
A Manual for Multiblock PARTI

Alan Sussman∗

Gagan Agrawal
Department of Computer Science, University of Maryland, College Park, MD 20742

Christian Hansen
Joel Saltz

UMIACS and Department of Computer Science, UMCP, College Park, MD 20742
{als,gagan,chansen,saltz}@cs.umd.edu

January 2004

Abstract

There exists a large class of scientific applications that are composed of irregularly
coupled regular mesh (ICRM) computations. These problems are often referred to as
block structured, or multiblock, problems and include the Block Structured Navier-
Stokes solver developed at NASA Langley called multiblock TLNS3D.

Primitives are presented that are designed to help users efficiently program such
problems on distributed memory machines. These primitives are also designed for use
by compilers for distributed memory multiprocessors. Communications patterns are
captured at runtime, and the appropriate send and receive messages are automatically
generated. The primitives are also useful for parallelizing regular computations, since
block structured computations also require all the runtime support necessary for regular
computations.

∗This work was supported by ARPA under contract No. NAG-1-1485 and NSF under grant No. ASC
9213821. The work was supported by NASA Contract No. NAS1-18605 while the authors were in residence
at ICASE, NASA Langley Research Center.

1

1 C Function Descriptions

This section describes each of the C multiblock primitives. The primitives are divided into
five categories: declarations, loop-bound adjustment, communication, memory manage-
ment, and a group of miscellaneous primitives. These primitives are described, respectively,
in Sections 1.2, 1.3, 1.4, 1.5 and 1.6. To help in our explanation we will present a very
simple example of a multiblock code that will be referred to in the following sections.

The code, shown in Figures 1, 2 and 3, consists of an initialization step and an iterative
computation phase. Initialization involves reading the number of blocks, the size of each
block, and information about how blocks interface with each other. The interface infor-
mation is obtained by the routine readMap(). For each block, A, readMap() reads data
into imap[A] that specifies, for each subsection of A that interfaces with another block,
B, three pieces of information: the coordinates of the section of A, the coordinates of the
section of B, and the identity of B. A and B are allowed to be the same block.

The computation step calls two routines fillBCells() and compute(). Function fillBCells(),
shown in Figure 2, uses the data structure imap to update the boundary cells of each block
from other blocks. In line 13 of the driver code (Figure 1), array w is allocated an additional
layer of cells, which we will call external ghost cells. External ghost cells are part of the
user-defined (distributed) array, and are specific to the application (e.g. in a multiblock
application, to hold data from adjacent blocks). On the other hand, we will later discuss
allocation of internal ghost cells, which are required because the data set is divided among
multiple processors (e.g. so a processor can store copies of data that is owned by other
processors). Function compute(), shown in Figure 3, performs a simple sweep over a mesh,
performing a computation at each mesh point.

For simplicity, the blocks depicted in this example are 2-dimensional. In most real problems
the blocks will be 3-dimensional. MAXBLOCS is the maximum number of blocks allowed
and MXSIZE is the number of data items required to describe each block interface.

1.1 Header File

There is one header file for the multiblock PARTI library, called bsparti.h. The header file
contains the structure definitions, macro definitions and function declarations needed to
use the primitives. bsparti.h must be included by all C programs that use the multiblock
PARTI primitives. No header files need to be included by Fortran applications.

1.2 Declaration Primitives

The declaration primitives allow the user to create decompositions and distributed array
descriptors. A decomposition can be thought of as an abstract problem or index space. The

2

1 main()
2 {
3 int numBlocks, numIters, size;
4 int i, iter, size1[MAXBLOCS], size2[MAXBLOCS];
5 float *w[MAXBLOCS], *deltaw[MAXBLOCS];
6 int imap[MAXBLOCS][MXSIZE];
7
8 scanf("%d", &numBlocks);
9 scanf("%d", &numIters);
10 for (i=0; i<numBlocks; i++) {
11 scanf("%d %d", &size1[i], &size2[i]);
12 size = (size1[i]+2)*(size2[i]+2);
13 w[i] = calloc(size, sizeof(float));
14 deltaw[i] = calloc(size, sizeof(float));
15 readMap(&imap[i][0]);
16 }
17
18 for (iter=0; iter<numIters; iter++) {
19 for (i=0; i<numBlocks; i++) {
20 fillBCells(w[i], imap[i], i, size1, size2);
21 }
22
23 for (i=0; i<numBlocks; i++) {
24 compute(w[i], deltaw[i], size1[bloc]+2, size2[bloc]+2);
25 }
26 }
27 }

Figure 1: C multiblock code - main program

3

1 fillBCells(w, imap, dBloc, size1, size2)
2 float *w[MAXBLOCS];
3 int imap[MXSIZE], dBloc, size1[MAXBLOCS], size2[MAXBLOCS];
4 {
5 int i=0; seg, nsegs;
6
7 nsegs = imap[i++];
8 for (seg=1; seg<=nsegs; seg++) {
9 dDim = imap[i++]; dVal = imap[i++]; dLo = imap[i++];
10 dHi = imap[i++]; sDim = imap[i++]; sVal = imap[i++];
11 sLo = imap[i++]; sHi = imap[i++]; sBloc = imap[i++];
12 copySegment(
13 w[dBloc],dDim,dVal,dLo,dHi,size1[dBloc],size2[dBloc],
14 w[sBloc],sDim,sVal,sLo,sHi,size1[sBloc],size2[sBloc]);
15 }
16 }
17
18 copySegment(dest,dDim,dVal,dLo,dHi,dSize1,dSize2,
19 src,sDim,sVal,sLo,sHi,sSize1,sSize2)
20 int dDim, dVal,, sSize1, sSize2;
21 float src[sSize1+2][sSize2+2], dest[dSize1+2][dSize2+2];
22 {
23 int i, j, cnt=0;
24
25 if (sDim == 0)
26 for (j=srcLo; j<=srcHi; j++)
27 tmp[cnt++] = src[sVal][j];
28 else
29 for (i=srcLo; i<==srcHi; i++)
30 tmp[cnt++] = src[i][sVal];
31
32 cnt = 0;
33 if (dDim == 0)
34 for (j=destLo; j<=destHi; j++)
35 dest[dVal][j] = tmp[cnt++];
36 else
37 for (i=destLo; i<==destHi; i++)
38 dest[i][dVal] = tmp[cnt++];
39 }

Figure 2: C multiblock code - fillBCells and copySegment functions

4

1 compute(w, deltaw, size1, size2)
2 int size1, size2
3 float w[size1][size2], deltaw[size1][size2];
4 {
5 int i,j,k,l,m;
6
7 for (j=1; j<=size2-2; j++) {
8 for (i=1; i<=size1-2; i++) {
9 deltaw[i][j] = k * (w[i+1][j] - w[i][j]) +
10 l * (w[i][j+1] - w[i][j]) +
11 m * w[i+1][j+1];
12 }
13 }
14 }

Figure 3: C multiblock code - compute function

library differentiates two types of decompositions, regular and irregular, each of which is
created with its own set of primitives. A distributed array descriptor describes the physical
and distribution characteristics of an array. This includes the number of dimensions, the
local size in each dimension, the number of ghost (overlap) cells in each dimension, the
distribution in each dimension, and a pointer to the decomposition with which it is associ-
ated. Every distributed array is described by a distributed array descriptor. Block to task
assignments are one-to-one. One descriptor can serve for multiple distributed arrays, since
arrays with identical physical characteristics (e.g. identical distribution, the same number
of ghost cells in each dimension, etc.) can use the same descriptor.

1.2.1 vProc()

vProc() creates a virtual processor space. This virtual processor space can be thought of as a
type of “father” decomposition that encompasses the entire problem space and all available
processors. The virtual processor space in dimension i is numbered from 0 to sizes[i]− 1.

Synopsis

VPROC *vProc(numDims, sizes)

Parameter Declarations

int numDims number of dimensions in the virtual processor space. Currently, only
one dimensional virtual processor spaces are supported.

5

int sizes[numDims] sizes of all the dimensions

Return Value

pointer to a descriptor for the virtual processor space

Example

Consider the initialization loop (lines 10 to 16) in Figure 1. We would like to create
a virtual processor space representing the entire problem space (i.e. all blocks). The
following code shows how to use the sizes of the blocks to calculate the size of the entire
problem space and calls vProc() to create a corresponding virtual processor space.

totalSize[0] = 0;
for (i=0; i<numBlocks; i++) {

scanf("%d %d", &size1[i], &size2[i]);
size = (size1[i]+2) * (size2[i]+2);
w[i] = calloc(size, sizeof(float));
deltaw[i] = calloc(size, sizeof(float));
readMap(&imap[i][0]);
totalSize[0] += size1[i] * size2[i];

}
vProc(1, totalSize);

1.2.2 create decomp()

create decomp() creates a new decomposition with “numDims” dimensions. The size of each
dimension is given by array “sizes”.

Synopsis

DECOMP *create decomp(numDims, sizes)

Parameter Declarations

int numDims number of dimensions in decomposition

int sizes[numDims] sizes of all the dimensions

Return Value

pointer to a descriptor for the decomposition

Example

6

The following example uses the code from Section 1.2.1 and shows how decompositions
are created for each block.

totalSize[0] = 0;
for (i=0; i<numBlocks; i++) {

scanf("%d %d", &size1[i], &size2[i]);
size = (size1[i]+2) * (size2[i]+2);
w[i] = calloc(size, sizeof(float));
deltaw[i] = calloc(size, sizeof(float));
readMap(&imap[i][0]);
totalSize[0] += size1[i] * size2[i];
sizes[0] = size1[i]; sizes[1] = size2[i];
decomp[i] = create_decomp(2, sizes);

}
vProc(1, totalSize);

1.2.3 embed()

embed() embeds a decomposition into a subset of the virtual processor space. This prim-
itive makes it possible to map a decomposition onto a specified set of virtual processors.
This primitive should always be called before distribute(), which needs to know how many
processors have been allocated to the decomposition. Currently, embed() supports only one
dimensional virtual processor spaces.

Synopsis

void embed(decomp, vproc, startPosn, endPosn)

Parameter Declarations

DECOMP *decomp pointer to the decomposition

VPROC *vproc pointer to the virtual processor space (currently, must be one dimen-
sional)

int startPosn start position in the virtual processor space

int endPosn end position in the virtual processor space

Return Value

none

Example

7

Assume a virtual processor space and a number of decompositions have already been
created, as shown in the example from Section 1.2.2. The following example shows how
the decompositions corresponding to each block are embedded into the virtual processor
space.

startPosn = 0;
for (i=0; i<numBlocks; i++) {

endPosn = startPosn + size1[i] * size2[i] - 1;
embed(decomp[i], vp, startPosn, endPosn);
startPosn = endPosn + 1;

}

1.2.4 distribute()

distribute() allows the user to specify the type of distribution for each dimension of a
specified decomposition. This routine determines how the dimensions of the decomposition
are mapped to the set of virtual processors specified by embed(). If embed() has not been
used to specify a set of virtual processors for the decomposition, distribute() assumes that
the decomposition is mapped to all processors. While distribute() can, in general, deal with
a broad range of distributions (e.g. block, cyclic, block cyclic, undistributed and irregular),
currently only block and undistributed are implemented.

Synopsis

void distribute(decomp, dist)

Parameter Declarations

DECOMP *decomp pointer to the decomposition

char *dist string of N characters, where N is the number of dimensions in the decom-
position. Each character can have one of these values:

’*’ Undistributed
’B’ Block distribution
’C’ Cyclic distribution (not yet implemented)

Return Value

none

Example

8

Using the subset of code from Section 1.2.3, we add a call to distribute() in the loop to
specify that the distribution for each decomposition is “block” in the first and second
dimensions.

startPosn = 0
for (i=0; i<numBlocks; i++) {

endPosn = startPosn + size1[i] * size2[i] - 1;
embed(decomp[i], vp, startPosn, endPosn);
startPosn = endPosn + 1;
distribute(decomp[i], "BB");

}

1.2.5 section()

Irregular block distributions can be handled with the section() call, which creates all the
partitions for all the dimensions of an irregular block decomposition at once. This call does
not consider a virtual processor space and instead assigns blocks to tasks based on their
order in the decomposition.

Synopsis

int section(decomp, dim, cnt, idx)

Parameter Declarations

DECOMP *decomp pointer to the decomposition

int *dim the dimensions to split

int *cnt the number of partitions to create in each dimension

int **idx the limiting upper index of each partition for each dimension

Return Value

the number of blocks created

Example

Here is a use of section() that bisects each dimension.

void bisect(DECOMP* decomp, int rank) {
int i, *dim, *cnt, **idx;

9

dim = (int*)calloc(rank, sizeof(int));
cnt = (int*)calloc(rank, sizeof(int));
idx = (int**)calloc(rank, sizeof(int*));
for (i = 0; i < rank; ++i) {

dim[i] = i;
cnt[i] = 2;
idx[i] = (int*)calloc(2, sizeof(int));
idx[i][0] = decomp->size[i]/2; idx[i][1] = decomp->size[i];

}

parti_section(decomp, dim, cnt, idx);

for (i = 0; i < rank; ++i) {
free(idx[i]);

}
free(idx);
free(cnt);
free(dim);

}

1.2.6 partition()

Irregular block distributions can also be created with the partition() call, which is used to
recursively partition each dimension, one at a time. This allows remaining, unpartitioned
dimensions to be partitioned differently. For example, if the first dimension is partitioned
into two sections, partition() can then be called to partition the second dimension of the first
section into two sections and called again to partition the second dimension of the second
section into three sections. The parameter blk is used to indicate which section (or block) of
each dimension is to be partitioned on a particular call. This call does not consider a virtual
processor space and instead assigns blocks based on their order in the decomposition.

Synopsis

int partition(decomp, dim, blk, cnt, idx)

Parameter Declarations

DECOMP *decomp pointer to the decomposition

int dim the dimension to split

int *blk the block to split

10

int cnt the number of partitions to create

int *idx the limiting upper index of each partition

Return Value

the number of partitions created

Example

Here is a recursive use of partition() that bisects each dimension.

void bisect(DECOMP *decomp, int rank, int *size, int dim, int *blk) {
int cnt = 2;
int idx[2];

if (dim < rank) {
idx[0] = size[dim]/2; idx[1] = size[dim];
partition(decomp, dim, blk, cnt, idx);
blk[dim] = 0;
bisect(decomp, rank, size, dim+1, blk);
blk[dim] = 1;
bisect(decomp, rank, size, dim+1, blk);

}
}

1.2.7 align()

The align() primitive is used to map arrays onto a decomposition and create distributed
array descriptors. The following parameters are associated with each array dimension: the
size, the number of internal ghost cells, the number of external ghost cells at the beginning
and end of each dimension, a flag for determining where to put extra data points in case
the size of the dimension is not evenly divisible by the number of processors, and the
decomposition dimension to which it is aligned. Internal ghost cells are those required
because the data set is divided among multiple processors. External ghost cells are a part
of the user-defined distributed array that are specific to the application. If a distributed
array dimension will not be aligned to any decomposition dimension, then the decomposition
dimension should be set to -1.

Synopsis

DARRAY *align(decomp, numDims, arrayDims, sizes, int gcells,
ext gcells left, ext gcells right, extra flag, decompDims)

11

Parameter Declarations

DECOMP *decomp pointer to the decomposition to which the array is being aligned.
int numDims the number of dimensions of the array.
int arrayDims[numDims] dimensions of the src array to be aligned. Numbering fol-

lows the C convention (i.e. 0 to numDims-1)
int sizes[numDims] sizes of each dimension (including external ghost cells)
int int gcells[numDims] the number of internal ghost cells in each dimension
int ext gcells left[numDims] the number of external ghost cells at the beginning in

each dimension
int ext gcells right[numDims] the number of external ghost cells at the end in each

dimension
int extra flag[numDims] where to put extra data items if the array size is not evenly

divisible by the number of processors assigned to a dimension
0 : default (same as option 4)
1 : All on leftmost processor (the lowest numbered processor in the dimension)
2 : All on rightmost processor (the highest numbered processor in the dimension)
3 : Split equally between leftmost and rightmost processors (if an odd number the

extra one is on the leftmost)
4 : Split equally between leftmost and rightmost processors (if an odd number the

extra one is on the rightmost)
int decompDims[numDims] the decomposition dimensions to which each array di-

mension is being aligned. decompDims[i] should be −1 if dimension i is not aligned
to any dimension of the decomposition.

Return Value

pointer to a distributed array descriptor that can be used as an argument to the schedule
generating primitives described in Section 1.4

Example 1

Consider the example from Section 1.2.4. For each block we create a distributed array
descriptor for a two dimensional array whose size in each dimension is the size of the
block plus two (one external ghost cell on both the left and the right in each dimension),
and that has one internal ghost cell in each dimension. If the number of data items
in a distributed array dimension is not divisible by the number of (physical) processors
assigned to that dimension (by the distribute() primitive), the extra flag for each dimen-
sion is set so that any extra data items are split between the leftmost and rightmost
processors of that dimension (with an extra data item possibly located on the rightmost
processor). A distributed array descriptor contains distribution information that is used
by other primitives (e.g.. laubnd(), lalbnd(), exchSched(), etc.) that require access to
distribution information.

12

startPosn = 0
for (i=0; i<numBlocks; i++) {

endPosn = startPosn + size1[i] * size2[i] - 1;
embed(decomp[i],vp,startPosn,endPosn);
startPosn = endPosn + 1;
distribute(decomp[i], "BB");
numdims = 2;
array_dims[0] = 0; array_dims[1] = 1;
sizeinfo[0] = size1[i]+2; sizeinfo[1] = size2[i]+2;
int_gcells[0] = 1; int_gcells[1] = 1;
ext_gcells_left[0] = 1; ext_gcells_right[0] = 1;
ext_gcells_left[1] = 1; ext_gcells_right[1] = 1;
extra_flag[0] = 0; extra_flag[1] = 0;
decomp_dims[0] = 0; decomp_dims[1] = 1;
da[i] = align(decomp[i], numdims, array_dims, sizeinfo, int_gcells,

ext_gcells_left, ext_gcells_right, extra_flag, decomp_dims);
}

Example 2

This example shows how to align an array with a decomposition of fewer dimensions.
The array has 3 dimensions while the decomposition has just 2 dimensions. Also, the
first and second array dimensions are transposed when mapped to the decomposition.

numdims = 3;
array_dims[0] = 0; array_dims[1] = 1; array_dims[2] = 2;
sizeinfo[0] = size1[i]+2; sizeinfo[1] = size2[i]+2;
sizeinfo[2] = size3;
int_gcells[0] = 1; int_gcells[1] = 1; int_gcells[2] = 0;
ext_gcells_left[0] = 1; ext_gcells_right[0] = 1;
ext_gcells_left[1] = 1; ext_gcells_right[1] = 1;
ext_gcells_left[2] = 0; ext_gcells_right[1] = 0;
extra_flag[0] = 0; extra_flag[1] = 0; extra_flag[2] = 0;
decomp_dims[0] = 1; decomp_dims[1] = 0; decomp_dims[2] = -1;
da = align(decomp, numdims, array_dims, sizeinfo, int_gcells,

ext_gcells_left, ext_gcells_right, extra_flag, decomp_dims);

1.3 Loop Bound Adjustment Primitives

distribute() assigns a range of indices to each processor for each dimension of a decom-
position, and align() then maps the elements of a distributed array to the decomposition

13

elements. Therefore, when a loop traverses a range of indices for a distributed array, that
range may be distributed over several processors. For each processor, the start and end of
the local range being traversed depends on the portion of the array residing on the pro-
cessor, on the global range being traversed and on the stride. The functions lalbnd() and
laubnd() compute and return the local start and stop index values for each processor, for
the common situation in which

• the loop has a left hand side distributed array reference indexed by a loop iteration
variable, and

• the “owner computes” rule is being used to assign computations to processors.

1.3.1 lalbnd()

Synopsis

int lalbnd(dArray, dim, start, stride)

Parameter Declarations

DARRAY *dArray pointer to distributed array descriptor

int dim array dimension being traversed. Numbering follows the C convention (i.e. 0
to N-1 where N = number of dimensions in the distributed array)

int start the (global) start of the range being traversed

int stride distance between elements, positive means counting up, negative means count-
ing down

Return Value

an integer corresponding to the (local) start index of the range

Example

See the example in Section 1.3.2.

1.3.2 laubnd()

Synopsis

int laubnd(dArray, dim, stop, stride)

14

Parameter Declarations

DARRAY *dArray pointer to distributed array descriptor

int dim array dimension being traversed. Numbering follows the C convention (i.e. 0
to N-1 where N = number of dimensions in the distributed array)

int stop the (global) end of the range being traversed

int stride distance between elements, positive means counting up, negative means count-
ing down

Return Value

an integer corresponding to the (local) last index of the range

Example

Assume that da has already been created, as in Example 1 from Section 1.2.7. The
following example shows how lalbnd() and laubnd() are used to adjust the loop bounds
in the compute() routine from Figure 3.

for(j=lalbnd(da, 1, 1, 1); j<=laubnd(da, 1, size2-2, 1); j++){
for(i=lalbnd(da, 0, 1, 1); i<=laubnd(da, 0, size1-2, 1); i++){
deltaw[i][j] =

}
}

1.4 Communication Primitives

Two types of primitives for building communication schedules are provided. The ghost-
FillSched() variants and exchSched() are used for updating the internal ghost cells for a dis-
tributed array, while subArraySched() is used to move regular sections between distributed
arrays (or within the same distributed array). The primitives also save the schedules in
hash tables, so that the same schedule does not have to be computed more than once. If
the required schedule is already available in the hash table, the primitives return a pointer
to the existing schedule. Primitives for freeing the storage used by a schedule once it is no
longer needed are described in Section 1.5.

1.4.1 ghostFillSched()

ghostFillSched() computes a schedule describing the data motion necessary to fill in a set
of overlap/ghost cells for a distributed array with “ndims” dimensions. The physical char-
acteristics and distribution of the array (i.e. number of dimensions, local dimension size,

15

number of ghost cells in each dimension, distribution in each dimension, etc.) are described
by the data structure pointed to by the parameter “dArrayPtr”. The parameter “fillVec”,
of length “ndims”, describes the overlap cells to be filled, and represents the offsets in each
dimension of a reference to the distributed array. This routine only fills in exactly the cells
asked for, not all the possible permutations. For this routine, given a block distributed
array, a processor sends to (at most) one other processor and receives from (at most) one
other processor.

Synopsis

SCHED *ghostFillSched(dArrayPtr, ndims, fillVec)

Parameter declarations

DARRAY *dArrayPtr pointer to the distributed array descriptor

int ndims the number of dimensions of the distributed array , and the length of fillVec

int fillVec[ndims] the offset vector describing the ghost cells to be filled. The magni-
tude of the offset vector in a dimension determines the number of ghost cells filled.
A positive value in a dimension means high indices are filled and a negative value
means low indices are filled.

Return value

pointer to a structure of type SCHED that describes the necessary data motion, which
can be used by the DataMove() primitives

Example

Consider the assignment statement to array deltaw in line 9 from the routine compute()
shown in Figure 3. Assume the distributed array descriptor has already been created,
by the code shown in Example 1 from Section 1.2.7. da is passed to compute() as a
parameter and describes the distribution of w and deltaw. Off-processor fetches are
required to satisfy the references to w[i+1][j], w[i][j+1] and w[i+1][j+1] on the right
hand side of the assignment. The following example shows how calls to the primitives
ghostFillSched() and fDataMove() perform the communication necessary to ensure that
the appropriate values are placed in the ghost cells of w. fDataMove(), which is discussed
in detail in Section 1.4.6, uses a schedule produced by ghostFillSched() to perform the
actual communication.

fillVec[0] = 1; fillVec[1] = 0;
sched1 = ghostFillSched(da, 2, fillVec);
fillVec[0] = 0; fillVec[1] = 1;
sched2 = ghostFillSched(da, 2, fillVec);

16

fillVec[0] = 1; fillVec[1] = 1;
sched3 = ghostFillSched(da, 2, fillVec);
fDataMove(w, sched1, w);
fDataMove(w, sched2, w);
fDataMove(w, sched3, w);

for(j=lalbnd(da, 1, 1, 1); j<=laubnd(da, 1, size2-2, 1); i++){
for(i=lalbnd(da, 0, 1, 1); i<=laubnd(da, 0, size1-2, 1); i++){

deltaw[i][j] = k * (w[i+1][j] - w[i][j]) +
l * (w[i][j+1] - w[i][j]) +
m * w[i+1][j+1];

}
}

1.4.2 ghostFillSpanSched()

ghostFillSpanSched() computes a schedule describing the data motion necessary to fill in a
set of overlap/ghost cells for a distributed array with “ndims” dimensions. The physical
characteristics and distribution of the array (i.e. number of dimensions, local dimension
size, number of ghost cells in each dimension, distribution in each dimension, etc.) are
described by the data structure pointed to by the parameter “dArrayPtr”. The parameter
“fillVec”, of length “ndims”, describes the overlap cells to be filled, and represents the offsets
in each dimension of a reference to the distributed array. This routine fills in all the possible
permutations of ghost cells asked for (i.e. fill the ghost cells corresponding to all spanning
vectors of fillVec). For this routine, given a block distributed array, a processor may both
send to and receive from multiple other processors.

Invoking this routine is equivalent to invoking ghostFillSched() once for each spanning
vector, and merging all the returned schedules. For example, an array reference A[i+1][j-
1][k+2] would require a fill vector of [1 -1 2] to fill all the required ghost cells. This routine
fills in all the possible permutations of ghost cells asked for (e.g. all face, edge and corner
ghost cells of the part of the three dimensional distributed array on a given processor are
filled). For this example, the spanning vectors are [1 -1 0], [1 0 2] and [0 -1 2] for the faces,
[1 0 0], [0 -1 0] and [0 0 2] for the edges, and [1 -1 2] for the corner.

Synopsis

SCHED *ghostFillSpanSched(dArrayPtr, ndims, fillVec)

Parameter declarations

17

DARRAY *dArrayPtr pointer to the distributed array descriptor

int ndims the number of dimensions of the distributed array, and the length of fillVec

int fillVec[ndims] the offset vector describing the ghost cells to be filled. The magni-
tude of the offset vector in a dimension determines the number of ghost cells filled.
A positive value in a dimension means high indices are filled and a negative value
means low indices are filled.

Return value

pointer to a structure of type SCHED that describes the necessary data motion, which
can be used by the DataMove() primitives

Example

Consider the same example as in Section 1.4.1. Off-processor fetches are required to
satisfy the references to w[i+1][j], w[i][j+1] and w[i+1][j+1] on the right hand side of
the assignment. The following example shows how the three calls to ghostFillSched(),
one for each reference, can be replaced by one call to ghostFillSpanSched().

fillVec[0] = 1; fillVec[1] = 1;
sched1 = ghostFillSched(da, 2, fillVec);
fDataMove(w, sched1, w);

for(j=lalbnd(da, 1, 1, 1); j<=laubnd(da, 1, size2-2, 1); i++){
for(i=lalbnd(da, 0, 1, 1); i<=laubnd(da, 0, size1-2, 1); i++){
deltaw[i][j] = k * (w[i+1][j] - w[i][j]) +

l * (w[i][j+1] - w[i][j]) +
m * w[i+1][j+1];

}
}

1.4.3 ghostFillAllSched()

ghostFillAllSched() computes a schedule describing the data motion necessary to fill in
all of the overlap/ghost cells for a distributed array (as declared with the call to align()
that returned “dArrayPtr”). The physical characteristics and distribution of the array
(i.e. number of dimensions, local dimension size, number of ghost cells in each dimension,
distribution in each dimension, etc.) are described by the data structure pointed to by the
parameter “dArrayPtr”. For this routine, given a block distributed array, a processor may
both send to and receive from multiple other processors.

18

Invoking this routine is equivalent to invoking ghostFillSched() once for each ghost cell
region, and merging all the returned schedules. For example, a two dimensional distributed
array has eight such regions, corresponding to the edges and corners of the two dimensional
part of the array assigned to each processor. Assuming that the distributed array has
been declared with one internal ghost cell in each dimension, the fill vector arguments for
ghostFillSched() for all the regions are [1 0], [0 1], [-1 0], [0 -1] for the edges and [1 1], [1
-1], [-1 1], [-1 -1] for the corners.

Synopsis

SCHED *ghostFillAllSched(dArrayPtr)

Parameter declarations

DARRAY *dArrayPtr pointer to the distributed array descriptor

Return value

pointer to a structure of type SCHED that describes the necessary data motion, which
can be used by the DataMove() primitives

1.4.4 exchSched()

exchSched() computes a schedule describing the data motion necessary to update (from
other processors) internal ghost cells along the given dimension of the distributed array.
The physical characteristics and distribution of the array (i.e. number of dimensions, local
dimension size, number of ghost cells in each dimension, distribution in each dimension,
etc.) are described by the data structure pointed to by the parameter “dArrayPtr”. The
parameter “fill” controls the number of ghost cells being updated and whether these cells
are filled at the lower or upper indices of the given array dimension. A call exchSched(dA,
dim, fill) is equivalent to a call to ghostFillSched() with a fill vector of all zeros, except in
dimension “dim”, which would have the value “fill”.

Synopsis

SCHED *exchSched(dArrayPtr, dim, fill)

Parameter declarations

DARRAY *dArrayPtr pointer to the distributed array descriptor

int dim the dimension of the distributed array whose ghost cells are being updated.
Numbering follows the C convention (i.e. 0 to N-1 where N = number of dimensions)

19

int fill the number of ghost cells being updated. A positive value means high indices
and a negative value means low indices are filled.

Return value

pointer to a structure of type SCHED that describes the necessary data motion, which
can be used by the DataMove() primitives

Example

Consider the same example as in Section 1.4.1. Off-processor fetches are required to
satisfy the references to w[i+1][j], w[i][j+1] and w[i+1][j+1] on the right hand side of
the assignment. The fetches for the first two references, to w[i+1][j] and w[i][j+1], could
be satisfied by calls to exchSched(), as shown below. fDataMove(), which is discussed in
detail in Section 1.4.6, uses a schedule produced by exchSched() to perform the actual
communication.

sched1 = exchSched(da, 0, 1);
sched2 = exchSched(da, 1, 1);
fillVec[0] = 1; fillVec[1] = 1;
sched3 = ghostFillSched(da, 2, fillVec);
fDataMove(w, sched1, w);
fDataMove(w, sched2, w);
fDataMove(w, sched3, w);

for(j=lalbnd(da, 1, 1, 1); j<=laubnd(da, 1, size2-2, 1); i++){
for(i=lalbnd(da, 0, 1, 1); i<=laubnd(da, 0, size1-2, 1); i++){

deltaw[i][j] = k * (w[i+1][j] - w[i][j]) +
l * (w[i][j+1] - w[i][j]) +
m * w[i+1][j+1];

}
}

1.4.5 subArraySched()

subArraySched() creates a schedule describing the data motion necessary to move an arbi-
trary multi-dimensional chunk of a source distributed array to a multi-dimensional chunk of
a destination distributed array, allowing data rotation and strides. The indices of the source
and destination arrays should be given in global terms, as in the corresponding sequential
program. The strides must be greater than zero. In a given dimension of either the source
or destination array, if the range start index is greater than the end index, the stride counts
backwards through the indices. The source and destination arrays are not required to have

20

the same number of dimensions. If the arrays do not have the same number of dimensions,
then the extra dimensions of the array with fewer dimensions should specify -1 as the di-
mension number, and the values of the other parameters for the array in that dimension
are ignored. For example, if the source array has two dimensions and the destination array
has three dimensions, then srcDims[2] should be -1 (and srcLos[2], srcHis[2], srcStrides[2]
don’t matter), and the dimension specified by destDims[2] should contain one element (i.e.
destLos[2] = destHis[2]).

Synopsis

SCHED *subArraySched(srcDArray, destDArray, numDims,
srcDims, srcLos, srcHis, srcStrides,
destDims, destLos, destHis, destStrides)

Parameter Declarations

DARRAY *srcDArray pointer to the distributed array descriptor describing the source

DARRAY *destDArray pointer to the distributed array descriptor describing the
destination

int numDims the number of dimensions in the source and destination arrays

int srcDims[numDims] dimension numbers in the source

int srcLos[numDims] start of the range in the source for each dimension

int srcHis[numDims] end of the range in the source for each dimension

int srcStrides[numDims] stride in the source for each dimension

int destDims[numDims] dimension numbers in the destination

int destLos[numDims] start of the range in the destination for each dimension

int destHis[numDims] end of the range in the destination for each dimension

int destStrides[numDims] stride in the destination for each dimension

Return Value

pointer to a structure of type SCHED that describes the necessary data motion, which
can be used by the DataMove() primitives

Example

Consider the routine copySegment() shown in Figure 2. Assume the distributed array
descriptors sDA and dDA describe the distribution of src and dest, respectively, and
are passed to copySegment(), along with the rest of the parameters shown in Figure 2
(sVal, sLo, sHi, dVal, dLo, dHi, etc.). The following example shows how the copies
to and from tmp are replaced by calls to the primitives exchSched() and DataMove().

21

These primitives perform the communication necessary to copy the source segment to
the destination segment. fDataMove(), which is discussed in detail in Section 1.4.6, uses
the schedule produced by subArraySched() to perform the actual communication.

numdims = 2;
sDims[0] = 0; sDims[1] = 1;
sStrides[0] = 1; sStrides[1] = 1;
if (sDim == 0) {

sLos[0] = sVal; sHis[0] = sVal;
sLos[1] = sLo; sHis[1] = sHi;

}
else {

sLos[0] = sLo; sHis[0] = sHi;
sLos[1] = sVal; sHis[1] = sVal;

}

dDims[0] = 0; dDims[1] = 1;
dStrides[0] = 1; dStrides[1] = 1;
if (dDim == 0) {

dLos[0] = dVal; dHis[0] = dVal;
dLos[1] = dLo; dHis[1] = dHi;

}
else {

dLos[0] = dLo; dHis[0] = dHi;
dLos[1] = dVal; dHis[1] = dVal;

}

sched = subArraySched(sDA, dDA, numdims,
sDims, sLos, sHis, sStrides,
dDims, dLos, dHis, dStrides);

fDataMove(src,sched,dest);

1.4.6 dDataMove(), iDataMove(), fDataMove(), cDataMove()

The DataMove() primitives take a schedule produced by one of the ghostFillSched() variants
or subArraySched(), along with pointers to the source data and the destination data (not to
the distributed array descriptors created by align()) and perform the data motion. For the
DataMove() routines to work properly, the storage allocated on a processor for its part of
the distributed array must be contiguous (i.e. without holes), because the routines treat the
local storage as a linear address space. For the same reason, the local storage must be the

22

“right” size for each processor. The correct local size can be obtained using the laSizes()
routine described in Section 1.5.1.

Synopsis

void PREFIXDataMove(srcPtr, schedPtr, destPtr)
PREFIX can be d (double precision), i (integer) , f (floating point) or c (character).

Parameter Declarations

SCHED *schedPtr pointer to the schedule describing the required data motion

type *srcPtr pointer to the source data array

type *destPtr pointer to the destination data array

Return Value

none

Example

See the examples in Sections 1.4.4 and 1.4.5.

1.5 Memory Management Primitives

1.5.1 laSizes()

laSizes() computes the local size in each dimension for a distributed array described by
“dArray” (including all ghost cells on the processor) and returns them in array “sizes”.
This routine is used for memory allocation (e.g. using malloc()), to provide the exact local
size of a distributed array on a processor, including the locally owned portion of the array
and both external and internal ghost cells.

Synopsis

void laSizes(dArray, sizes)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int sizes[numDims] the local size for each dimension of the array - numDims is the
number of dimensions of the array

23

Return Value

none

1.5.2 free sched()

free sched() frees the storage allocated for a schedule by either exchSched() or subAr-
raySched(). In addition, the schedule is removed from the hash table that stores schedules
for reuse.

Synopsis

void free sched(sched)

Parameter Declarations

SCHED *sched pointer to the schedule

Return Value

none

1.5.3 remove exch scheds()

remove exch scheds() frees the storage allocated for all schedules created by calls to exchSched(),
either since the beginning of program execution or since the last call to remove exch scheds().
The routine also clears the hash table of all the freed schedules. After a call to this routine,
pointers to schedules previously created by exchSched() are invalid.

Synopsis

void remove exch scheds()

Parameter Declarations

none

Return Value

none

24

1.5.4 remove subarray scheds()

remove subarray scheds() frees the storage allocated for all schedules created by calls to
subArraySched(), either since the beginning of the program execution or since the last call
to remove subarray scheds(). The routine also clears the hash table of all the freed schedules.
After a call to this routine, pointers to schedules previously created by subArraySched() are
invalid.

Synopsis

void remove subarray scheds()

Parameter Declarations

none

Return Value

none

1.6 Miscellaneous Primitives

1.6.1 gLBnd()

As explained in Section 1.3, when a dimension of an array is distributed over several proces-
sors each processor is responsible for a subrange of the indices in that dimension. gLBnd()
computes and returns the lower bound of the range of locally stored global indices. gLBnd()
returns an out of bounds index (e.g. -1) if the processor does not own part of the array.

Synopsis

int gLBnd(dArray, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int dim the array dimension being queried

Return Value

an integer corresponding to the lower bound of the range of global indices stored locally

25

Example

Suppose the one dimensional array A, with distributed array descriptor dA, has 20 ele-
ments (numbered from 0 to 19) and is distributed by “block” over 4 processors (numbered
from 0 to 3). A call gLBnd(dA, 0) from processor 0 would return the value 0 since this
processor is responsible for global indices 0 to 4. Similarly, a call gLBnd(dA, 0) from
processor 3 would return the value 15.

1.6.2 gUBnd()

gUBnd() is similar to gLBnd(), as described in Section 1.6.1. However, this primitive returns
the upper bound of the range of locally stored global indices. gUBnd() returns an out of
bounds index (e.g. -1) if the processor does not own part of the array.

Synopsis

int gUBnd(dArray, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int dim the array dimension being queried

Return Value

an integer corresponding to the upper bound of the range of global indices stored locally

Example

As in Section 1.6.1, suppose array A, with distributed array descriptor dA, has 20 ele-
ments distributed by “block” over 4 processors, with no ghost cells. A call gUBnd(dA,
0) from processor 0 would return the value 4 since this processor is responsible for global
indices 0 to 4. Similarly, a call gUBnd(dA, 0) from processor 3 would return the value
19.

1.6.3 globalToLocal()

globalToLocal() converts a global distributed array index in a given dimension into the
corresponding local index in that dimension, returning -1 if the processor does not own that
index.

26

Synopsis

int globalToLocal(dArray, gIndex, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int gIndex the global index value whose local value is being computed

int dim the array dimension being queried

Return Value

an integer representing the local index value of gIndex, or -1 if the processor does not
own the index

Example

Consider again the example from Section 1.6.1. The values of A[15] to A[19] are stored
locally on processor 3 as A[0] to A[4]. The call globalToLocal(dA, 16, 0) on processor 3
converts global distributed array index 16 in dimension 0 into the local index 1. On any
other processor (0, 1, or 2), the same call would return -1, indicating that the processor
does not own that index.

1.6.4 globalToLocalWithGhost()

globalToLocalWithGhost() converts a global distributed array index in a given dimension
into the corresponding local index in that dimension, returning -1 if the processor both
does not own that index and does not have a copy of the global index as an internal ghost
cell. Unlike globalToLocal(), this routine will return a local index corresponding to an
internal ghost cell.

Synopsis

int globalToLocalWithGhost(dArray, gIndex, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int gIndex the global index value whose local value is being computed

int dim the array dimension being queried

Return Value

27

an integer representing the local index value of gIndex, or -1 if the processor both does
not own the index and does not have a copy of the global index as an internal ghost cell

Example

Consider again the example from Section 1.6.1, but assume that distributed array A has
been specified to have one internal ghost cell (on both ends). The values of A[15] to A[19]
are stored locally on processor 3 as A[1] to A[5]. In addition, a copy of the value of A[14]
can be stored on processor 3 in internal ghost cell A[0]. The call globalToLocalWith-
Ghost(dA, 16, 0) on processor 3 converts global distributed array index 16 in dimension
0 into the local index 2. On any other processor (0, 1, or 2), the same call would return
-1, indicating that the processor neither owns that index nor has an internal ghost cell
corresponding to that index. On the other hand, the call globalToLocalWithGhost(dA,
15, 0) on processor 3 returns local index 1, and on processor 2 returns local index 6 (the
index of the high end internal ghost cell). On processors 0 and 1, the call returns -1.

1.6.5 localToGlobal()

localToGlobal() converts a local distributed array index in a given dimension into the cor-
responding global index in that dimension. If the local index does not correspond to a
distributed array element (e.g. a ghost cell), localToGlobal() returns -1.

Synopsis

int localToGlobal(dArray, lIndex, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int lIndex the local index value whose global value is being computed

int dim the array dimension being queried

Return Value

an integer representing the global index value of lIndex, or -1 if lIndex does not correspond
to a distributed array element owned by the processor

Example

Again consider the example from Section 1.6.1. The values of A[15] to A[19] are stored
locally on processor 3 as A[0] to A[4]. The call localToGlobal(dA, 1, 0) on processor 3
converts local distributed array index 1 in dimension 0 into the global index 16.

28

1.6.6 localToGlobalWithGhost()

localToGlobalWithGhost() converts a local distributed array index in a given dimension into
the corresponding global index in that dimension. If the local index does not correspond
to a distributed array element or an internal ghost cell (e.g. an out of range index), local-
ToGlobalWithGhost() returns -1. Unlike localToGlobal(), this routine will return a global
index for a local internal ghost cell.

Synopsis

int localToGlobalWithGhost(dArray, lIndex, dim)

Parameter Declarations

DARRAY *dArray pointer to the distributed array descriptor

int lIndex the local index value whose global value is being computed

int dim the array dimension being queried

Return Value

an integer representing the global index value of lIndex, or -1 if lIndex is not a valid local
index

Example

Consider again the example from Section 1.6.1, but assume that distributed array A
has been specified to have one internal ghost cell (on both ends). The values of A[15]
to A[19] are stored locally on processor 3 as A[1] to A[5]. In addition, a copy of the
value of A[14] can be stored on processor 3 in internal ghost cell A[0]. The call local-
ToGlobalWithGhost(dA, 2, 0) on processor 3 converts local distributed array index 2 in
dimension 0 into the global index 16. Similarly, the call localToGlobalWithGhost(dA,
0, 0) on processor 3 converts the index of the internal ghost cell into global index 14.
However, on processor 0 the same call will return -1, since that internal ghost cell does
not correspond to any global index.

29

2 Calling the primitives from Fortran

This section describes each of the Fortran multiblock primitives. The primitives are divided
into five categories: declarations, loop-bound adjustment, communication, memory manage-
ment, and a group of miscellaneous primitives. These primitives are described, respectively,
in Sections 2.1, 2.2, 2.3, 2.4 and 2.5. To help in our explanation we will present a very
simple example of a multiblock code that will be referred to in the following sections. Some
of the Fortran primitives differ slightly in their calling sequences from the corresponding C
version.

A Fortran version of the code presented in Section 1 is shown in Figures 4, 5, 6 and 7. We
now present the Fortran version of the multiblock primitives.

2.1 Declaration Primitives

2.1.1 fvproc()

fvproc() creates a virtual processor space. This virtual processor space can be thought of
as a type of “father” decomposition that encompasses the entire problem space and all
available processors. The virtual processor space in dimension i is numbered from 1 to
sizes(i).

Synopsis

subroutine fvproc(vp, numDims, sizes)

Parameter Declarations

integer vp reference to the virtual processor space created

integer numDims number of dimensions in the virtual processor space. Currently
only one dimensional virtual processor spaces are supported.

integer sizes(numDims) sizes of all the dimensions

Return Value

none

Example

Consider the initialization loop (loop 10) in Figure 4. We would like to create a virtual
processor space representing the entire problem space (i.e. all blocks). The following
code show how to use the sizes of the blocks to calculate the size of the entire problem
space and calls fvproc() to create a corresponding virtual processor space.

30

1 program main
2 c
3 parameter (mxbloc = 10)
4 parameter (mxsize = 10000)
5 integer numBlocks, numIters
6 integer size1(mxbloc), size2(mxbloc),
7 integer bptr(mxbloc), imap(mxsize)
8 dimension w(mxsize), deltaw(mxsize)
9 c
10 read (5,*) numBlocks, numIters
11 do 10 ibloc=1, numBlocks
12 read (5,*) size1(ibloc), size2(ibloc)
13 10 continue
14 c
15 call readMap(imap)
16 bptr(1) = 1
17 do 20 i = 2, numBlocks
18 bptr(i) = bptr(i-1) + (size1(i-1)+2)*(size2(i-1)+2)
19 20 continue
20 c
21 do 40 iter=1, numIters
22 call fillBCells(w, imap, bptr, iter, size1, size2)
23 c
24 do 30 ibloc=1, numBlocks
25 call compute(w(bptr(ibloc)), deltaw(bptr(ibloc)),
26 $ size1(ibloc)+2, size2(ibloc)+2)
27 30 continue
28 40 continue
29 stop
30 end

Figure 4: Fortran multiblock code - main program

31

1 subroutine fillBCells(w, imap, bptr, dBloc, size1, size2)
2 integer imap(mxsize), bptr(mxbloc)
3 integer dBloc, size1(mxbloc), size2(mxbloc)
4 dimension w(mxsize)
5 c
6 nsegs = imap(1)
7 i = 2
8 do 50 iseg = 1,nsegs
9 dDim = imap(i)
10 dVal = imap(i+1)
11 dLo = imap(i+2)
12 dHi = imap(i+3)
13 sDim = imap(i+4)
14 sVal = imap(i+5)
15 sLo = imap(i+6)
16 sHi = imap(i+7)
17 sBloc = imap(i+8)
18 call copySegment(
19 $ w(bptr(dBloc)),dDim,dVal,dLo,dHi,size1(dBloc),size2(dBloc),
20 $ w(bptr(sBloc)),sDim,sVal,sLo,sHi,size1(sBloc),size2(sBloc))
21 i = i+9
22 50 continue

Figure 5: Fortran multiblock code - fillBCells subroutine

32

1 subroutine copySegment(dest,dDim,dVal,dLo,dHi,dSize1,dSize2
2 $ src, sDim,sVal,sLo,sHi,sSize1,sSize2)
3 integer dDim, dVal, dLo, dHi, dSize1, dSize2
4 integer sDim, sVal, sLo, sHi, sSize1, sSize2
5 dimension src(sSize1,sSize2), dest(dSize1,dSize2), tmp(100)
6 c
7 c copy src to tmp
8 cnt = 1
9 if (sDim .eq. 1) then
10 do 60 j=sLo, sHi
11 tmp(cnt) = src(sVal,j)
12 cnt = cnt + 1
13 60 continue
14 else
15 do 70 i=sLo, sHi
16 tmp(cnt) = src(i,sVal)
17 cnt = cnt + 1
18 70 continue
19 endif
20 c
21 c copy tmp to dest
22 cnt = 1
23 if (dDim .eq. 1) then
24 do 80 j=dLo, dHi
25 dest(dVal,j) = tmp(cnt)
26 cnt = cnt + 1
27 80 continue
28 else
29 do 90 i=dLo, dHi
30 dest(i,dVal) = tmp(cnt)
31 cnt = cnt + 1
32 90 continue
33 endif

Figure 6: Fortran multiblock code - copySegment subroutine

33

1 subroutine compute(w, deltaw, size1, size2)
2 dimension w(size1, size2), deltaw(size1, size2)
3 integer size1, size2
4 integer i, j, k, l, m
5
6 do 100 j=2, size2-1
7 do 100 i=2, size1-1
8 deltaw(i,j) = k * (w(i+1,j) - w(i,j)) +
9 $ l * (w(i,j+1) - w(i,j)) +
10 $ m * w(i+1,j+1)
11 100 continue
12 end

Figure 7: Fortran multiblock code - compute subroutine

totalSize(1) = 0
do 10 ibloc=1, numBlocks

read (5,*) size1(ibloc), size2(ibloc)
totalSize(1) = totalSize(1) + (size1(ibloc) * size2(ibloc))

10 continue
call fvproc(vp, 1, totalSize)

2.1.2 fdecomp()

fdecomp() creates a new decomposition with “numDims” dimensions. The size for each
dimension is given by the array “sizes”.

Synopsis

subroutine fdecomp(decomp, numDims, sizes)

Parameter Declarations

integer decomp reference to the decomposition created

integer numDims number of dimensions in decomposition

integer sizes(numDims) size of the decomposition in each dimension

Return Value

none

34

Example

The following example uses the code from Section 2.1.1 and shows how decompositions
are created for each block.

totalSize(1) = 0
do 10 ibloc=1, numBlocks

read (5,*) size1(ibloc), size2(ibloc)
totalSize(1) = totalSize(1) + (size1(ibloc) * size2(ibloc))
sizeinfo(1) = size1(ibloc)
sizeinfo(2) = size2(ibloc)
call fdecomp(decomp(ibloc), 2, sizeinfo)

10 continue
call fvproc(vp, 1, totalSize)

2.1.3 fembed()

fembed() embeds a decomposition into a subset of the virtual processor space. This primitive
allocates a subset of all available processors to the decomposition and decides the physical
identity of these processors (i.e. processor number). This primitive should always be called
before fdistribute(), which needs to know how many processors have been allocated to the
decomposition. Currently, fembed() only works for one dimensional virtual processor spaces.

Synopsis

subroutine fembed(decomp, vproc, startPosn, endPosn)

Parameter Declarations

integer decomp reference to the decomposition

integer vproc reference to the virtual processor space (currently, must be one dimen-
sional)

integer startPosn start position in the virtual processor space

integer endPosn end position in the virtual processor space

Return Value

none

Example

35

Assume a virtual processor space and a number of decompositions have already been
created, as shown in the example from Section 2.1.2. The following example shows how
the decomposition corresponding to each block is embedded into the virtual processor
space.

startPosn = 1
do 20 i=1, numBlocks

endPosn = startPosn + (size1(i) * size2(i)) - 1
call fembed(decomp(i), vp, startPosn, endPosn)
startPosn = endPosn + 1

20 continue

2.1.4 fdistribute()

fdistribute() allows the user to specify the type of distribution for each dimension of a
specified decomposition. This routine determines how the dimensions of the decomposition
are mapped to the set of virtual processors specified by fembed(). If fembed() has not been
used to specify a set of virtual processors for the decomposition, fdistribute() assumes that
the decomposition is mapped to all processors. While fdistribute() can, in general, deal with
a broad range of distributions (e.g. block, cyclic, block cyclic, undistributed and irregular),
currently only block and undistributed are implemented.

Synopsis

subroutine fdistribute(decomp, dist)

Parameter Declarations

integer decomp reference to the decomposition

integer dist an array of N integers , where N is the number of dimensions in the
decomposition. Each integer can have one of the following 3 values

0 Undistributed
1 Block distribution
2 Cyclic distribution (not yet implemented)

Return Value

none

Example

36

Using the subset of code from Section 2.1.3, we add a call to fdistribute() in the loop to
specify that the distribution for each decomposition is “block” in the first and second
dimensions.

startPosn = 1
do 20 i=1, numBlocks

endPosn = startPosn + (size1(i) * size2(i)) - 1
call fembed(decomp(i), vp, startPosn, endPosn)
startPosn = endPosn + 1
dist(1) = 1
dist(2) = 1
call fdistribute(decomp(i), dist)

20 continue

2.1.5 ifsection()

Irregular block distributions can be handled with the section() call, which creates all the
partitions for all the dimensions of an irregular block decomposition at once.

Synopsis

integer ifsection(decomp, dim, cnt, idx)

Parameter Declarations

integer decomp pointer to the decomposition

integer dim(ndims) the dimensions to split

integer cnt(ndims) the number of partitions to create in each dimension

integer idx(ndims)(cnt(ndims)) the limiting upper index of each partition for each
dimension

Return Value

the number of blocks created

37

2.1.6 ifpartition()

Irregular block distributions can also be created with the partition() call, which is used to
recursively partition each dimension, one at a time. This allows remaining, unpartitioned
dimensions to be partitioned differently. For example, if the first dimension is partitioned
into two sections, partition() can then be called to partition the second dimension of the
first section into two sections and called again to partition the second dimension of the
second section into three sections. The parameter blk is used to indicate which section (or
block) of each dimension is to be partitioned on a particular call.

Synopsis

integer ifpartition(decomp, dim, blk, cnt, idx)

Parameter Declarations

integer decomp pointer to the decomposition
integer dim the dimension to split
integer blk(ndims) the block to split
integer cnt the number of partitions to create
integer idx(cnt) the limiting upper index of each partition

Return Value

the number of partitions created

2.1.7 ifalign()

ifalign() is used to map arrays onto a decomposition and create distributed array descriptors.
The following parameters are associated with each array dimension: the size, the number
of internal ghost cells, the number of external ghost cells at the beginning and end of
each dimension, a flag for determining where to put extra data points in case the size of
the dimension is not evenly divisible by the number of processors, and the decomposition
dimension to which it is aligned. Internal ghost cells are those required because the data
set is divided among multiple processors. External ghost cells are a part of the user-defined
distributed array that are specific to the application. If a distributed array dimension will
not be aligned to any decomposition dimension, then the decomposition dimension should
be set to -1. This primitive creates a distributed array descriptor and stores it in a table.
ifalign() returns a reference to the newly created distributed array descriptor. All Fortran
primitives requiring distribution information (e.g. ifexch sched(), iflalbnd(), iflaubnd(),
etc.) use the reference to access the appropriate distributed array descriptor.

38

Synopsis

integer ifalign(decomp, numDims, sizes, int gcells,
ext gcells left, ext gcells right, extra flag, decompDims)

Parameter Declarations

integer decomp reference to the decomposition to which the array is being aligned

integer numDims number of dimensions of the array

integer sizes(numDims) the sizes of the array in each dimension (including external
ghost cells)

integer int gcells(numDims) the number of internal ghost cells in each dimension

integer ext gcells left(numDims) the number of external ghost cells at the begin-
ning in each dimension

integer ext gcells right(numDims) the number of external ghost cells at the end in
each dimension

integer extra flag(numDims) where to put extra data items if the array size is not
evenly divisible by number of processors assigned to a dimension

0 : default (same as option 4)
1 : All on leftmost processor (the lowest numbered processor in the dimension)
2 : All on rightmost processor (the highest numbered processor in the dimension)
3 : Split equally between leftmost and rightmost processors (if an odd number the

extra one is on the leftmost)
4 : Split equally between leftmost and rightmost processors (if an odd number the

extra one is on the rightmost)

integer decompDims(numDims) the decomposition dimensions to which array di-
mensions are aligned. decompDims(i) should be −1 if dimension i is not aligned to
any dimension of the decomposition.

Return Value

reference to a distributed array descriptor that can be used as an argument to the
schedule generating primitives described in Section 2.3

Example

Consider the example from Section 2.1.4. For each block we call ifalign(), which creates
a distributed array descriptor for a two dimensional array whose size in each dimension
is the size of the block plus two (one external ghost cell on both the left and the right in
each dimension), and that has one internal ghost cell in each dimension. If the number of
data items in a distributed array dimension is not divisible by the number of (physical)
processors assigned to that dimension (by the fdistribute() primitive), the extra flag for

39

each dimension is set so that any extra data items are split between the leftmost and
rightmost processors of that dimension (with an extra data item possibly located on the
rightmost processor).

startPosn = 1
do 20 ibloc=1, numBlocks

endPosn = startPosn + (size1(ibloc) * size2(ibloc))
call fembed(decomp(ibloc), vp, startPosn, endPosn)
startPosn = endPosn + 1
dist(1) = 1 dist(2) = 1
call fdistribute(decomp(ibloc), dist)
numdims = 2
sizeinfo(1) = size1(ibloc)+2 sizeinfo(2) = size2(ibloc)+2
int_gcells(1) = 1 int_gcells(2) = 1
ext_gcells_left(1) = 1 ext_gcells_left(2) = 1
ext_gcells_right(1) = 1 ext_gcells_right(2) = 1
extra_flag(1) = 0 extra_flag(2) = 0
decomp_dim(1) = 1 decomp_dim(2) = 2
da(ibloc) = ifalign(decomp(ibloc), numdims, sizeinfo, int_gcells,

$ ext_gcells_left, ext_gcells_right, extra_flag, decomp_dim)
20 continue

2.2 Loop Bound Adjustment Primitives

fdistribute() assigns a range of indices to each processor for each dimension of a decompo-
sition, and ifalign() then maps the elements of a distributed array to the decomposition
elements. Therefore, when a loop traverses a range of indices for a distributed array, that
range may be distributed over several processors. For each processor, the start and end of
the local range being traversed depends on the portion of the array residing on the pro-
cessor, on the global range being traversed and on the stride. The functions iflalbnd() and
iflaubnd() compute and return the local start and stop index values for each processor, for
the common situation in which

• the loop has a left hand side distributed array reference indexed by a loop iteration
variable, and

• the “owner computes” rule is being used to assign computations to processors.

2.2.1 iflalbnd()

Synopsis

40

integer iflalbnd(darray, dim, start, stride)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer dim array dimension being traversed. Numbering follows the Fortran conven-
tion (i.e. 1 to number of dimensions)

integer start the (global) start of the range being traversed

integer stride distance between elements, positive means counting up, negative means
counting down

Return Value

an integer corresponding to the (local) start index of the range

Example

See the example in Section 2.2.2.

2.2.2 iflaubnd()

Synopsis

integer iflaubnd(darray, dim, stop, stride)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer dim array dimension being traversed. Numbering follows the Fortran conven-
tion (i.e. 1 to number of dimensions)

integer stop the (global) end of the range being traversed

integer stride distance between elements, positive means counting up, negative means
counting down

Return Value

an integer corresponding to the (local) last index of the range

Example

The following example shows how iflalbnd() and iflaubnd() are used to adjust the loop
bounds in routine compute() from Figure 7. Assume that the distributed array descriptor
da has already been created, for either w or deltaw (since they have the same alignment),
as in the example from Section 2.1.7.

41

do 100 j=iflalbnd(da, 2, 2, 1), iflaubnd(da, 2, size2-1, 1)
do 100 i=iflalbnd(da, 1, 2, 1), iflaubnd(da, 1, size1-1, 1)

deltaw(i,j) =
100 continue

2.3 Communication Primitives

Two types of primitives for building communication schedules are provided. The ifghost-
fill sched variants and ifexch sched() are used for updating the internal ghost cells for a dis-
tributed array, while ifsubarray sched() is used to move regular sections between distributed
arrays (or within the same distributed array). The primitives also save the schedules in hash
tables, so that the same schedule does not have to be computed more than once. If the
required schedule is already available in the hash table, the primitives return a reference
to the existing schedule. Primitives for freeing the storage used by a schedule once it is no
longer needed are described in Section 2.4.

2.3.1 ifghostfill sched()

ifghostfill sched() computes a schedule describing the data motion necessary to fill in a set
of overlap/ghost cells for a distributed array with “ndims” dimensions. The parameter
“fillVec”, of length “ndims”, describes the overlap cells to be filled, and represents the
offsets in each dimension of a reference to the distributed array. This routine only fills in
exactly the cells asked for, not all the possible permutations. For this routine, given a block
distributed array, a processor sends to (at most) one other processor and receives from (at
most) one other processor.

Synopsis

integer ifghostfill sched(darray, ndims, fillVec)

Parameter declarations

integer darray reference to the distributed array descriptor

integer ndims the number of dimensions of the distributed array, and the length of
fillVec

integer fillVec(ndims) the offset vector describing the ghost cells to be filled. The
magnitude of the offset vector in a dimension determines the number of ghost cells
filled. A positive value in a dimension means high indices are filled and a negative
value means low indices are filled.

42

Return value

reference to a schedule that describes the necessary data motion, which can be used by
the fdata move() primitives

Example

Consider the assignment statement to array deltaw in line 8 from the routine compute()
shown in Figure 7. Assume the distributed array descriptor has already been created,
by the code shown in the example from Section 2.1.7. da is passed to compute() as
a parameter and describes the distribution of w and deltaw. Off-processor fetches are
required to satisfy the references to w(i+1,j), w(i,j+1) and w(i+1,j+1) on the right
hand side of the assignment. The following example shows how calls to the primitives
ifghostfill sched() and ffdata move() perform the communication necessary to ensure that
the appropriate values are placed in the ghost cells of w. ffdata move(), which is discussed
in detail in Section 2.3.6, uses a schedule produced by ghostFillSched() to perform the
actual communication.

fillVec(0) = 1; fillVec(1) = 0;
sched1 = ifghostfill_sched(da, 2, fillVec);
fillVec(0) = 0; fillVec(1) = 1;
sched2 = ifghostfill_sched(da, 2, fillVec);
fillVec(0) = 1; fillVec(1) = 1;
sched3 = ifghostfill_sched(da, 2, fillVec);
ffdata_move(w, sched1, w);
ffdata_move(w, sched2, w);
ffdata_move(w, sched3, w);

do 100 j=iflalbnd(da, 2, 2, 1), iflaubnd(da, 2, size2-1, 1)
do 100 i=iflalbnd(da, 1, 2, 1), iflaubnd(da, 1, size1-1, 1)

deltaw(i,j) = k * (w(i+1,j) - w(i,j)) +
$ l * (w(i,j+1) - w(i,j))
$ m * w(i+1,j+1)

100 continue

2.3.2 ifghostfillspan sched()

ifghostfillspan sched() computes a schedule describing the data motion necessary to fill in a
set of overlap/ghost cells for a distributed array with “ndims” dimensions. The parameter
“fillVec”, of length “ndims”, describes the overlap cells to be filled, and represents the offsets
in each dimension of a reference to the distributed array. This routine fills in all the possible

43

permutations of ghost cells asked for (i.e. fill the ghost cells corresponding to all spanning
vectors of fillVec). For this routine, given a block distributed array, a processor may both
send to and receive from multiple other processors.

Invoking this routine is equivalent to invoking ifghostfill sched() once for each spanning
vector, and merging all the returned schedules. For example, an array reference A(i+1,j-
1,k+2) would require a fill vector of [1 -1 2] to fill all the required ghost cells. This routine
fills in all the possible permutations of ghost cells asked for (e.g. all face, edge and corner
ghost cells of the part of the three dimensional distributed array on a given processor are
filled). For this example, the spanning vectors are [1 -1 0], [1 0 2] and [0 -1 2] for the faces,
[1 0 0], [0 -1 0] and [0 0 2] for the edges, and [1 -1 2] for the corner.

Synopsis

integer ifghostfillspan sched(darray, ndims, fillVec)

Parameter declarations

integer darray reference to the distributed array descriptor

integer ndims the number of dimensions of the distributed array, and the length of
fillVec

integer fillVec(ndims) the offset vector describing the ghost cells to be filled. The
magnitude of the offset vector in a dimension determines the number of ghost cells
filled. A positive value in a dimension means high indices are filled and a negative
value means low indices are filled.

Return value

reference to a schedule that describes the necessary data motion, which can be used by
the fdata move() primitives

Example

Consider the same example as in Section 2.3.1. Off-processor fetches are required to
satisfy the references to w(i+1,j), w(i,j+1) and w(i+1,j+1) on the right hand side of the
assignment. The following example shows how the three calls to ifghostfill sched(), one
for each reference, can be replaced by one call to ifghostfillspan sched().

fillVec(0) = 1; fillVec(1) = 1;
sched1 = ifghostfillspan_sched(da, 2, fillVec);
ffdata_move(w, sched1, w);

do 100 j=iflalbnd(da, 2, 2, 1), iflaubnd(da, 2, size2-1, 1)
do 100 i=iflalbnd(da, 1, 2, 1), iflaubnd(da, 1, size1-1, 1)

44

deltaw(i,j) = k * (w(i+1,j) - w(i,j)) +
$ l * (w(i,j+1) - w(i,j))
$ m * w(i+1,j+1)

100 continue

2.3.3 ifghostfillall sched()

ifghostfillall sched() computes a schedule describing the data motion necessary to fill in all
of the overlap/ghost cells for a distributed array (as declared with the call to ifalign() that
returned “darray”). The physical characteristics and distribution of the array (i.e. number
of dimensions, local dimension size, number of ghost cells in each dimension, distribution
in each dimension, etc.) are described by the data structure referred to by the parameter
“darray”. For this routine, given a block distributed array, a processor may both send to
and receive from multiple other processors.

Invoking this routine is equivalent to invoking ifghostfill sched() once for each ghost cell
region, and merging all the returned schedules. For example, a two dimensional distributed
array has eight such regions, corresponding to the edges and corners of the two dimensional
part of the array assigned to each processor. Assuming that the distributed array has
been declared with one internal ghost cell in each dimension, the fill vector arguments for
ifghostfill sched() for all the regions are [1 0], [0 1], [-1 0], [0 -1] for the edges and [1 1], [1
-1], [-1 1], [-1 -1] for the corners.

Synopsis

integer ifghostfillall sched(darray)

Parameter declarations

integer darray reference to the distributed array descriptor

Return value

reference to a schedule that describes the necessary data motion, which can be used by
the fdata move() primitives

2.3.4 ifexch sched()

ifexch sched() computes a schedule describing the data motion necessary to update internal
ghost cells along the given dimension of the distributed array. The physical characteristics

45

and distribution of the array (i.e. number of dimensions, local dimension size, number of
ghost cells in each dimension, distribution in each dimension, etc.) are described by the
data structure referred to by the parameter “darray”. The parameter “fill” controls the
number of ghost cells being updated in and whether these cells are filled at the lower or
upper indices of the given array dimension. A call ifexch sched(dA, dim, fill) is equivalent
to a call to ifghostfill sched() with a fill vector of all zeros, except in dimension “dim”, which
would have the value “fill”.

Synopsis

integer ifexch sched(darray, dim, fill)

Parameter declarations

integer darray reference to the distributed array descriptor

integer dim the dimension of the array whose ghost cells are being updated. Number-
ing follows the Fortran convention (i.e. 1 to number of dimensions)

integer fill the number of cells being updated. A positive value means high indices and
a negative value means low indices are filled.

Return value

reference to a schedule that describes the necessary data motion, which can be used by
the fdata move() primitives

Example

Consider the same example as in Section 2.3.1. Off-processor fetches are required to
satisfy the references to w(i+1,j), w(i,j+1) and w(i+1,j+1) on the right hand side of the
assignment. The fetches for the first two references, to w(i+1,j) and w(i,j+1), could be
satisfied by calls to ifexch sched(), as shown below. ffdata move(), which is discussed in
detail in Section 2.3.6, uses a schedule produced by ifexch sched() to perform the actual
communication.

sched1 = ifexch_sched(da, 1, 1)
sched2 = ifexch_sched(da, 2, 1)
fillVec(0) = 1; fillVec(1) = 1;
sched3 = ifghostfill_sched(da, 2, fillVec);
call ffdata_move(w, sched1, w)
call ffdata_move(w, sched2, w)
call ffdata_move(w, sched3, w)

do 100 j=iflalbnd(da, 2, 2, 1), iflaubnd(da, 2, size2-1, 1)

46

do 100 i=iflalbnd(da, 1, 2, 1), iflaubnd(da, 1, size1-1, 1)
deltaw(i,j) = k * (w(i+1,j) - w(i,j)) +

$ l * (w(i,j+1) - w(i,j))
$ m * w(i+1,j+1)

100 continue

2.3.5 ifsubarray sched()

ifsubarray sched() creates a schedule describing the data motion necessary to move an arbi-
trary multi-dimensional chunk of a source distributed array to a multi-dimensional chunk of
a destination distributed array, allowing data rotation and strides. The indices of the source
and destination arrays should be given in global terms, as in the corresponding sequential
program. The strides must be greater than zero. In a given dimension of either the source
or destination array, if the range start index is greater than the end index, the stride counts
backwards through the indices. The source and destination arrays are not required to have
the same number of dimensions. If the arrays do not have the same number of dimensions,
then the extra dimensions of the array with fewer dimensions should specify 0 as the di-
mension number, and the values of the other parameters for the array in that dimension
are ignored. For example, if the source array has two dimensions and the destination array
has three dimensions, then srcDims(3) should be 0 (and srcLos(3), srcHis(3), srcStrides(3)
don’t matter), and the dimension specified by destDims(3) should contain one element (i.e.
destLos(3) = destHis(3)).

Synopsis

integer ifsubarray sched(srcDA, destDA, numDims,
srcDims, srcLos, srcHis, srcStrides,
destDims, destLos, destHis, destStrides)

Parameter Declarations

integer srcDA reference to the source distributed array descriptor

integer destDA reference to the destination distributed array descriptor

integer numDims the number of dimensions in the source and destination arrays

integer srcDims(numDims) dimension numbers in the source

integer srcLos(numDims) start of the range in the source for each dimension

integer srcHis(numDims) end of the range in the source for each dimension

integer srcStrides(numDims) stride in the source for each dimension

47

integer destDims(numDims) dimension numbers in the destination

integer destLos(numDims) start of the range in the destination for each dimension

integer destHis(numDims) end of the range in the destination for each dimension

integer destStrides(numDims) stride in the destination for each dimension

Return Value

reference to a schedule describing the necessary data motion, which can be used by the
fdata move() primitives

Example

Consider the routine copySegment() shown in Figure 6. Assume the distributed array
descriptors srcDA and destDA describe the distribution of src and dest, respectively, and
are passed to copySegment(), along with the rest of the parameters shown in Figure 6
(sVal, sLo, sHi, dVal, dLo, dHi, etc.). The following example shows how the copy to and
from temp are replaced by calls to the primitives ifsubarray sched() and ffdata move().
These primitives perform the communication necessary to copy the source segment to
the destination segment. ffdata move(), which is discussed in detail in Section 2.3.6, uses
the schedule produced by ifsubarray sched() to perform the actual communication.

numDims = 2
sDims(1) = 1 sDims(2) = 2
sStrides(1) = 1 sStrides(2) = 1
if (sDim .eq. 1) then
sLos(1) = sVal sHis(1) = sVal
sLos(2) = sLo sHis(2) = sHi

else
sLos(2) = sVal sHis(2) = sVal
sLos(1) = sLo sHis(1) = sHi

endif

dDims(1) = 1 dDims(2) = 2
dStrides(1) = 1 dStrides(2) = 1
if (dDim .eq. 1) then
dLos(1) = dVal dHis(1) = dVal
dLos(2) = dLo dHis(2) = dHi

else
dLos(2) = dVal dHis(2) = dVal
dLos(1) = dLo dHis(1) = dHi

endif

sched = ifsubarray_sched(srcDA, destDA, numDims,

48

$ sDims, sLos, sHis, sStrides,
$ dDims, dLos, dHis, dStrides)
call ffdata_move(src, sched, dest)

2.3.6 fddata move(), fidata move(), ffdata move(), fcdata move()

The fdata move primitives take a schedule produced by one of the ifghostfill sched() variants
or ifsubarray sched(), along with references to the source data and the destination data (not
to the distributed array descriptors created by ifalign()) and perform the data motion. For
the fdata move() routines to work properly, the storage allocated on a processor for its part
of the distributed array must be contiguous (i.e. without holes), because the routines treat
the local storage as a linear address space. For the same reason, the local storage must
be the “right” size for each processor. The correct local size can be obtained using the
flasizes() routine described in Section 2.4.1.

Synopsis

subroutine fPREFIXdata move(srcArray, sched, destArray)
PREFIX can be d (double precision), i (integer) , f (floating point) or c (character).

Parameter Declarations

integer sched reference to the schedule describing the required data motion

integer srcArray reference to the source distributed array

integer destArray reference to the destination distributed array

Return Value

none

Example

See the examples in Sections 2.3.4 and 2.3.5.

2.4 Memory Management Primitives

2.4.1 flasizes()

flasizes() computes the local size of all dimensions for a distributed array (including all ghost
cells on the processor) and returns them in array “sizes”. This routine is used for memory

49

allocation (e.g. setting up block pointers into one large, statically allocated array, as in
the example from Figure 4) and reshaping arrays (i.e. for passing arrays into subroutines).
flasizes() provides the exact local size of a distributed array on a processor, including the
locally owned portion of the array and both external and internal ghost cells.

Synopsis

subroutine flasizes(darray, sizes)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer sizes(numDims) the local size for each dimension of the array - numDims is
the number of dimensions of the array

Return Value

none

2.4.2 free sched()

free sched() frees the storage allocated for a schedule by either ifexch sched() or ifsubar-
ray sched(). In addition, the schedule is removed from the hash table that stores schedules
for reuse.

Synopsis

subroutine free sched(sched)

Parameter Declarations

integer sched reference to the schedule

Return Value

none

50

2.4.3 remove exch scheds()

remove exch scheds() frees the storage allocated for all schedules created by calls to ifexch sched(),
either since the beginning of program execution or since the last call to remove exch scheds().
The routine also clears the hash table of all the freed schedules. After a call to this routine,
references to schedules previously created by ifexch sched() are invalid.

Synopsis

subroutine remove exch scheds()

Parameter Declarations

none

Return Value

none

2.4.4 remove subarray scheds()

remove subarray scheds() frees the storage allocated for all schedules created by calls to
ifsubarray sched(), either since the beginning of program execution or since the last call to
remove subarray scheds(). The routine also clears the hash table of all the freed schedules.
After a call to this routine, references to schedules previously created by ifsubarray sched()
are invalid.

Synopsis

subroutine remove subarray scheds()

Parameter Declarations

none

Return Value

none

51

2.5 Miscellaneous Primitives

2.5.1 ifglbnd()

As explained in Section 2.2, when a dimension of an array is distributed over several proces-
sors each processor is responsible for a subrange of the indices in that dimension. ifglbnd()
computes and returns the lower bound of the range of locally stored global indices. ifglbnd()
returns an out of bounds index (e.g. 0) if the processor does not own part of the array.

Synopsis

integer ifglbnd(darray, dim)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer dim the array dimension being queried

Return Value

an integer corresponding to the lower bound of the range of global indices stored locally

Example

Suppose the one dimensional array A, with distributed array descriptor dA, has 20 ele-
ments (numbered from 1 to 20) and is distributed by “block” over 4 processors (numbered
from 0 to 3). A call ifglbnd(dA, 1) from processor 0 would return the value 1 since this
processor is responsible for global indices 1 to 5. Similarly, a call ifglbnd(dA, 1) from
processor 3 would return the value 16.

2.5.2 ifgubnd()

ifgubnd() is similar to ifglbnd(), as described in Section 2.5.1. However, this primitive
returns the upper bound of the range of locally stored global indices. ifgubnd() returns an
out of bounds index (e.g. 0) if the processor does not own part of the array.

Synopsis

integer ifgubnd(darray, dim)

Parameter Declarations

52

integer darray reference to the distributed array descriptor

integer dim the array dimension being queried

Return Value

an integer corresponding to the upper bound of the range of global indices stored locally

Example

As in the example from Section 2.5.1, suppose the one dimensional array A, with dis-
tributed array descriptor dA, has 20 elements distributed by “block” over 4 processors,
with no ghost cells. A call ifgubnd(dA, 1) from processor 0 would return the value 5
since this processor is responsible for global indices 1 to 5. Similarly, a call ifgubnd(dA,
1) from processor 3 would return the value 20.

2.5.3 ifglobal to local()

ifglobal to local() converts a global distributed array index in a given dimension into the
corresponding local index in that dimension, returning -1 if the processor does not own that
index.

Synopsis

integer ifglobal to local(darray, gindex, dim)

Parameter Declarations

integer darray reference to the distributed array descriptor

int gindex the global index value whose local value is being computed

int dim the array dimension being queried

Return Value

an integer representing the local index value of gindex, or -1 if the processor does not
own the index

Example

Consider again the example from Section 2.5.1. The values of A(16) to A(20) are stored
locally on processor 3 as A(1) to A(5). The call ifglobal to local(dA, 17, 1) on processor 3
converts global distributed array index 17 in dimension 1 into the local index 2. On any
other processor (0, 1, or 2), the same call would return -1, indicating that the processor
does not own that index.

53

2.5.4 ifglobal to local with ghost()

ifglobal to local with ghost() converts a global distributed array index in a given dimension
into the corresponding local index in that dimension, returning -1 if the processor both does
not own that index and does not have a copy of the global index as an internal ghost cell.
Unlike ifglobal to local(), this routine will return a local index corresponding to an internal
ghost cell.

Synopsis

integer ifglobal to local with ghost(darray, gindex, dim)

Parameter Declarations

integer darray reference to the distributed array descriptor

int gindex the global index value whose local value is being computed

int dim the array dimension being queried

Return Value

an integer representing the local index value of gindex, or -1 if the processor both does
not own the index and does not have a copy of the global index as an internal ghost cell

Example

Consider again the example from Section 2.5.1, but assume that distributed array A
has been specified to have one internal ghost cell (on both ends). . The values of
A(16) to A(20) are stored locally on processor 3 as A(2) to A(6). In addition, a copy
of the value of A(15) can be stored on processor 3 in internal ghost cell A(1). The call
ifglobal to local with ghost(dA, 17, 1) on processor 3 converts global distributed array
index 17 in dimension 1 into the local index 3. On any other processor (0, 1, or 2),
the same call would return -1, indicating that the processor neither owns that index
nor has an internal ghost cell corresponding to that index. On the other hand, the
call ifglobal to local with ghost(dA, 16, 1) on processor 3 returns local index 2, and on
processor 2 returns local index 7 (the index of the high end internal ghost cell). On
processors 0 and 1, the call returns -1.

2.5.5 iflocal to global()

iflocal to global() converts a local distributed array index in a given dimension into the
corresponding global index in that dimension. If the local index does not correspond to a
distributed array element (e.g. a ghost cell), iflocal to global() returns -1.

54

Synopsis

integer if local to global(darray, lindex, dim)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer lindex the local index value whose global value is being computed.

integer dim the array dimension being queried

Return Value

an integer representing the global index value of lindex, or -1 if lindex does not correspond
to a distributed array element owned by the processor

Example

Again consider the example from Section 2.5.1. The values of A(16) to A(20) are stored
locally on processor 3 as A(1) to A(5). The call iflocal to global(dA, 2, 1) on processor
3 converts local distributed array index 2 in dimension 1 into the global index 17.

2.5.6 iflocal to global with ghost()

iflocal to global with ghost() converts a local distributed array index in a given dimension
into the corresponding global index in that dimension. If the local index does not corre-
spond to a distributed array element or an internal ghost cell (e.g. an out of range index),
iflocal to global with ghost() returns -1. Unlike iflocal to global(), this routine will return a
global index for a local internal ghost cell.

Synopsis

integer if local to global with ghost(darray, lindex, dim)

Parameter Declarations

integer darray reference to the distributed array descriptor

integer lindex the local index value whose global value is being computed.

integer dim the array dimension being queried

Return Value

an integer representing the global index value of lindex, or -1 if lindex is not a valid local
index

55

Example

Consider again the example from Section 2.5.1, but assume that distributed array A has
been specified to have one internal ghost cell (on both ends). The values of A(16) to A(20)
are stored locally on processor 3 as A(2) to A(6). The call iflocal to global with ghost(dA,
3, 1) on processor 3 converts local distributed array index 3 in dimension 1 into the global
index 17. Similarly, the call iflocal to global with ghost(dA, 1, 1) on processor 3 converts
the index of the internal ghost cell into global index 15. However, on processor 0 the
same call will return -1, since that internal ghost cell does not correspond to any global
index.

Acknowledgments

Kay Crowley did the initial implementation of the library at ICASE, NASA Langley Re-
search Center. S. Gupta contributed to the redesign and reimplementation of many parts
of the library, also at ICASE.

56

