [8],
and studies have shown that the benefits of super-seeding
vary widely based on swarm characteristics [9].

2.2 Encrypt-and-forward
Another approach for solving the bootstrapping problem
is to have the optimistic unchoker encrypt the block be-
fore uploading it to the newcomer. After confirming that
the newcomer has uploaded the encrypted block to one or
more clients of its choosing, the unchoker sends out the
key to decrypt the block. This idea was briefly sketched
in a section of PropShare [5]. While the theory behind
this idea shows some promise, this mechanism has not

2

yet been implemented or tested on BitTorrent and there-
fore the real-world feasibility cannot yet be confirmed.

2.3 PeerReview
PeerReview [10] is a system designed to provide ac-
countability in distributed systems. By maintaining a
secure, tamper-evident log of all inter-node messages,
PeerReview is able to identify faulty or misbehaving
nodes. It does so by comparing the observed message
sequence with a reference implementation of the proto-
col. If the logs show that a node produced a message that
is not generated by the reference implementation when
the same sequence of messages are sent to that node, the
node is exposed and marked as faulty.

PeerReview has been applied to three problems [10]:
an overlay multicast system, a network file system, and
a peer-to-peer email system. While Haeberlen et al.
proved PeerReview to be effective in enforcing proto-
col conformance in these three applications, it seems less
likely to be useful for the BitTorrent application. The
quality required by the above three applications in order
to apply PeerReview is the ability to model the protocol
as a deterministic finite state machine. This quality is not
possessed by a BitTorrent swarm of clients with different
software implementations. This would also stifle inno-
vation in designing new choking/unchoking algorithms
since any modification of the standard would result in a
client being labeled as faulty. Further, any algorithm that
relies on randomness would be unacceptable for PeerRe-
view. Even in regards to the network file system appli-
cation, the authors state that the kernel had to be patched
in order to remove some small amount of randomness in
the block allocation policy.

While the idea of PeerReview is interesting, it is clear
that the exact mechanism of protocol enforcement is not
practical for preventing selfish clients in BitTorrent. But
rather than judging clients based on their strict adherence
to a protocol, it is desirable to judge clients based on their
upload bandwidth contribution.

2.4 k-tit-for-tat
Jun and Ahamad [12] propose eliminating optimistic un-
choking completely, and replacing it with a k-tit-for-tat
mechanism. Under this scheme, a client continues up-
loading to a peer until the deficit with that peer (i.e.,
number of blocks it has uploaded to that peer minus the
number it has downloaded) exceeds k, where k is some
fixed number, called the niceness constant.

While this scheme made it tougher for freeloaders
to download the complete file from the swarm, remov-
ing the optimistic unchoke in this manner also increased
download times. Clearly it would be more desirable to
keep the optimistic unchoke for the sake of faster down-
load times, while still being tough on freeloaders.

3 Motivation

As shown by the multitude of proposals, ensuring that
peers within a swarm are cooperating can be difficult.
Specifically, how can one design a scheme that encour-
ages clients to upload blocks to newcomers while simul-
taneously preventing newcomers from freeloading?

As Cohen [11] points out, the choking/unchoking al-
gorithm is not part of the BitTorrent protocol, but it is
important for good performance. However Cohen goes
on to present a tit-for-tat model of BitTorrent, and fails
to address the problem of freeloaders that rely solely on
peers’ optimistic unchoke slots.

The encrypt-and-forward scheme [4] seems like an ex-
cellent scheme for simultaneously preventing freeloaders
and putting newcomers to work immediately. However,
block encryption is CPU-intensive in nature and the ne-
cessitates key management. It also requires a vast major-
ity of the swarm to have it implemented, otherwise the
newcomer might not know enough other clients to which
it could forward the encrypted block, and thus prove its
good intent. It would be preferable to have a scheme that
would at least be somewhat effective at preventing self-
ish leeches, even if less than a vast majority of users have
it implemented.

Even the k-tit-for-tat scheme, which proved to be
tough on freeloaders, does not take advantage of the col-
lective knowledge of the swarm: after client x wastes
his upload bandwidth uploading k blocks to a freeloader,
client y is not informed of the freeloader’s ill-intent, and
may upload another k blocks to it.

One could imagine the swarm maintaining a black-
list of the non-reciprocating clients so that each client
knows those who do not reciprocate, and therefore do
not deserve any data. The problem with this approach is
that any node can blacklist any other node unfairly. Any
scheme that involves blacklisting must ensure that there
is no incentive for rogue clients to spread false negative
ratings of other peers, and that any one individual client
cannot blacklist a peer by itself. Rather, an approach
whereby information about a peer is built-up over an ap-
propriate duration of time and is based on information
from multiple clients.

Any solution to the bootstrapping problem should be
resistant to a Sybil attack, unlike super-seeding and k-tit-
for-tat. It is also desirable to keep the added overhead
to a minimum, implying that the encrypt-and-forward
scheme is insufficient.

On the other hand, LeechLock will still function if
other members of the swarm are running standard Bit-
Torrent. Further, the higher the number of LeechLock
clients present in a swarm, the more resistant the swarm
will be to uncooperative peers.

3

4 LeechLock
The fundamental idea behind LeechLock is that mem-
bers of a swarm should share information with each other
in order to identify and shun freeloaders. We propose a
peer rating mechanism, inspired by popular community-
driven websites.

First we describe how an individual client maintains its
peer ratings, and then we explain how nodes collaborate
to share their ratings with other peers. The third sub-
section describes the bootstrapping mechanism, which
allows newcomers to build up their ratings quickly and
thus become integrated into the swarm.
4.1 The ratings table
As previously mentioned, Jun and Ahamad [12] propose
requiring each client to maintain a table of peers with
which it has dealt, along with each peer’s deficit to the
client: number of blocks uploaded to that peer minus the
number downloaded from that peer. LeechLock’s tables
may be viewed as a generalization of these deficit tables.

One problem with the deficit tables is that they do not
take into account the long history a client might have
with a given peer. In other words, if a client has down-
loaded a million blocks from a peer but has uploaded a
million plus k, that peer will be cut-off from future deal-
ings until it makes up the deficit. This is clearly undesir-
able, as a rating for a given peer should take into account
the client’s history with that peer.

Under Jun and Ahamad’s scheme, client i maintains,
for every other peer j, the number of blocks uploaded to
peer j, bi j, and the number of blocks downloaded from
peer j, b ji. Rather than maintaining these running totals
for all time, we propose that client i compute these values
over the course of a 5 second interval, and then update its
rating of j as follows:

rating[j]← α× rating[j]+ (1−α)
b ji

b ji +bi j

timestamp[j]← time

The low-pass filter constant α is proposed to be 0.9. If
no blocks were sent to or received from j over the course
of the 5-second interval, then no update occurs (neither
rating[j] nor timestamp[j] is updated). After a specified
maxtime elapses during which rating[j] is never updated,
j’s rating is considered stale and removed from the rat-
ings table.

Each client maintains a table of other nodes of the
swarm that it is aware of, along with a rating indicat-
ing how cooperative each one has been in the past. It
also maintains a timestamp for each node’s rating so
that it can be aged off or updated appropriately. When
the client uploads to a node, it lowers that node’s rat-
ing, and when the client successfully downloads from a
node, it raises that node’s rating. The ratings are updated

with new measurements using a low-pass filter, allow-
ing newer information about uploading/downloading to
be given more weight than older information.

We had considered the possibility of factoring incom-
ing peer requests into the calculation of ratings, for ex-
ample deducting points from a peer each time it requests
data. This seems reasonable, since cooperative peer re-
quests would presumably be outweighed by reciprocated
data, and selfish peers would solely request data and be-
come locked out more quickly. However, in practice we
found that this process led to false positive locks on co-
operative leeches due to some quirks in the BitTorrent
protocol. In particular, we found that some peers would
only request pieces from a subset of peers, never giv-
ing the cooperative peers a chance to prove their positive
intentions. This would lead to a gradual decline in the
peer’s rating, as it continually requested data from peers,
and never provided any data to achieve positive points.
Fortunately, we found that solely deducting points from
outgoing peer requests to be adequate in real-world tests.
4.2 Sharing the tables
Up to this point, each individual client is maintaining
its table of peer ratings based solely on its own interac-
tions with other peers. While this might be somewhat
beneficial on its own, it doesn’t solve the problem of
a malicious peer exhausting the generosity of a leech,
then quickly moving on to another. The real advantage
of LeechLock is revealed when clients collaborate and
share their ratings tables with each other. This allows
members of the swarm to learn from each others’ expe-
riences. We envision two possible ways to implement
the table sharing mechanism: tracker-based and peer-to-
peer.
4.2.1 Tracker-based table sharing
This method of table sharing is the simplest and most nat-
ural way for users to share their ratings of other peers. A
central authority (the tracker) maintains a universal rat-
ings table that averages over the inputs from all peers
that have dealt with that client before, and maintains this
composite rating for each client.

Whenever a client wants to know the rating of another
client, it simply queries the tracker, and then it can make
a decision about whether to upload to that client or not.
An alternative implementation, which is implemented in
our LeechLock prototype, would allow each client down-
load the entire table from the tracker at regular intervals
so that the query could be performed locally. In either
case, at each receipt of a peer i’s rating sent by peer j,
peer i will be updated as follows:

rating[i]← rating[i]+
(rating[i]− rating j[i])× rating[j]

max(rating)

Here an update to a given peer’s rating is only given as
much weight as that peer’s own rating within the swarm.

4

Peers with the highest ratings have the most influence on
other peers, while those who have low ratings are pre-
vented from “badmouthing” potentially good peers.

The main advantage of tracker-based table sharing is
that the central location ensures that every member of
the swarm has the most complete and up-to-date infor-
mation available. Peers may simply check-in with the
tracker whenever they desire the most up-to-date ratings
for all peers in the swarm. From a simplicity standpoint,
tracker-based sharing is also easier to implement, and
less susceptible to bugs.

The main disadvantage of this method is that it re-
quires new tracker software to be deployed, although the
tracker responses delivered by such an updated tracker
would be compatible with existing BitTorrent clients.
Additionally, a tracker-based table sharing implementa-
tion requires clients to place their trust in the tracker. We
contend that a certain degree of trust is already required,
as the tracker is responsible for maintaining member
nodes in the swarm. However we understand that it may
be considered a step in the wrong direction for a peer-to-
peer system to move added responsibility toward a cen-
tral location such as the tracker.
4.2.2 Peer-to-peer table sharing
This method of table sharing does not rely on a cen-
tral authority to maintain the ratings table. Rather, each
client will have a slightly different ratings table, which is
formed by taking into account its own experiences with
other peers as well as the ratings tables it receives from
other clients. In this way, each client averages its own
experience with that of others to form its own individual
view of reality.

This has the obvious disadvantage of possibly missing
the complete picture, since each client forms its ratings
based solely on the information from clients from which
it has received tables. Information can still propagate in-
directly through the swarm, but it is not as efficient as
having a central authority maintaining the universal rat-
ings table.

The advantage of this method is that it does not require
putting any extra trust into the trackers and it does not
require any modification of the tracker software. Even
though it is not completely wire protocol compatible, it
does allow a heterogeneous swarm of clients. Clients that
have the peer-to-peer table sharing implemented will col-
laborate amongst themselves to share their ratings, and
depending on the size of the swarm this might still be
enough to deter freeloaders.

The algorithm for updating a client’s table based on
receiving a table from one of its peers is based on a few
principles. First, an individual client’s own experience
with a particular node should be weighed more heavily
than any information it receives from other peers’ tables.
Second, a client should give higher precedence to a table

it receives from a peer from which it has downloaded a
substantial number of blocks.

Based on these principles, we arrive at the following
table updating scheme. When client i receives a table
from peer j, for each node k in that table, client i updates
its rating of k by making use of a weight w computed as
follows:

w← time− timestamp[k]
maxtime

×
b ji

∑m bmi

rating[k]← (1−w)rating[k]+w× rating j[k]

timestamp[k]← time

This gives greater weight to newer information about
client k, and also ensures that j’s rating is given weight
proportional to the amount that i has downloaded from j.
Since j cannot negatively report k for free, this prevents a
node from giving negative reviews (or undeserved posi-
tive reviews in the case of a Sybil attack) of other clients
without contributing any upload bandwidth of its own.

Recent improvements in the BitTorrent protocol have
led to such popular implementations as DHT [13] for de-
centralizing BitTorrent traffic further, and might be use-
ful for piggybacking such peer-to-peer trackerless imple-
mentations of LeechLock.
4.3 Bootstrapping
The LeechLock implementation does not outright solve
the bootstrapping problem, but in practice is quite ef-
fective at weeding out non-cooperative peers very early.
When a peer first enters the swarm, it is allowed to freely
leech data, per the standard BitTorrent implementation.
However, depending on the threshold that has been set
for what’s considered a selfish leech, these peers can be
very quickly identified and denied further requests for
data. In some initial testing, these leeches have been
locked out of the swarm with as little as 2MB of data
being downloaded. In our final implementation, which
was tweaked to ensure no cooperative peers were locked
out, this number was as low as 8MB. These results are
explored further in section 6.

5 Potential Attacks
The most obvious type of attack LeechLock is designed
to counter is the ability of clients to rely on the optimistic
unchoke to obtain an entire file without contributing any
upload bandwidth to the swarm. However, the introduc-
tion of a peer ratings table introduces some of its own
potential for abuse.

Let us consider the possibility of a node that wants to
maliciously give another user poor ratings in an attempt
to prevent the swarm from uploading to that user. First,
this would only be possible if the user was a newcomer
who has not yet built up good ratings with other clients.
Otherwise, the malicious node’s poor ratings would be

5

drowned out by all the other users that have positive deal-
ings with that user. However, because the first client
that finds out about the newcomer announces a message
when it optimistically uploads a block to him, this will
allow other users to “test” the newcomer by trying to
download the block from him. Thus, the malicious peer
would not have time to submit his negative ratings before
other users have already started downloading from him,
thereby building up its positive ratings.

Another possibility is that a malicious group of users,
or Sybils, could conspire to give a user poor ratings in
an attempt to shun that user (and effectively kick him
out of the swarm). However, in order for this to work,
all conspiring users would need to be uploading a sub-
stantial number of blocks to many of the other users in
order for their negative reviews to have enough effect to
bring down the victim. If this is the case then the Sybils
must all be performing a very large number of uploads
to many users in the swarm, and this would be very good
for the swarm as a whole, and the Sybils are not actually
performing a bad deed. All the extra work of performing
the additional uploads would not benefit the malicious
user.

6 Libtorrent Implementation
In order to test a LeechLock prototype in a real-world
swarm, we have modified the popular Rasterbar libtor-
rent library to include a basic implementation of the
modifications listed in section 4. Libtorrent proved to
be a perfect platform for LeechLock because it is open
source, portable, and used in a variety of BitTorrent
clients. The libtorrent-enabled client that were used for
the majority of tests was hrktorrent [14] due to the sim-
plicity of its code base, its CLI, and strict adherence to
the BitTorrent protocol, while qBittorrent [15] was used
for the modified tracker implementation.

6.1 Implementation Details
We modified libtorrent as follows: we enhanced each tor-
rent object with two ratings tables, one called “transient”
and the other called “steady”. The transient table con-
tains the client’s personal view of each peer it has inter-
acted with since the last report to the tracker, and is used
to report negative or positive interaction that has recently
occurred. This table is cleared on each submission to the
tracker, so each report contains only recent interactions.
The steady table is populated directly with reports gath-
ered from the tracker, and is not modified by the client
itself.

As mentioned in section 4, the transient table is up-
dated by deducting points from a client when requesting
data from it, and adding points after receiving valid data
from it. At the end of a 5 second interval, the client sends
the current contents of its transient table to the tracker
by appending an additional request parameter for each

Figure 1: Our modified qBittorrent tracker. This execution
includes a LeechLock-enabled peer and shows the divergence
between the cooperative peers and the selfish ones. There are
5 properly identified selfish peers in this case.

peer with whom it has interacted since the last tracker re-
port. In return, the peer receives an updated report of the
global ratings for each peer (stored in the existing ben-
coded peer dictionary). This table is stored directly in
the peer’s steady ratings table, and is ultimately the set
of ratings that is considered in the decision to lock a peer
from the swarm. Once a peer’s steady rating value has
dropped below a threshold (which is scaled to roughly
the size of the swarm), the peer will refuse to provide
any data to the locked peer.

The tracker maintains only a set of steady ratings,
which is updated based on input from all peers. For each
peer report, a positive rating results in a slight increase
in the steady rating, which is weighted based on the size
of the swarm. The tracker assumes the same threshold in
consideration of LeechLocked peers, and peers that have
already been LeechLocked are not taken into account in
the ratings. Therefore, a locked peer cannot attempt to
retaliate against a cooperative peer.

The ability for the tracker to piggyback these rat-
ings values in the response dictionary is part of the
basis for compatibility with existing BitTorrent clients.
Since existing clients are unaware of the “rating” dictio-
nary value, it is simply disregarded and unused, while
LeechLock clients are able to use this data to shun the
right peers. Further, since reports from peers are done
via request parameters (one per contacted peer), the mod-
ified tracker merely treats a standard BitTorrent client
identically to an LeechLock client that has no peers to
report.

6.2 Tests and Results
All tests were executed on a PlanetLab [16] slice consist-
ing of 20 nodes. For the main set of tests, ten LeechLock-
enabled peers, six selfish leeches, and two seeds were al-
located to these nodes (two nodes remained idle for these

6

tests). During these tests, the clients shared a 650MB
file, and the average download time for each peer was
captured. After executing three tests with this configura-
tion, all six selfish leeches were locked out of the swarm
within one minute, and managed to download an aver-
age of 22MB before being locked out of the swarm. The
highest amount of data a selfish peer managed the down-
load was 48MB, while the lowest was only 8MB. There-
fore, in order to reap the benefits of LeechLock, a down-
load size of 50MB or more would be recommended, al-
though there is no harm in using it for files of smaller
size aside from a minor performance penalty, discussed
in the simulation results.

All of the cooperative LeechLock-enabled peers
downloaded the file in its entirety at varying comple-
tion times, ranging from 4 minutes and 38 seconds up
to about 30 minutes. This disparity in download times
is attributed to the varying CPU usage and bandwidth
availability on various PlanetLab nodes, and is the main
reason that download times are not included in our anal-
ysis. For this reason, we used controlled simulations
outlined in section 7 below to determine time-sensitive
LeechLock optimizations. Running a more controlled
BitTorrent swarm with large bandwidth would likely
shed more light on the real-world performance of the
LeechLock clients.

To ensure compatibility with the existing BitTor-
rent protocol, the above setup was executed with an
additional two nodes hosting an unmodified hrktor-
rent/libtorrent implementation. Since these clients do not
consider ratings in their decision to share with a peer, this
resulted in the selfish clients all successfully download-
ing the file, albeit at an average of 26% slower than the
cooperative clients. It follows that the higher the percent-
age of LeechLock-enabled clients in the swarm, the less
successful these selfish clients will be in downloading a
file in a reasonable time frame.

7 Simulation Setup
The libtorrent LeechLock prototype was useful in
demonstrating that using the existing BitTorrent proto-
col, such a modification is achievable. However, we
found the variable download rates and unpredictable
CPU spikes of the PlanetLab cluster to be less than op-
timal for determining the efficiency and immediate ben-
efit for a LeechLock-enabled client. Therefore, we fur-
ther explore the advantages of LeechLock by simulating
a swarm of standard BitTorrent clients alongside several
freeloading clients, who do not upload any data. Our
Java-based simulation, BitSim, simulates the main char-
acteristics of the BitTorrent protocol while also lending
itself to simple modifications for the addition of such fea-
tures as a LeechLock prototype.

7.1 BitSim
The BitSim protocol behaves as follows: a tracker is
launched, which provides a list of currently connected
peers to a new leech. Peers are then launched, and may
be initialized as a seeder (a peer that starts with all data
pieces), a leech (a peer which starts with no data pieces
and always shares when requested), or a freeloader (a
peer that starts with no data pieces and never shares data).
Each peer keeps an array of its currently held data, as
well as its personal ratings of all the other peers. Peers
check in with the tracker every 2.5 seconds to share their
personal ratings of other peers, to inform the tracker that
they are still available for data sharing, and to retrieve
the current global ratings of other peers. Data exchange
is simulated through the transmission of XML messages
which indicate to a peer whether or not it was provided
the data it asked for. XML messages are also used to
convey peer information to and from the tracker, such as
the peers’ locations and ratings. Depending on whether
or not LeechLock is enabled, a peer may use its current
rating of a peer to make a decision about sending a re-
quested piece.
7.2 Execution
We executed each trial run as follows: execution was
synchronized such that all peers would begin request-
ing data simultaneously to ensure that results were not
skewed by any peers starting early. Further, each trial
was executed with exactly 5 seeders, and run on swarms
containing 3 freeloaders and 27 leeches (10% freeloader
simulation), and 12 freeloaders and 18 leeches (40%
freeloader simulation). These two swarm simulations
were run using various file sizes ranging from 16 to 256
blocks. We ran the swarm simulation until all peers have
attained all data pieces1. We measure the effectiveness
of the freeloaders versus standard leeches by charting the
amount of time required for each of the two peer types to
procure all data pieces.
7.3 Results
A surprising note about the results of the LeechLock sim-
ulation was the profound effect that the larger percent-
age of freeloaders had on the health of the swarm. In
the control experiment (which did have have LeechLock
enabled), the average download times for a swarm of
40% freeloaders were 35% slower than a swarm of 10%
freeloaders. With so few peers willing to share their
data, much overhead is wasted futilely attempting to so-
licit data from unwilling freeloaders, causing the entire
swarm to suffer. This is the main motivation behind the
LeechLock enhancement; to improve the overall quality

1In the demonstration trials of LeechLock, it became clear in some
cases that certain peers would never attain all pieces. In these cases, the
trial was run for a reasonable amount of time to conclude that termina-
tion would never occur, and the behavior was verified through code
traces.

7

Figure 2: Our control simulation setup, using peers without
the LeechLock enhancement

of the swarm and to ensure that cooperative peers achieve
lower download times. Finally, the control experiment
shows that freeloaders finish their downloads slightly
faster than the standard leeches, since a freeloader has
one more peer to download data from. This behavior
would diminish with the size of the swarm.

Figure 3: Simulation results using the LeechLock-enabled
clients

Next, we deployed the LeechLock prototype, which
pits the LeechLock-enabled clients against the freeload-
ers. The most obvious deviation from standard BitSim
trial is selfish clients were consistently locked at a data
size of 32 blocks. In the 16-32 block range, there is sim-
ply not enough information for the other peers to make
a reliable opinion about the non-sharing peer. While the
peer’s rating suffers somewhat as a result of its stinginess
(resulting in a slightly longer download time), its rating
has not dropped below the threshold required to entirely
blacklist a peer from the swarm. However, reduction
of this threshold would create too many freeloader false
positives, and considering a 16-32 block file is atypical

for a BitTorrent distribution, the ability for a freeloader
to obtain these files is acceptable by our standards. At
64 blocks and above, the freeloader has turned down
too many peers who have all uploaded their negative
feedback about this peer to the tracker, which has dis-
tributed this negative rating data to all the other peers.
The peers, in turn, refuse to upload any data whatsoever
to these selfish leeches, essentially locking them out of
the swarm.

The final download results showed that LeechLock
download rates were slightly slower for smaller data
sizes, and improved with the size of the data. For tiny sets
of data, the overhead of running the LeechLock and de-
termining which peers to lock is the cause of this penalty.
The cutoff for improvements in download times was at
256 blocks, which is a very low download size. Most Bit-
Torrent downloads would be much larger than this [17],
and as such in the vast majority of cases, the LeechLock
clients would offer substantial improvement.
7.4 Additional Discoveries
In implementing the libtorrent LeechLock prototype,
there was some debate as to whether it would be a good
idea to permanently lock freeloaders from further par-
ticipation in the swarm. By permanently locking peers
who are considered selfish, immediate purification of the
swarm occurs, since no piece requests are made to clients
that are known to not share. This allows each peer to fill
their request pipeline with requests only to known coop-
erative peers and not waste these slots on peers that will
not reciprocate. The downside is that peers that may have
been locked out, perhaps simply due to ill-intentioned
peers or a multitude of requests for a piece it simply does
not have, are given no chance to prove their good inten-
tions and will never be able to continue to download a
file.

A permanent lock trial was executed in the libtorrent
implementation to determine if this would result in any
benefit in practice. After several trials, we determined
that the difference in download rates when permanently
locking peers was insignificant when compared to im-
posing a temporary lock. This was due to the variabil-
ity of the various nodes’ network connections as well as
the small impact expected from this optimization. As a
result, we retained the soft-lock mechanism and contin-
ued to request pieces from locked peers, as the benefit
to minimizing false-positive reports for freeloaders out-
weighs the minor performance improvement of locking
them out.

However, BitSim provided an excellent test for a more
widespread scenario free from the variable and unpre-
dictable download rates of the PlanetLab setup. We de-
cided to test permanently locking selfish clients by re-
moving them from the list of peers after a “lock” deter-
mination is made to see if it makes a difference in down-

8

load times. The simulation results are shown in figure 4.
Not surprisingly, larger data sizes yield a greater increase

Figure 4: The increase in simulation speed from permanently
banning leechlocked peers, instead of considering them for fu-
ture requests.

in speedup, as the clients have a longer period of time to
exchange with only known cooperative peers. The mag-
nitude of the increase is interesting, however, in that the
speedup appears to double each time the data size is dou-
bled. The crossover point was at 1024 blocks, and we
determined data sizes below that point to be less effec-
tive in such a scenario. Since BitTorrent downloads tend
to consist of more than 1024 blocks of data, we intend to
further investigate permanent banning as a viable option
for the LeechLock implementation.

While we executed this simulation to determine
whether temporarily or permanently banning peers was
the best option for LeechLock, the results also provided
some insight as to how these selfish peers cause harm
in the swarm, and the benefit that LeechLock can pro-
vide. In completely weeding out the freeloaders from the
swarm, large shared files will likely benefit from a great
decrease in the expected download time.

8 Future Work
The current LeechLock implementation proves that the
global sharing of peer ratings can benefit the swarm.
However, further refinement of the implementation can
provide several benefits. For example, for the purposes
of our experiments we deemed it sufficient to add peers
to the ratings table based on their BitTorrent peer ID.
Clearly, this is not secure, as a selfish client could sim-
ply declare a new peer ID (or restart their client) in order
to continue downloading. We suggest updating the im-
plementation to track peers by IP address instead of ID
would prevent these types of manipulations.

Also, the current LeechLock implementation is in-
tended to solve the BitThief problem, but not the Bit-

Tyrant one. That is, a peer that shares no data at all will
be successfully shut out of the swarm, but a peer that at-
tempts to contribute as little as possible to the swarm has
not been tested thoroughly. For this reason, we suggest
further exploring the potential for combining both the
LeechLock and PropShare concepts into the same client.
Other options for solving the “barely enough” peer issue
include reconsidering the permanent locking functional-
ity described in the simulation results section. In this
case, a peer would likely think twice about contribut-
ing as little as possible, since crossing the lock thresh-
old would disallow them from downloading a file at all.
Additionally, continued refinement of the exact point val-
ues assigned for receiving a piece (or requesting one) is
likely to minimize this type of behavior.

Automated pattern detection is also an important fea-
ture to be built into any community-driven rating system.
For example, community-driven websites are susceptible
to groups of users who always vote in each others’ inter-
ests, resulting in artificially high ratings for some con-
tent. In LeechLock, if a user managed to spoof a number
of clients comparable to the size of the swarm, they could
ensure that their ratings are always very high. While de-
tecting clients originating from the same IP address can
be effective, in order to properly tackle this issue we pro-
pose that an algorithm to detect common patterns indica-
tive of gaming the protocol be developed. In general, it
would be interesting to see if a few modified LeechLock
client what always reports negative values for all peers
(or positive values for preferred peers) could cause some
chaos in the swarm.

Further, with LeechLock enabled on a BitTorrent
client, we could also expand these experiments to a large
computer network to ensure that LeechLock is scalable
and valuable for thousands of peers instead of just tens.
Alternatively, a beta public release of the LeechLock im-
plementation could allow us to monitor the true benefit
of this BitTorrent enhancement.

Finally, despite our exploration and refutation of po-
tential attacks on LeechLock, as others have proven the
vulnerability of BitTorrent to freeloaders, there may also
be additional attacks and exploits that may be made on
LeechLock. Discovery and resolution of such vulnerabil-
ities would be mandatory for the success of LeechLock,
as even one successful circumvention would render its
main purpose, fairness within the BitTorrent protocol, in-
effectual.

9 Conclusion
We have described LeechLock, a modified BitTorrent
implementation that is more resistant to leeches who
do not share. After describing the modifications and
explaining how it should be resistant to certain types
of attacks, we demonstrated its utility by running a

9

LeechLock-enabled swarm on a set of PlanetLab ma-
chines, and showed that it is possible to use a tracker-
based ratings system to successfully weed out and deny
content to all peers who do not contribute to a swarm.
The results showed that selfish peers would be locked
out of the swarm within a minute, after downloading 8-
48 MB of data, with an average of 22MB being success-
fully downloaded. The highest amount of data a selfish
peer managed the download was 48MB, while the low-
est was only 8MB, therefore LeechLock is particularly
recommended for download sizes of 50MB or more. We
also demonstrated that standard BitTorrent clients are ca-
pable of cooperating with LeechLock-enabled peers, and
the download rates for selfish peers will be a function
of the number of these standard BitTorrent peers in the
swarm.

Further, by simulating a BitTorrent swarm using Bit-
Sim, we were able to explore the details of what hap-
pens to selfish peers in a LeechLock swarm compared
to a normal one, and demonstrated the value of a our
swarm improvement algorithm. The most interesting
outcome of the BitSim test was that above 1024 blocks of
data, the speedup achieved by permanently locking self-
ish peers increased exponentially, effectively doubling
every time the data size doubled. Future work should in-
clude brainstorming new types of attacks and attempts to
game LeechLock, solutions for those attacks, as well as
enhancements to the existing prototype to provide faster
download rates and ensure that peers who share very lit-
tle are locked out in the same way as peers who share
nothing.

10 References
1. M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy,

and A. Venkataramani. Do incentives build robust-
ness in BitTorrent? In NSDI, 2007.

2. T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free riding in BitTorrent is cheap. In HotNets,
2006.

3. M. Sirivianos, J. H. Park, R. Chen, and X. Yang.
Free-riding in BitTorrent networks with the large
view exploit. In IPTPS, 2007.

4. D. Levin. Incentive-compatible Bootstrapping.
5. D. Levin, K. LaCurts, N. Spring, and B. Bhat-

tacharjee. BitTorrent is an auction: Analyzing and
improving BitTorrent’s incentives. In ACM SIG-
COMM, 2008.

6. Rasterbar Software libtorrent.
http://www.rasterbar.com/products/libtorrent.

7. BitTorrent Protocol Specification v1.0.
http://wiki.theory.org/BitTorrentSpecification.

8. BitTornado. http://www.bittornado.com.
9. Z. Chen, Y. Chen, C. Lin, V. Nivargi, and P. Cao.

Experimental Analysis of Super-Seeding in BitTor-

rent. In IEEE ICC, 2008.
10. A. Haeberlen, P. Kuznetsov, and P. Druschel. Peer-

Review: Practical accountability for distributed sys-
tems. In SOSP, 2007.

11. B. Cohen. Incentives build robustness in BitTorrent.
In P2PEcon, 2003.

12. S. Jun and M. Ahamad. Incentives in BitTorrent in-
duce free riding. In P2PEcon, 2005.

13. Distributed hash table.
http://en.wikipedia.org/wiki/Distributed hash table.

14. Hrktorrent - a light console torrent client using
rb libtorrent. http://50hz.ws/hrktorrent/.

15. qBittorrent official website
http://qbittorrent.sourceforge.net/.

16. Planetlab — An open platform for developing,
deploying, and accessing planetary-scale services.
http://www.planet-lab.org/.

17. Torrent Piece Size.
http://wiki.vuze.com/w/Torrent Piece Size

10

