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Abstract

Human population have large genetic variation. Genetic variations are
usually characterized by Single Nucleotide Polymorphism (SNP). These
are the location of variation in the genome sequence of two individuals.
Identification of SNPs affecting human phenotype, especially leading to
risks of complex disorders, is one of the key problems of medical genetics.
In this project we build a probabilistic model which can determine the
deleterious mutation which can lead to heart disease in humans.

1 Introduction

The process of finding alleles, i.e. SNPs at different location, of an individ-
ual with respect to standard human genome is called genotyping. Complex
organisms like human are bi-allelic (paternal and maternal). The geno-
typing technology does not give phase information of SNP, i.e whether
it corresponds to maternal or paternal haplotype. The process of infer-
ring phase of SNP is called haplotype inference. In genetic epidemiology,
a genome-wide association study (GWA study, or GWAS), also known
as whole genome association study (WGA study, or WGAS), is an ex-
amination of many common genetic variants in different individuals to
see if any variant is associated with a trait. GWAS typically focus on
associations between single-nucleotide polymorphisms (SNPs) and traits
like major diseases. Most of the current approaches involves case-control
model which compares two large set of individuals belonging to healthy
control group and diseased cases group. The individuals are genotyped
for commonly know SNPs. A differential analysis is done between control
and cases to find the variation in allele frequency. Our model is a bayesian
approach.

We have access to genotype data for around 313 failing heart and con-
trol cases. Our goal is to analyze the data to find the genetic variation that
causes the heart failure. Our aim is to simultaneously infer and classify
haplotypes for heart failure cases and control cases from genotype data. In
addition, we also want to capture the genetic variation in these two classes
by finding the ancestral haplotypes that generate founder population for
each class. Previous work [Xing et al., 2004] [Sohn and Xing, 2009]
[Xing et al., 2007] has used HDP model [Teh et al., 2006] for inferring the
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Figure 1: Model for Healthy

Figure 2: Model for Bad
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haplotypes for multi-population. Their generative model defines a set of
common ancestor haplotypes that generates founder haplotypes for each
population. They then sample paternal and maternal haplotypes from
ancestral haplotype that generates observed genotype.We use Dirichlet
process [Teh, 2010] based model determining mutations.

In our generative model, we assume that healthy haplotypes (H) are
generated by Ancestral population (A) fig 3, while diseased ancestral hap-
lotypes (B) are produced by certain mutation events (φ) in ancestral hap-
lotypes. These diseased haplotypes in process generates the paternal and
maternal haplotypes for a given observed diseased genotype (shaded).
Each genotypes is generated by paternal and maternal haplotypes. Our
model will be able to answer following queries: Given a genotype what
is probability that it is coming from the diseased or healthy population?
What is variation of a disease haplotype? What are specific mutation that
causes a healthy haplotype to be converted into a disease haplotype?

2 Statistical Model

At first we give brief introduction to Dirichlet Process [Ferguson, 1973]
and Dirichlet Distribution.

2.1 Dirichlet Procee Mixture Model

Consider an urn that at the outset contains a ball of a single color. At
each step we either draw a ball from the urn and replace it with two balls
of the same color, or we are given a ball of a new color which we place
in the urn. One can see that such a scheme leads to a partition of the
balls according to their color. Mapping each ball to a haploid individual
and each color to a possible haplotype, this partition is equivalent to the
one resulted from the coalescence-with-IMA process [Hoppe, 1984], and
the probability distribution of the resulting allele spectrum - the numbers
of colors (i.e., haplotypes) with every possible number of representative
balls (i.e., decedents)is captured by the well known Ewens sampling for-
mula [Ewens and Tavaré, 1998].

Letting parameter α define the probabilities of the two types of draws
in the above mentioned Polya urn scheme, and viewing each (distinct)
color as a sample from Q0, and each ball as a sample from Q, Black-
well and MacQueen24 showed that this Polya urn model yields samples
whose distributions are those of Q0 the marginal probabilities under the
Dirichlet process. Formally, a random probability measure Q is gener-
ated by a DP if for any measurable partition 1, ..., Ak of the sample space
(e.g., the partition of an unbounded haploid population according to com-
mon haplotype patterns), the vector of random probabilities Q(Ai) follows
a Dirichlet distribution (Q(A1), ..., Q(Ak)) ∼ Dir(αQ0(A1), ..., αQ0(Ak)),
where α denotes a scaling parameter and Q0 denotes a base measure.
The Polya urn construction of DP makes explicit an order-independent
sequential sampling scheme to draw samples from a DP. Specifically, hav-
ing observed n samples with values (φ1, ..., φn) from a Dirichlet process
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DP(α,Q0), the distribution of the value of the (n + 1)th sample is given
by:

φn+1|φ1, ...., φn.α,Q0 ∼

K∑
k=1

nk

nk + 1
δφ∗

k
(.) +

α

n + α
Q0(.)

where δφ∗
k
() denotes a point mass at a unique value δφ∗

k
, nk denotes the

number of samples with value δφ∗
k

, and K denotes the number of unique
values in the n samples drawn so far. This conditional distribution is
useful for implementing Monte Carlo algorithms for haplotype inference
under DP-based models.

2.2 Our Model

We have designed a non parametric Bayesian generative model built on
Dirichlet Process which has a well formed statistical framework to handle
our problem. In our generative process we assume that given healthy hap-
lotypes, the Ancestral haplotypes are independent of disease haplotypes.
Thus inferencing of our model is divided into two parts as shown in Fig-
ure 1 and 2. The generative process in Figure 1 is, given an ancestral
haplotype and mutation rate Φ, a healthy haplotype is generated. The
observed Genotype of healthy individual is generated from two healthy
haplotype with γ being the observational noise.

Once we obtain the Ancestral population from the above process, we
generate the diseased ancestral haplotype population and corresponding
individuals as shown in Figure 2. Given a healthy ancestor A and un-
healthy mutation rate θ a bad ancestor B shown in Figure 2 is generated.
Each diseased individual haplotype H is generated from bad ancestor with
mutation rate Ψ. Two bad ancestors (representing paternal and maternal
haplotypes) generate individual genotype. Each individual genotype is
observed with observational noise rate γ.

Our implementation builds upon and significantly changes the code
used in paper [Xing et al., 2004].

The basic generative structure of the model is as follows

γ ∼ Γ(α1, β1)

Ψ ∼ Γ(α2, β2)

Θ ∼ Γ(α3, β3)

δ ∼ Dir(α, K)

C ∼ Categorical(δ)

bj|A,C,Θ,H, τ ∼ P(.|A,C,Θ,H, τ)

G ∼ DP(α,G0)

κ ∼ G

D ∼ Categorical(κ)

hie |D,Ψ ∼ Ph(.|D,Ψ)

gi|hi0 , hi1 ∼ Pg(.|hi0 , hi1 , γ)
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Figure 3: Model

The probability distribution for each of the random variables in our
model can be described in the following set of equation.

2.3 double locus mutation model

P(bt|at, θkt) = θ
I(bt=at)
kt (

1 − θt
B − 1

)I(bt 6=at)where, B = num of alleles

The joint conditional distribution of bad haplotype instances b =
{bj, j ∈ {1, ..J}} and parameter instances Θ = {θkt : k ≤ K, t ≤ T }, given
the ancestor equivalence class indicator c of haplotype instances and the
set of ancestors a = a1, ..., ak, can be written as:

P(b|c,a, Θ) ∝
∏
k

∏
t

∏
j

θ
I(bjt=akt)I(cj=k)

kt (1 − θkt)
I(bjt 6=akt)I(cj=k)

=
∏
k

∏
t

θ
∑

j I(bjt=akt)I(cj=k)

kt (1 − θkt)
∑

j I(bjt 6=akt)I(cj=k)

=
∏
k

∏
t

θ
mkt
kt (1 − θkt)

m ′kt

Where mkt =
∑
j I(bjt = akt)I(cj = k), is the sufficient statistics of θtk.

The joint distribution of b,Θ can be written as:

P(b, Θ|c,a) ∝
∏
k

∏
t

θ
mkt
kt (1 − θkt)

m ′ktP(θtk)

∝
∏
k

∏
t

θ
mkt+αh−1
kt (1 − θkt)

m ′kt+βh−1

Θ can be then integrated out as:

δmkt = P(b|c,a)

∝
∏
k

∏
t

Γ(αh +mkt)Γ(βh +m ′
kt)

Γ(αh +mkt + βh +m ′
kt)

(1)
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The probability distribution of the h can be found in the similar man-
ner:

P(hit|bjt, ψj) = ψ
I(hit=bjt)

j (1 − ψj)
I(hit 6=bjt)

Therefore, P(hit|bjt, ψj, di = j) = ψ
I(hit=bjt)I(ci=j)

j (1 − ψj)
I(hit 6=bjt)I(ci=j)

p(h,Ψ|d,b) ∝
∏
j

∏
i

∏
t

ψ
I(hit=bjt)I(di=j)

j (1 − ψj)
I(hit 6=bjt)I(di=j)

=
∏
j

∏
t

ψ
∑

i I(hit=bjt)I(di=j)

j

=
∏
j

∏
t

ψ
ljt+αh−1

j (1 − ψj)
l
′
jt+βh−1

where, ljt =
∑
i

I(hit = bjt)I(di = j)

p(h|d,b) =
∏
j

∏
t

R(αh, βh)
Γ(αh + ljt)Γ(βh + l ′jt)

Γ(αh + βh + ljt + l ′jt)

Now we will give the gibbs sampling algorithm of each of variables
(d,h,b, c)

2.4 Sampling d

In our model di is the equivalence class for sample xi.
The sampling of d will proceed in a manner similar to [Xing et al., 2004].

P(di = j|d−i, hi,h−i,b) ∝ P(di = j|d−i,h−i,b)P(hi|di = j,d−i,h−i,b)

∝ P(di = j|d−i, β(j))
P(h|bj,d)

P(h−i|bj,d−i)

∝ P(di = j|d−i, β(j))P(hi|bj, lj[−i])

∝ χ(j)P(hi|bj, lj[−i])

∝ χ(j)
∏
t

η(ljt[i])

η(ljt[−i]
(2)

Where, χ = (n1 + α0, ..., nj + α0.., α0) and η(lj) =
Γ(αh+ljt)Γ(βh+l ′jt
Γ(αh+ljt+βh+l ′

jt
)
.

Further, ljt[−s] =
∑
i:i6=s

∑
j I(hit = bjt)I(di = j) and ljt[s] = ljt[−s] +

I(hst = bjt)

2.5 Sampling c

In our model c is the equivalence class for bad haplotype b We use a
dirichlet prior Dir(α0) on the c. The hyperparameter can be further
thought to be coming from a beta distribution.
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P(cj = k|c−j,a,b) ∝ P(cj = k|c−j)P(bj|cj = k, ak, c−j,b−j)

∝ (nk + α0)P(bj/ak,mjt[−j])

∝ (nk + α0)
∏
t

Γ(αb + m̄kt)Γ(βb + m̄
′
kt)

Γ(αb + m̄kt + βb + m̄ ′
kt)

∝ (nk + α0)
∏
t

(αb + m̄kt)
I(bjt=akt)

(βb + m̄
′
kt)

I(bjt 6=akt) (3)

2.6 Sampling of the b

We will take following two cases:

2.6.1 Old b

If old class is sampled in the d, the bjt will be sampled by following
equation:

P(bjt|b−(jt),a, c,h,d) ∝
∏
i|di=j

P(hit|bjt, ljt)P(bjt|akt, cj = k,mkt[−jt])

∝
Γ(αh + l̄jt)Γ(βh + l̄ ′jt)

Γ(αh + βh + l̄jt + l̄ ′jt)

Γ(αb + m̄kt)Γ(βb + m̄
′
kt)

Γ(αb + m̄kt + βb + m̄ ′
kt)

∝
Γ(αh + l̄jt)Γ(βh + l̄ ′jt)

Γ(αh + βh + l̄jt + l̄ ′jt)

(αb + m̄kt)
I(bjt=akt)(βb + m̄

′
kt)

I(bjt 6=akt) (4)

Where, m̄kt =
∑
j I(bjt = akt)I(cj = k), is the sufficient statistics of

θtk considering the bjt is current bad ancestor. Where l̄jt is the number
of allelic instances that are consistent with ancestor bj having pattern bjt.

2.6.2 New b

If new class is sampled in the d, we don’t know cJ+1. Therefore, we have
to marginalize over all c. The bjt will be then sampled by eqn. 5.

P(bjt|b−(jt),a, c,h,d) = P(hit|bjt)P(bjt|akt,cj=k,mkt[−jt])

∝ αh

αh + βh

I(hit=bjt) βh

αh + βh

I(hit 6=bjt)

(αb + m̄kt)
I(bjt=akt)(βb + m̄

′
kt)

I(bjt 6=akt)(5)

The prior on cj is dirichlet distribution.
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2.7 Sampling h

The Gibbs sampling for h is similar to the [Xing et al., 2004].

3 Implementation and Result

Our implementation builds upon and significantly changes the code used
in paper [Xing et al., 2004]. We also parallelize the code using OpenMP
[Chapman et al., 2007] and ran it on the 8 clusters, each node having 8
processor. We were able to parallelize only the first part of the inferencing
problem i.e. identifying Ancestral population. Our implementation has
more than 5000 lines of C code.

The size of our dataset is massive in comparison to previous work and
takes considerable time to run. Besides that implementing the complete
code (joint inferencing of bad haplotypes) required considerable amount
of effort and we are still trying to run the complete code. After that we
are planning to parallelize it.

To access the quality of result, We performed following test.

3.1 Motif enrichment analysis

Motifs are sequence where transcription factor binds that eventually effect
the expression of near genes. If a mutation lie in one of this motifs in the
genome, it is likely it will affect its binding affinity either increasing or
decreasing its affinity toward its particular transcription factor. Since we
are studying cardio-vascular disease in particular, we expect many of the
region where these mutations exists i.e mutation rate θ is high, will be
enriched in the heart related motifs. So that it can disrupt the cardio-
vascular regulatory pathway thus explaining the mechanism by which a
mutation causes heart disease. To test this hypothesis we sorted the SNP
location based on their estimated mutation rate. We declared to top 10%
of this sorted list as our foreground set and rest of SNP as background
set and using 300bps flanking region around this SNP, performed motif
enrichment analysis.

We first ensured the GC content between foreground and background;
we divided both foreground and background into bins as with similar GC
content and randomly sampled from bins so that proportion of GC content
remains same between foreground and background. We then, performed
PWM scan on these region with TRANSFAC vertebrate motifs. We found
that foreground are enriched in motifs which have at least heart associated
function. This validates that mutation found by this method are not
random and are in fact heart related and are good candidates for being
deleterious mutation.

3.2 Comparison with GWAS studies

Once we can run the program on complete genome, we can further perform
comparison of our canditates deleterious mutation with those reported by
traditional GWAS studies. We are also planning to do a differential analy-
sis on the input genotype dataset using logistic regression based approach
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to select only those set of SNPs which have high probability of being
related to heart disease based on p-value.
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[Hoppe, 1984] Hoppe, F. (1984). Pòlya-like urns and the ewens’ sampling
formula. Journal of Mathematical Biology, 20(1):91–94.

[Sohn and Xing, 2009] Sohn, K. and Xing, E. (2009). A hierarchical
dirichlet process mixture model for haplotype reconstruction from
multi-population data. The Annals of Applied Statistics, 3(2):791–821.

[Teh, 2010] Teh, Y. (2010). Dirichlet process. Encyclopedia of Machine
Learning, Springer.

[Teh et al., 2006] Teh, Y., Jordan, M., Beal, M., and Blei, D. (2006).
Hierarchical dirichlet processes. Journal of the American Statistical
Association, 101(476):1566–1581.

[Xing et al., 2007] Xing, E., Jordan, M., and Sharan, R. (2007). Bayesian
haplotype inference via the dirichlet process. Journal of Computational
Biology, 14(3):267–284.

[Xing et al., 2004] Xing, E., Sharan, R., and Jordan, M. (2004). Bayesian
haplo-type inference via the dirichlet process. In Proceedings of the
twenty-first international conference on Machine learning, page 111.
ACM.

9


