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Abstract. Complex software systems use many shared libraries fre-
quently composed of large off-the-shelf components. Only a limited num-
ber of functions are used from these shared libraries. Historically demand
paging prevented this from wasting large amounts of memory. Many high
end systems lack virtual memory and thus must load the entire shared li-
brary into each node’s memory. In this paper we propose a system which
decreases the memory footprint of applications by selectively loading only
the used portions of the shared libraries. After profiling executables and
shared libraries, our system rewrites all target shared libraries with a new
function ordering and updated ELF program headers so that the loader
only loads those functions that are likely to be used by a given appli-
cation and includes a fallback user-level paging system to recover in the
case of failures in our analysis. We present a case study that shows our
system achieves more than 80% reduction in the number of pages that
are loaded for several HPC applications while causing no performance
overhead for reasonably long running programs.

1 Introduction

Software systems have been constantly getting more functional and complex.
Most systems are not composed of a single executable file any more; they are a
combination of many executables and shared libraries. These executables often
use components developed by others. Frequently, users of these general purpose
shared libraries are interested in only a fraction of a library’s functionality.

Ideally, only the necessary parts of shared libraries should reside in main
memory during execution. Traditionally systems have relied on demand paging
to only load those parts of libraries that are actually used into memory. How-
ever, systems such as IBM’s BlueGene and Cray XT series lack local disks on
each compute node and therefore avoid virtual memory and demand paging for
performance reasons [1, 2]. Thus the available memory on such systems is lim-
ited to what is physically available. Moreover, this memory is shared between
applications and their data. Reducing the memory footprint of application text
space is therefore crucial for large and complex applications that deal with large
datasets.

During launch of an application, the executable file and all of shared libraries
are loaded into memory [3]. Typical applications today use several large shared
libraries and relatively small executable files. A typical PETSc application takes
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over 16MB of memory to load the application and shared libraries although the
actual executable only occupies 0.02MB of that space. Many large US DOE
applications have text segment sizes of around 100 megabytes.

In this work, we propose a system that reduces the memory footprint of
shared libraries by eliminating unused parts of libraries from an executable. Our
approach relies on an efficient profiling mechanism that lets us determine a list
of functions that are not executed in the common case. We then modify ELF
program headers so that these functions are not loaded into memory when the
program is launched. If, for some reason, any function that has not been loaded is
accessed at runtime, our system includes an error recovery mechanism that loads
that function into the memory and allows the application to continue execution.

2 Architecture Overview

Figure 1 shows the architecture of our system. It is composed of a profiler, and
a program analyzer and rewriter.

Fig. 1. Overview of the system: Executables and shared libraries are profiled and
rewritten

Our design obeys the ”make the common case fast” motto. A profiler is
used to get a trace of executed functions for a given application. Then, a list of
functions that are not used is generated for each shared library. Since code has
to be loaded in page-sized units, removing a single function does not save any
pages since there is usually other code around that function that still needs to
be loaded. Therefore, we need to re-arrange code and cluster unused functions so
that we can remove them from the loadable sections altogether. Our tool moves
all unused functions to the end of the code section and modifies ELF program
headers to make those parts unloadable. Finally, our tool writes the modified
shared libraries to the disk to make the changes permanent.
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3 Target Applications and Platforms

Our system can be applied to any executable file or any shared library on any
ELF platform (e.g. most Unix-based systems). However, for efficiency and sim-
plicity, we limit ourselves to certain kinds of applications and platforms. Our
prime target is applications that use a limited number of functions from many
shared libraries.

High end HPC systems benefit significantly from our system. Such systems
generally do not support demand paging since they do not have disks on compute
nodes. Therefore, the available memory is limited. Since these systems heavily
rely on running parallel applications on thousands of nodes, saving even very
little memory space on each node adds up quickly. As a result, we assert that
parallel applications and clusters are a good match for our system. Although we
only support x86 systems for now, our solution is also suitable for systems like
BlueGene too.

4 System Design

Our system is composed of three main components. Profiling is performed to
identify a list of functions that are used during regular runs of the executable.
Profiling data is fed to our analyzer and binary rewriter which uses Dyninst [4] to
access functions, their control flow graphs, basic blocks, and finally instructions.
For each shared library, our analyzer and binary rewriter performs the following
tasks:

1. Calculation of updated start addresses for each function that is being moved.
Functions that are used often will be placed before the functions that are
rarely or never used.

2. Code generation for moved functions. Call instructions, address calculations
for global offset table (GOT), contents of jump tables, and function pointer
calculations are updated using the new locations.

3. Symbol updates so that cross library calls can be directed to the correct
location.

4. Rewrite of the updated shared library to a new file.

In the following sections implementation details and challenges of each pro-
cess are discussed.

4.1 Profiling

In order to extract a list of functions that are usually not used by a program,
we first observe several executions of the program and obtain a list of functions
that are used by this program. A profiler is used to obtain a list of functions
that are used at a specific run of the program. We combine all training runs and
note all functions ever called.



4

There are various profilers that serve different needs. For our analysis we
used sprof [5] and our own tool based on Dyninst [4]. sprof is a GNU profiling
tool for shared libraries. It profiles one shared library at each run. Our profiling
tool, on the other hand, rewrites the shared libraries with instrumentation code
and can profile all shared libraries at a single run.

4.2 Rewriting

Once the shared libraries are profiled, this profiling data is used to identify
functions that will always be loaded, and those that will only be loaded on
demand upon first call. Our system modifies LOAD entries in ELF headers
so that the loader selectively loads functions that are known to be used. To
maximize memory savings, functions are clustered into two groups: Used and
Unused. Clustering functions requires moving around their machine code in the
binary. Since the correct execution of an instruction usually relies on where
it is located in binary (e.g. a relative jump instruction), extensive analysis is
performed to make sure that the external behavior of an instruction does not
change once it is moved. The shared library is then rewritten to the disk.

Our tool is not as aggressive on executable files as it is on shared libraries.
It only adds a shared library that is responsible for signal handling to handle
faults for an unloaded page.

Avoiding Loading Unused Functions: To reduce the memory footprint of
applications, we first need a mechanism that will allow us avoid loading parts
of executables and shared libraries while enabling the process to access these
regions when necessary.

One way of getting around this problem is to split each shared library into two
shared libraries: one that contains functions that will likely be called, and one
that contains the remaining functions. If a function that is not currently available
is called during runtime, a signal handling mechanism could load the shared
library that contains this function and transfer control to that function. However,
this scheme requires loading this whole shared library even though there is a
single function that is used. As a result, it is not very effective in recovering
from an unexpected call. Moreover, splitting shared libraries is complex since it
requires moving most functions and symbols while regenerating the symbol table
and procedure linkage table so that cross-library calls can be satisfied. It also
requires adding a mechanism to access global variables across shared libraries.

Our mechanism, on the other hand, is very simple and effective. During the
rewriting phase we modify appropriate ELF headers to accommodate selectively
loading chunks of the original program or shared library. Loaders rely on program
headers in ELF binaries and only load parts of the binary that has a matching
LOAD entry in the program headers. Our rewriting mechanism modifies these
LOAD entries by changing the address ranges and adding new ones if necessary
so that it only loads desired (used) part of the library. The loader then loads the
appropriate regions in the binary, leaving out the parts that are unlikely to be
used.
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Update Relative Calls: In a shared library with position independent code,
most call instructions employ relative addressing. The exact target address is
calculated using the current program counter and the offset that is stored in the
call instruction. These offsets need to be updated during the function shuffling
process if either callee or caller is moved. When the relative position of a call
instruction changes with respect to its target, the address computation generates
an incorrect address for the target unless the offset in the call instruction is
correctly updated. As a result, our rewriting mechanism goes over every such
instruction and updates the offsets to match the current layout.

Update Symbols: There is no guarantee that a given shared library will always
be loaded at a specific address each time a process launches. As a result, addresses
of functions in shared libraries cannot be known before launch time. Moreover,
if a call instruction and its target are in different shared libraries, their relative
position with respect to each other cannot be known before launch time. In such
cases, any call instruction, rather than jumping directly to the callee, has to go
through the procedure linkage table. The dynamic linker looks up for the callee
upon the first call to that function. The look up process consists of matching
the mangled name of the callee with a list of symbols that appear in the shared
libraries. When a matching symbol is found, the address it contains is written
to the corresponding procedure linkage table entry.

If a function is moved within a shared library without updating corresponding
symbols, the dynamic linker cannot correctly look up for the actual address of
this function since the symbol information still points to the old location of this
function. Our rewriting mechanism locates such symbols and updates them with
the new addresses of associated functions.

Update Jump Tables: Most current compilers make use of jump tables for
n-way branches (e.g. switch statements in C). During the compilation process,
such control flow structures are converted into an indirect jump instruction that
reads addresses of targets from a table called jump table. In a shared library that
contains position independent code, jump tables contain offsets rather than ab-
solute addresses. These offsets correspond to the difference between the address
of each target and the address of the global offset table of that specific binary.

If the function referenced in a jump table is moved, the jump table be-
comes invalid because the relative offsets of the function within the library have
changed. Our rewriting mechanism updates each jump table entry for moved
functions. We use Dyninst [4] to locate the jump tables for us since they are
not marked by the compilers. An offset is computed such that it equals the dis-
placement of the moved function from its old position in the shared library to
its new one. That offset is added to each entry in the jump table associated with
an indirect jump in this function.

Update Function Address Transfers: Function pointers are simply variables
that contain addresses of functions. A function pointer becomes invalid when
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the associated function is moved to another address. Our tool recognizes writes
to function pointers and updates them accordingly if the target functions are
moved.

Since addresses of functions in shared libraries cannot be known before run-
time, there has to be some runtime computation for writes to function pointers.
There are two ways these addresses are computed:

1. Computed by the loader: Each function pointer that resides in the data sec-
tion has an associated entry in the relocation table. The loader updates these
function pointers during relocation. Moving a function invalidates associated
function pointer. Our tool checks each relocation entry and updates the ones
that point to moved functions so that they will point to the correct location
after relocation.

2. Using global offset table address at run-time: In some cases, function ad-
dresses are computed using relative displacement of a function from the start
of the global offset table. Moving the target function to another location re-
quires updating this computation. This case requires thorough analysis since
the address computation might take place at any valid code region. There-
fore, an instruction-by-instruction analysis is performed to identify such com-
putations. Once they are identified, offsets used in the address computation
are updated.

4.3 On-demand Mapping

Our system provides a mechanism to recover when a function we did not load
is called. As part of the offline analysis, the executable file is linked with a new
shared library that contains a signal handler. During the execution if the control
is transferred to some instruction that is not available in memory, the process
generates a segmentation fault signal (SIGSEGV). Our signal handler, in turn,
locates that function and maps it into memory (In reality, the whole page that
contains this function is mapped since most systems only allow mapping an
entire page). The execution then resumes, and the function that has just been
loaded takes control.

5 Experimental Results

To demonstrate our system, we performed our analysis on two sample PETSc
applications (ex2 from the ksp package and ex5 from the snes package) [6] and
GS2 [7, 8].

PETSc (Portable, Extensible Toolkit for Scientific Computation) “is a suite
of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations.” It uses MPI for paral-
lelization. It has linear and non-linear equation solvers and supports C, C++,
Fortran and Python. The sample PETSc program we used has 79 lines of code
and is linked with 25 shared libraries. PETSc suite is composed of 879,772 lines
of code.



7

GS2 is a physics application developed to study low-frequency turbulence in
magnetized plasma. It is typically used to assess the microstability of plasmas
produced in the laboratory and to calculate key properties of the turbulence
which results from instabilities. It is also used to simulate turbulence in plasmas
which occur in nature, such as in astrophysical and magnetospheric systems.
GS2 is composed of 53,105 lines of code and is linked with a total of 20 shared
libraries.

All shared libraries we examined were compiled with the debug flag on and
without optimization. We used Open MPI [9] for an implementation of message
passing interface.

5.1 Environment

We tested our system on a 64 node cluster owned and operated by UMIACS at
the University of Maryland. Nodes are connected using Myrinet. Each node has
two 32-bit x86 processors and an off-the-shelf Linux distribution.

5.2 Results

Tables 1, 2 and 3 show how much saving one can achieve on a typical application.
In our experiments the space savings of the text space ranged from 34.6% to 100%
for all shared libraries over 7KB of text space. The total weighted average of
space savings is 82.0%. There are some libraries that are used fairly often such
as libopen-rte.so, which is a library in the Open MPI suite. On the other hand,
some libraries such as libMdsLib.so are not used at all although they are linked
with the application.

Figure 2 shows a comparison of normalized running times between the orig-
inal and modified applications. Error bars show the normalized standard devi-
ation of running times for each type of execution. Although, the difference in
running times is not large enough to make any conclusive statement, results
support our assertion that our tool does not cause any performance overhead for
applications that run more than a few seconds.

In our experiments, modified GS2 runs took 5 seconds less than the unmodi-
fied program (36 minutes 33 seconds vs. 36 minutes 38 seconds). Functions used
by modified binaries occupy fewer pages; therefore, cache misses might be less
frequent. Also, the paging system of the operating system might be spending
less time loading and unloading pages.

On the other hand, applications that run for only few seconds might experi-
ence some slowdown due to initial signal handler registration. ex5 from PETSc’s
snes package takes 1.05 seconds on average. In our experiments modified ex-
ecutable experienced about 19% slowdown since it did not run long enough
to compensate for the initial signal handler registration. Conversely, ex2 from
PETSc’s ksp package runs for about 2.7 seconds and the modified executable
experiences more than a 6% speedup. This result shows that this application
runs long enough to compensate for the initial cost of running modified binaries.
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Table 1. PETSc results for ex5 from snes package

Library
Name

Original Modified Text (Pages) Text (KB)

Text (Pages) Text (KB) Text (Pages) Text (KB) Reduction % Reduction %

petsc 260 1034 68 266 73.85 74.24
petscdm 161 640 19 72 88.2 88.79
petscksp 335 1337 39 153 88.36 88.59
petscmat 772 3085 40 157 94.82 94.92
petscvec 204 813 52 205 74.51 74.76
petscsnes 20 77 20 77 0 0
mpi cxx 10 36 5 16 50 54.93
mpi 142 564 37 144 73.94 74.45
open-pal 62 241 34 129 45.16 46.48
open-rte 55 215 34 131 38.18 39
m 28 108 3 8 89.29 92.27
X11 146 578 7 22 95.21 96.13
lapack 866 3458 2 2 99.77 99.94
blas 80 315 3 7 96.25 97.9
stdc++ 133 529 12 45 90.98 91.54
gcc s 12 45 2 5 83.33 88.95
Xau 2 3 2 3 0 0
Xdcm 3 7 3 7 0 0
gfortran 123 485 4 9 96.75 98.13
dl 2 4 2 4 0 0
nsl 14 55 2 7 85.71 87.59
util 2 2 2 2 0 0

TOTAL 2021 13632 348 1472 82.78 89.2

Table 2. PETSc results for ex2 from ksp package

Library
Name

Original Modified Text (Pages) Text (KB)

Text (Pages) Text (KB) Text (Pages) Text (KB) Reduction % Reduction %

petsc 260 1034 72 282 72.31 72.73
petscdm 161 640 3 8 98.14 98.75
petscksp 335 1337 49 193 85.37 85.56
petscmat 772 3085 49 193 93.65 93.74
petscvec 204 813 54 213 73.53 73.8
mpi cxx 10 36 5 16 50 55.56
mpi 142 564 47 184 66.9 67.38
open-pal 62 241 37 141 40.32 41.49
open-rte 55 215 36 139 34.55 35.35

TOTAL 2001 7965 352 1369 82.41 82.81
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Table 3. GS2 results

Library
Name

Original Modified Text (Pages) Text (KB)

Text (Pages) Text (KB) Text (Pages) Text (KB) Reduction % Reduction %

MdsLib 21 80 0 0 100 100
MdsShr 21 80 0 0 100 100
TdiShr 220 875 3 9 98.64 98.97
TreeShr 38 150 0 0 100 100
fftw 70 276 25 96 64.29 65.22
rfftw 58 228 8 28 86.21 87.72
mpi f77 13 48 2 4 84.62 91.67
mpi 142 564 40 156 71.83 72.34
open-pal 62 241 36 137 41.94 43.15
open-rte 55 215 36 139 34.55 35.35

TOTAL 700 2757 150 569 78.57 79.36

Fig. 2. Normalized running times. Error bars show the standard deviation for that
category.
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Since most HPC applications take several minutes to complete, our impres-
sion is that modified binaries will likely not cause any overhead and might cause
some speedup.

Just like any other on-demand tool, the performance of our system might
suffer due to mapping. However, this operation is rarely necessary. In our exper-
iments, the training runs accurately identified all functions that were called and
thus on-demand mapping was never performed.

6 Related Work

Reducing the memory footprint of programs has been extensively researched.
Previous works include a wide range of techniques from code compression [10–
13] to procedure abstraction [14–16] and dead code elimination [17].

Code compression is the act of reducing the size of program code by its equiv-
alent representation in another form [18]. It is usually applied to executables
that run on embedded systems. Xie et al. developed a system where only the
instructions that are least frequently used are compressed [12]. Just like we do,
they first profile the executable and identify the regions that are least likely to be
used. These regions are then compressed. They leave frequently accessed regions
uncompressed to reduce the performance hit. A decompressor generates the orig-
inal uncompressed code if a block of code that was compressed is accessed at
runtime. Lefurgy et al. evaluate a hardware assisted code compression system
from IBM PowerPC 405 [13]. In this system all program code is compressed.
They note that they achieve performance increase in many situations thanks to
the prefetching of instructions. Since their system relies on CodePack hardware
support available on PowerPC 405, it is restricted to this platform.

Other approaches to code size reduction techniques include dead and redun-
dant code elimination, procedure abstraction, and instruction level modifica-
tions. [16, 17] explain various code elimination methods including unreachable,
redundant and dead code elimination. These methods are demonstrated in their
binary-rewriting tool, squeeze, along with interprocedural constant propagation
and strength reduction. They also perform procedure extraction for single entry-
single exit sections at the binary level. They make use of various optimizations
such as instruction reordering and platform specific improvements such as re-
ducing the cost of function prologues and epilogues. Van Put et al. propose
optimizations including constant propagation and unreachable code elimination
as well as procedure extraction in their binary rewriter tool, DIABLO [19]. They
also demonstrate how their system can be used to rewrite Linux kernel for spe-
cific embedded systems.

Komondoor and Horvitz propose procedure extraction at the source code
level [14, 15]. Zmily and Kozyrakis propose BLISS which successfully targets re-
ducing text space, energy use and execution time [20]. They selectively replace
32-bit instructions with 16-bit instructions. Since more instructions fit into the
instruction cache, performance of the system increases. They also remove re-
peated sequences of instructions leaving a single copy, just like procedure ex-
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traction. Lau et al. show how echo instructions can be used to remove duplicates
of identical or similar regions of code [21]. ’echo’ is a proposed instruction that
directs processor to execute a sequence of instructions in the binary. Authors
perform procedural abstraction as well as replacing similar sections of code with
a single echo instruction.

Zhang and Krintz propose a system that unloads code regions from a modi-
fied java virtual machine after their execution is over [22]. They note that 61% of
code is only used at the start-up period and can be unloaded after their execu-
tion. Although our system currently does not unload code regions once they are
loaded, this functionality is a straightforward extension to our current system.

7 Conclusion

In this paper we proposed a new system that reduced memory footprint of exe-
cutables linked with many shared libraries. After an offline rewriting phase, we
managed to reduce the number of loadable pages in target shared libraries by
an average of 82.0%. We also demonstrated that our tool causes no performance
overhead for reasonably long running programs. Upon a call to a function that is
not loaded into memory by the loader, our error recovery mechanism maps the
page which contains that function into memory and continue execution without a
failure. These properties make our system a desirable optimization for frequently
executed applications with multiple shared libraries.
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