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Abstract
We describe Pad++, a zoomable graphical sketchpad that we are exploring as an
alternative to traditional window and icon-based interfaces. We discuss the motiva-
tion for Pad++, describe the implementation, and present prototype applications. In
addition, we introduce an informational physics strategy for interface design and
briefly contrast it with current design strategies. We envision a rich world of
dynamic persistent informational entities that operate according to multiple physics
specifically designed to provide cognitively facile access and serve as the basis for
design of new computationally-based work materials.
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1: INTRODUCTION

Imagine a computer screen made of a sheet of a miraculous new material that is
stretchable like rubber, but continues to display a crisp computer image, no matter
what the sheet’s size. Imagine that this sheet is very elastic and can stretch orders of
magnitude more than rubber. Further, imagine that vast quantities of information are
represented on the sheet, organized at different places and sizes. Everything you do
on the computer is on this sheet. To access a piece of information you just stretch to
the right part, and there it is.

Imagine further that special lenses come with this sheet that let you look onto one
part of the sheet while you have stretched another part. With these lenses, you can
see and interact with many different pieces of data at the same time that would ordi-
narily be quite far apart. In addition, these lenses can filter the data in any way you
would like, showing different representations of the same underlying data. The
lenses can even filter out some of the data so that only relevant portions of the data
appear.

Imagine also new stretching mechanisms that provide alternatives to scaling objects
purely geometrically. For example, instead of representing a page of text so small
that it is unreadable, it might make more sense to present an abstraction of the text,
perhaps just a title that is readable. Similarly, when stretching out a spreadsheet,
instead of showing huge numbers, it might make more sense to show the computa-
tions from which the numbers were derived or a history of interaction with them.

The beginnings of an interface like this sheet exists today in a program we call
Pad++. We don’t really stretch a huge rubber-like sheet, but we simulate it byzoom-
ing into the data. We use what we callportals to simulate lenses, and a notion we call
semantic zooming to scale data in non-geometric ways. The user controls where they
look on this vast data surface by panning and zooming. Portals are objects on the
Pad++ data surface that can see anywhere on the surface, as well as filter data to rep-
resent it differently than it normally appears.

Panning and zooming allow navigation through a large information space via direct
manipulation. By tapping into people’s natural spatial abilities, we hope to increase
users’ intuitive access to information. Conventional computer search techniques are
also provided in Pad++, bridging traditional and new interface metaphors. Figure 1
depicts a sequence of views as we pan and zoom into some data.

Figure 1 : A sequence of views as we zoom into some data.
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Motivation
If interface designers are to move beyond windows, icons, menus, and pointers to
explore a larger space of interface possibilities, additional ways of thinking about
interfaces that go beyond the desktop metaphor are required. The exploration of vir-
tual 3D worlds is one alternative. It follows quite naturally from traditional direct
manipulation approaches to interface design and involves similar underlying meta-
phors, although they are enriched by the greater representational possibilities
afforded by moving to richer 3D worlds.

There are myriad benefits associated with metaphor-based approaches, but they also
orient designers to employ computation primarily to mimic mechanisms of older
media. While there are important cognitive, cultural, and engineering reasons to
exploit earlier successful representations, this approach has the potential of
underutilizing the mechanisms of new media.

For the last few years we have been exploring a different strategy [22] for interface
design to help focus on novel mechanisms enabled by computation rather than on
mimicking mechanisms of older media. Informally, the strategy consists of viewing
interface design as the development of a physics of appearance and behavior for col-
lections of informational objects.

For example, an effective informational physics might arrange for an object’s repre-
sentation to be a natural by-product of normal activity. This is similar to the physics
of certain materials that evidence the wear associated with use. Such wear records a
history of use and at times this can influence future use in positive ways. Used books
crack open at often referenced places. Frequently consulted papers are at the tops of
piles on our desks. Usage dog-ears the corners and stains the surface of index cards
and catalogs. All these wear marks provide representational cues as a natural prod-
uct of doing, but the physics of materials limit what can be recorded and the ways it
can influence future use.

Following an informational physics strategy has led us to explore history-enriched
digital objects [19][20]. Recording on objects (e.g. reports, forms, source-code,
manual pages, email, spreadsheets) the interaction events that comprise their use
makes it possible on future occasions, when the objects are used again, to display
graphical abstractions of the accrued histories as parts of the objects themselves. For
example, we depict the copy history on source code. This allows a developer to see
that a particular section of code has been copied and perhaps be led to correct a bug
not only in the piece of code being viewed but also in the code from which it was
derived.

This informational physics strategy has also lead us to explore new physics for inter-
acting with graphical data. As part of that exploration we have formed a research
consortium to design a successor to Pad [26]. This new system, Pad++, serves as a
substrate for exploration of novel interfaces for information visualization and
browsing in complex information-intensive domains. The system is being designed
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to operate on platforms ranging from high-end graphics workstations to PDAs (Per-
sonal Digital Assistants) and interactive set-top cable boxes. Here we describe the
motivation behind the Pad++ development, report the status of the current imple-
mentation, and present initial prototype applications.

Today there is much more information available than we can readily and effectively
access. The situation is further complicated by the fact that we are on the threshold
of a vast increase in the availability of information because of new network and
computational technologies. Paradoxically, while we continuously process massive
amounts of perceptual data as we experience the world, we have perceptual access
to very little of the information that resides within our computing systems or that is
reachable via network connections. In addition, this information, unlike the world
around is, is rarely presented in ways that reflect either its rich structure or dynamic
character.

We envision a much richer world of dynamic persistent informational entities that
operate according to multiple physics specifically designed to provide cognitively
facile access. These physics need to be designed to exploit semantic relationships
explicit and implicit in information-intensive tasks and in our interaction with these
new kinds of computationally-based work materials.

One physics central to Pad++ supports viewing information at multiple scales and
attempts to tap into our natural spatial ways of thinking. We address the information
presentation problem of how to provide effective access to a large structure of infor-
mation on a much smaller display. Furnas [16] explored degree of interest functions
to determine the information visible at various distances from a central focal area.
There is much to recommend the general approach of providing a central focus area
of detail surrounded by a periphery that places the detail in a larger context.

With Pad++ we have moved beyond the simple binary choice of presenting or elid-
ing particular information. We can also determine the scale of the information and,
perhaps most importantly, the details of how it is rendered can be based on various
semantic and task considerations that we describe below. This provides semantic
task-based filtering of information that is similar to the early work at MCC on lens-
based filtering of a knowledge base using HITS [21] and the recent work of move-
able filters at Xerox [4][31].

The ability to make it easier and more intuitive to find specific information in large
dataspaces is one of the central motivations behind Pad++. The traditional approach
is to filter or recommend a subset of the data, hopefully producing a small enough
dataset for the user to effectively navigate. Pad++ is complementary to these filter-
ing approaches in that it promises to provide a useful substrate tostructure informa-
tion.
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2: DESCRIPTION

Pad++ is a general-purpose substrate for creating and interacting with structured
information based on a zoomable interface. It adds scale as a first class parameter to
all items, as well as various mechanisms for navigating through a multiscale space.
It has several efficiency mechanisms which help maintain interactive frame-rates
with large and complicated graphical scenes.

While Pad++ is not an application itself, it directly supports creation and manipula-
tion of multiscale graphical objects, and navigation through spaces of these objects.
It is implemented as a widget in Tcl/Tk [25] (described in a later section) which pro-
vides an interpreted scripting language for creating zoomable applications. The
standard objects that Pad++ supports are colored text, graphics, images, portals, and
hypertext markup language (HTML). Standard input widgets (buttons, sliders, etc.)
are supplied as extensions.

One focus in the current implementation has been to provide smooth zooming
within a very large graphical datasets. The nature of the Pad++ interface requires
consistent high frame-rate interactions, even as the dataspace becomes large and the
scene gets complicated. In many applications, speed is important, but not critical to
functionality. In Pad++, however, the interface paradigm is inherently interactive.
One important searching strategy is to visually explore the dataspace while zooming
through it, so it is essential that interactive frame rates be maintained.

A second focus has been to design Pad++ to make it relatively easy for third parties
to build applications using it. To that end, we have made a clear division between
what we call the “substrate”, and applications. The substrate, written in C++, is part
of every release and has a well-defined API. It has been written with care to ensure
efficiency and generality. It is connected to a scripting language (currently Tcl, but
we are exploring alternatives) that provides a fairly high-level interface to the com-
plex graphics and interactions available. While the scripting language runs quite
slowly, it is used as a kind of glue language for creating interfaces and putting them
together. The actual interaction and rendering is performed by the C++ substrate.
This approach allows people to develop applications for Pad++ while avoiding the
complexities inherent in this type of system. (See the Implementation section for
more information on this.)

PadDraw: A Sample Application
PadDraw is a sample drawing application built on top of Pad++. It supports interac-
tive drawing and manipulation of objects as well as loading of predefined or pro-
grammatically created objects. This application is written entirely in Tcl (the
scripting language), and was used to produce all the figures depicted in this paper.
The tools, such as navigation aids, hyperlinks, and the outline browser, that we dis-
cuss later, are part of this application.



Last Modified: September 19, 1995 3:51 pm 6/30

The basic user interface for navigating in PadDraw uses a three button mouse. The
left button is mode dependent and lets users select and move objects, draw graphical
objects, follow hyperlinks, etc. The middle button zooms in and the right button
zooms out. Zooming is always centered on the cursor, so moving the mouse while
zooming lets the user dynamically control which point they are zooming around.

PadDraw has a primitive Graphical User Interface (GUI) builder that is in progress.
Among other things, it allows the creation of active objects. Active objects can ani-
mate the view to other locations (a kind of hyperlink), or move other objects around
on the surface.

NAVIGATION
Easily finding information on the Pad++ surface is obviously very important since
intuitive navigation through large dataspaces is one of its primary motivations.
Pad++ supports visual searching with direct manipulation panning and zooming in
addition to traditional mechanisms, such as content-based search.

Some applications animate the view to a certain piece of data. These animations
interpolate in pan and zoom to bring the view to the specified location. If the end
point is further than one screen width away from the starting point, the animation
zooms out to a point midway between the starting and ending points, far enough out
so that both points are visible. The animation then smoothly zooms in to the destina-
tion. This gives both a sense of context to the viewer as well as speeding up the ani-
mation since most of the panning is performed when zoomed out which covers
much more ground than panning while zoomed in. See the section on Space-Scale
Diagrams for more detail on the surprisingly complex topic of multiscale naviga-
tion.

Content-based search mechanisms support search for text and object names. Enter-
ing text in a search menu results in a list of all of the objects that contain that text.
Clicking on a element of this list produces an automatic animation to that object.
The search also highlights objects on the data surface that match the search specifi-
cation with special markers (currently a bright yellow outline) that remain visible no
matter how far you zoom out. Even though the object may be so small as to be invis-
ible, its marker will still be visible. This is a simple example of task-based semantic
zooming. See Figure 2 for a depiction of the content-based search mechanism.

Figure 2 : The content-based search window lets users search for text and names, and then
animate to any of those objects by clicking on the search entry.

We have also implemented visual bookmarks as another navigational aid. Users can
remember places they’ve been, and maintain miniature views onto those places.
Moving the mouse over one of these bookmark views places a marker in the main
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view to identify where it will take you (although the marker may be off to the side
and hence not visible). Clicking on a view animates the main view to that place
(Figure 3).

Figure 3 : Visual bookmarks let users remember interesting places they’ve been by showing
miniature views of those places. Clicking on one of these miniature views animates the main
view to the remembered location.

Portals
Portals are special items that provide views onto other areas of the Pad++ surface, or
even other surfaces. Each portal passes interaction events that occur within it to the
place it is looking. Thus, you can pan and zoom within a portal. In fact, you can per-
form any kind of interaction through a portal. Portals can filter input events, provid-
ing a mechanism for changing behavior of objects when viewed through a portal.
Portals can also change the way objects are presented. When used in this fashion,
we call themlenses (see below).

Portals can be used to replicate information efficiently, and also provide a method to
bring physically separate data near each other. Figure 1 was created using several
portals, each looking at approximately the same place at different magnifications.

Portals can also be used to create indices. For example, creating a portal that looks
onto a hyperlink allows the hyperlink to be followed by clicking on it within the por-
tal, changing the main view. This however, may move the hyperlink off the screen.
We can solve this by making the portal (or any other object for that matter)sticky,
which is a method of keeping the portal from moving around as the user pans and
zooms. Making an object sticky effectively lifts it off the Pad++ surface and sticks it
to the monitor glass. Thus, clicking on a hyperlink through a sticky portal brings
you to the link destination, but the portal index isn’t lost and can continue to be
used.

Lenses
Designing user interfaces is typically done at a low level, focusing on user interface
components, rather than on the task at hand. If the task is to enter a number, we
should be able to place a generic number entry mechanism in the interface. How-
ever, typically, once the specific number entry widget, such as a slider or dial, is
decided on, it is fixed in the interface.

We can use lenses to design interfaces at the level of specific tasks. For example,
we’ve designed a pair of number entry lenses for Pad++ that can change a generic
number entry mechanism into a slider or dial, as the user prefers. By default the
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generic number entry mechanism allows entering a number by typing. However,
dragging theslider lens over it changes the representation of the number from text to
a slider, and now the mouse can be used to change the number. Another lens shows
the data as a dial and lets you modify that with a mouse as well.

More generally, lenses are objects that alter appearance and behavior of components
seen through them. They can be dragged around the Pad++ surface examining exist-
ing data. For example, data might normally be depicted by columns of numbers.
However, looking at the same data through a lens could show that data as a scatter
plot, or a bar chart (see Figure 4).

Lenses such as these support multiple representations so that information can be dis-
played in ways most effective for the task at hand. They make the notion of multiple
representations of the same underlying data more intuitive and can be used to show
linkages between the representations. For example, if the slider lens only partially
covers the text number entry widget, then modifying the underlying number with
either mechanism (text or mouse), modifies both. So typing in the text entry moves
the slider, and vice versa.

Figure 4 : These lenses shows textual data as scatter plots and bar charts.

Semantic Zooming
Once we make zooming a standard part of the interface, many parts of the interface
need to be reevaluated. For example, we can use semantic zooming to change the
way things look depending on their size. As we mentioned, zooming provides a nat-
ural mechanism for representing abstractions of objects. It is natural to see extra
details of an object when zoomed in and viewing it up close. When zoomed out,
instead of simply seeing a scaled down version of the object, it is potentially more
effective to see a different representation of it.

For example, we implemented a digital clock that at normal size shows the hours
and minutes. When zooming in, instead of making the text very large, it shows the
seconds, and then eventually the date as well. Similarly, zooming out shows just the
hour. An analog clock (implemented as a lens that can be positioned over a digital
clock) is similar — it doesn’t show the second hand or the minute markings when
zoomed out.

Semantic zooming can take an even more active role in the interface. It can be used
as a primary mechanism for retrieving data. We have built prototype tools for
accessing system usage including information about the print queue, the system
load, and the users on the machine. They are depicted as small objects with labels.
Zooming into each of them starts a process which gathers the appropriate informa-
tion, and shows it in the now larger object. Zooming out makes the information dis-
appear and the data-gathering process inactive.
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3: VISUALIZATIONS

We are exploring several different types of interactive visualizations within Pad++,
some of which are described briefly here. Each takes advantage of the variable reso-
lution available for both representation and interaction.

Layout of graphical objects within a multi-resolution space is an interesting prob-
lem, and is quite different than traditional fixed-resolution layout. Deciding how to
visually represent an arbitrary graph on a non-zoomable surface is extremely diffi-
cult. Often it is impossible to position all objects near logically related objects. Also,
representing the links between objects often requires overlapping or crossing edges.
Even laying out a tree is difficult because, generally speaking, there are an exponen-
tial number of children that won’t fit in a fixed size space.

Traditional layout techniques use sophisticated iterative, adaptive algorithms for
laying out general graphs, and still result in graphs that are hard to understand.
Large trees are often represented hierarchically with one sub-tree depicted by a sin-
gle box that references another tree.

Using an interactive zoomable surface, however, allows very different methods of
visually representing large data structures. The fact that there is always more room
to put information “between the cracks” gives many more options. Pad++ is particu-
larly well suited to visualizing hierarchical data because information that is deeper
in the hierarchy can be made smaller. Accessing this information is accomplished
by zooming.

Hypertext Markup Language (HTML)
In traditional window-based systems, there is no graphical depiction of the relation-
ship among windows even when there is a strong semantic relationship. For exam-
ple, in many hypertext systems, clicking on a hyperlink brings up a new window
with the linked text (or alternatively replaces the contents of the existing window).
While there is an important relationship between these windows (parent and child),
this relationship is not represented.

We are experimenting with multiscale layouts of hypertext document traversals
where the parent-child relationships between links is represented visually. The lay-
out represents a tree that is distorted so that the page that has the focus (i.e. the one
being looked at) is quite large. As nodes get further away from the focus, they get
smaller. The distortion is controllable with a pop-up window. This is an example of
a graphical fisheye view [16]. As links are followed, they are added to the tree and
become the current focus. The view is animated so that the new node is centered and
large enough to read.

Pad++ reads hypertext written in the Hypertext Markup Language (HTML), the lan-
guage used to describe hypertext documents used by WWW browsers such as
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Mosaic and Netscape. Pad++ also can follow links across the internet. Figure 5
shows a snapshot where several hypertext links have been followed. Two views
show the same tree focused on different nodes. The Pad++ user interface for access-
ing hypertext is similar to traditional systems, but zooming mechanisms are
employed. There are also special mechanisms to return to an object’s parent.

An alternative layout technique (not shown here) uses a camera with a special
zoomed in view of the tree. The idea is to give an overview of the tree in one view
while allowing individual pages to be read in another view. This gives both a global
context and local detail simultaneously. The camera can be dragged around the
overview, and the detail view is updated to see what the camera is pointing at. Click-
ing on a page causes the camera to animate to that page and when a new page is
brought in, the camera centers its view on it.

This layout problem is challenging because the underlying data can be an arbitrary
cyclic graph. Any graph can be viewed as a hierarchy by taking a single node and
calling it the root node. Imagine taking that node and shaking the graph out. Its
neighbors become children, and the children’s neighbors become grandchildren, etc.
We use this approach to display HTML documents where the order of the links that
are followed describe the particular hierarchy imposed on the data. When a cycle is
encountered (i.e., a link is followed to a page that is already loaded), the user is
brought to the original copy of the page that was loaded, and the focus is put upon it.

Figure 5 : Many different HTML documents loaded in Pad++. Their layout implicitly shows
the history of the users interaction. The two views show the same tree focused on different
nodes.

Directory Browser
We built a zoomable directory browser as another exploration of multiscale layout.
The directory browser provides a graphical interface for accessing the directory
structure of a filesystem (see Figure 6). Each directory is represented by a folder
icon and files are represented by solid squares colored by file type. Both directories
and files show their filenames as labels when the user is sufficiently close to be able
to read them. Each directory has all of its subdirectories and files organized alpha-
betically inside of it. Searching through the directory structure can be done by
zooming in and out of the directory tree, or by using the content based search mech-
anisms described above. Zooming into a file automatically loads its text or image
inside the colored square and it can then be annotated. At any particular view, typi-
cally three levels of the hierarchy are visible.

Figure 6 : A view of our filesystem.

TIMELINE
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Scale can be used to convey temporal information. Events which take place over a
long period of time use a large scale and brief events are shown at a small scale. We
used this notion to visualize some of the history of computing and user interfaces.

The timeline visualization shows decades as large numbers. Zooming in on a decade
reveals the years within that decade. Further zooming on a particular year shows
events which took place during that year. Figure 7 shows a sequence of snapshots as
the view is zoomed in.

Figure 7 : A sequence views into the history of computers and interfaces.

OVAL DOCUMENT LAYOUT
Since objects on the Pad++ surface reside at absolute locations, the relative positions
of objects can be used to encode information. Thus, with the Pad++ HTML browser,
position is used to encode the order of a user’s traversal of a hypertext document. In
the Oval Document Layout, position is used to reinforce the narrative structure of
documents (such as guided tours) in which the reader follows a sequence of steps
which eventually lead back to the starting point.

In this layout, the first page is placed at the bottom edge of an arc. Subsequent pages
are placed around the edge of the arc, and are drawn at a scale which reflects their
position in the tour — middle pages are shown distant and small, whereas start and
end pages appear larger and closer to the user.

Navigation buttons at the bottom edge of each page are used to advance through the
document. Clicking on a page when it is distant causes Pad++ to pan and zoom so
that the page fills most of the screen.

One advantage of this layout is that as the system animates from one page to the
next, the user can infer progress through the document by the direction of the anima-
tion: near the start, pages move down and to the left; towards the end, pages move
up and to the right.

The layout is also effective for non-linear access to pages within the document.
Zooming out a small distance reveals the whole document, and clicking on a page
within the document takes you to that page.

Hotwords and hyperlink buttons in an oval document can be shown with arrows
which point towards the destination object. Clicking on the hyperlink animates the
Pad++ surface in the direction indicated by the arrow, reducing the sense of disori-
entation that many users experience when navigating hypertext documents.

The Oval document view illustrates that a pan/zoom coordinate system can lead to
interesting new ways of laying out even traditional page based material. However,
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the layout has several drawbacks. It is only practical for relatively short documents,
and for documents which adopt a circular narrative structure.

Figure 8 : Pad++ help screen with oval document layout.

4: SPACE-SCALE DIAGRAMS

In an effort to understand multiscale spaces better, we have developed an analytical
tool for describing them which we callspace-scale diagrams. By representing the
spatial structure of an information world at all its different magnifications simulta-
neously, these diagrams allow us to visualize various aspects of zoomable interfaces
and analyze their properties. We discuss these diagrams briefly here. They are dis-
cussed in more detail in [17].

While Pad++ provides panning and zooming interactions over a two dimensional
surface, the basic ideas of a space-scale diagram are most easily illustrated in one
dimension. This would typically be a slice through a two-dimensional world.

The basic one-dimensional diagram concept is illustrated in Figure 9. This diagram

Figure 9 : A one dimensional space-scale diagram of six points as the view zooms in
from (a) to (b) to (c) around the point q.
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shows six points that are copied over and over at all possible magnifications. These
copies are stacked up systematically to create a two dimensional diagram whose
horizontal axes represents the original spatial dimension and whose vertical axis
represents the degree of magnification (or scale). Because the diagram shows an
infinite number of magnifications, each point is represented by a line emanating
from the origin. We call these linesgreat rays. In the 2-D analog, whole 2D pictures
would be stacked up at all magnifications, forming a 3D space-scale diagram, with
points still becoming great rays and 2D regions becoming cones.

For comparison, compare this with a standard one-dimensional world. Here, a stan-
dard viewer is a small one-dimensional window that shows a small piece of the
world (e.g., a view of a local-piece of a time-line). As the window is panned around
it moves to different parts of that time line. As it is zoomed in, it would narrow its
scope and look at a smaller region of the time line in detail. As it is zoomed out, it
looks at a larger section.

In space-scale diagrams however, while the viewing window is also represented as a
one-dimensional segment, it has a constant size and is located at a particular place in
both space and scale. Thus as the user pans and zooms around the world, the view-
ing segment is moved rigidly (i.e., without changing its size) in space-scale. A
whole sequence of such movements can be represented by a path through the space-
scale diagram (Figure 10). Thus the first advantage of these diagrams is that, by
reifying scale, they allow these multiscale movements to be represented statically
and so are easier to analyze. For example, a pan operation becomes a horizontal part
of such a path. A zoom becomes a movement along a great ray. Other types of
movement correspond to curves of other characteristic shapes.

Figure 10 : Basic pan-zoom trajectories are shown in the heavy dashed lines. (a) is a
pure pan, (b) is a pure zoom (out), and (c) is a zoom around the point q.

(c)
(b)

(a)

q

u

v
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The ability of space-scale diagrams to represent pan-zoom movements as a path in
space-scale has allowed us to solve two concrete problems in designing good pan-
zoom interactions. Both concern situations where the system needs to move the
user’s view automatically to another point in the space. This might happen, for
example, as the result of following some sort of hyperlink mechanism, or jumping
to the result of some content-based search.

The first problem occurs when the interface needs to not only move the user to some
other region of the world, but also needs to zoom in. The solution to doing these
actions in parallel, jointly panning and zooming to the new view, is not as simple as
it might seem. However, if one simply computes how much to pan and how much to
zoom and does the two independently in parallel, the result is disconcertingly non-
monotonic. The pan covers distance at a constant pace while the zoom-in is magni-
fying the world exponentially. The result is that the target location first rushes away
due to the magnification, and only later does the pan catch up. Various hacks to fix
this, taking logs and powers of various things, did not work.

Fortunately, using space scale diagrams, a monotonic approach to the target view is
captured by a kind of parallelogram constraint on trajectories in space-scale. In Fig-
ure 11, a path from(x1, y1) to (x2, y2) that goes outside such a parallelogram is non-

monotonic. If the path exits the sides of the parallelogram, it will violate the mono-
tonicity requirement in space. If the path exits the top or bottom of the parallelo-
gram, it will violate the monotonicity requirement in zoom. A simple path that is
monotonic is just the diagonal of this parallelogram. A simple coordinate transform
that defines these diagrams (given in [17]) allows one to define this path analytically,
and yields a rather unintuitive hyperbolic relationship between the two. We have
implemented the trajectory derived from the space-scale diagram analysis and have

Figure 11 : Solution to the simple joint pan-zoom problem. The trajectory s
monotonically approaches point (x2, z2) in both pan and zoom.

s

(x1,z1)

(x2,z2)

x1 x2
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indeed found it far superior to any uninformed effort.

A second pan-zoom problem concerns the notion of shortest paths between two
points in this pan-zoom parameter space. This is a curious question because in
space-scale motions, the shortest distance between two points is not generally a
straight line. This is because while panning may be expected to take a time or have a
cost that is linear in the spatial separation, zoom is logarithmic, so that the fastest
way to get from some pointp to some pointq that is far away would be very tedious
by pan alone. It is in fact much shorter to zoom out, make a small pan, and then
zoom in (see Figure 12.) Inspired by the space-scale diagrams we were able to

define an information theoretic metric over space-scale interactions: the cost of a
path is a function of the number of bits that would take to transmit a movie of the
motion. Then we addressed the question of finding good paths through the space,
i.e., make the movie as small as possible. We found that for points less than a few
window widths away, a pure panning motion is pretty good, but for points far away,
zoom must play a major role.

Another use of space-scale diagrams is to representsemantic zooming,where
objects change not just their size but also their appearance when they are magnified.
For example, an object could appear as a point when small. As it grows, it could
then in turn appear as a solid rectangle, then a labeled rectangle, then a page of text,
etc. Figure 13 shows how semantic zooming differs from ordinary geometric zoom-
ing, in that the triangular regions change along the scale axis. By explicitly repre-
senting scale, the scale-dependent aspects of an object’s representation can be made
visible. We intend to use such diagrams to help create semantically zoomable
objects. The idea is to provide an editing environment where transition boundaries

Figure 12 : The shortest path between two points is often not a straight line. Here each
arrow represents one unit of cost. Because zoom is logarithmic, it is often “shorter” to
zoom out (a), make a small pan (b), and zoom back in (c), than to make a large pan
directly (d).
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could be moved or aligned by direct manipulation.

All these uses of multiscale diagrams capitalize on the fact that they statically repre-
sent scale so that multiscale concepts, which are inherently temporal, are more
readily analyzed.

5: PROCEDURAL ANIMATION

We are also using Pad++ as a substrate for building user-definable animated objects
such as complex interface widgets. We have recently applied the same techniques to
create animated human-like actors [28]. Although the widgets are much simpler, we
employ the same mechanisms that allow us to control human-like movements and
gestures to simulate personality and intentionality. The ultimate goal is to support an
informational physics in which objects animate naturally. Using these tools, the
Pad++ application designer can always convey to the user a clearly structured ani-
mated narrative instead of merely an assortment of disjoint temporal events.

We approach this goal by providing a mechanism for the definition of moveable
graphical objects. In addition, we define high-level hierarchical control mechanisms
for the movements. We are starting to define simple widgets such as buttons and
sliders at a behavioral level that makes it easier for application developers to easily
change the look and feel of an application. While the widget definitions we supply
have a traditional Motif-like look and feel, a designer can easily change their visual

Figure 13 : Semantic Zooming. Bottom slices show views at different points.
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style or interaction mechanism.

In addition, we are exploring novel widgets that take advantage of the Pad++ zoom-
ing environment. We used our extension mechanisms to implement a choice widget
that provides an alternative to the traditional pop-up menu. Figure 14 shows two
views of the same widget. The view on the left shows a zoomed out view. Here the
widget just shows its current value. On the right we have zoomed into the widget
and now the available choices become visible for user selection.

Figure 14 : A prototype zoomable choice widget.

These widgets are implemented with our KPL rendering language. This language
was designed to allow very fast run-time recompilation, compact representation, and
efficient execution (roughly 100 times faster execution time than TCL). It is a post-
fix stack language whose simple structure allows execution times roughly 10 faster
than other interpreted or byte-compiled languages. KPL’s speed allows us to execute
scripts during each render. Without this efficient mechanism, we would only be able
to render items pre-defined in the C++ substrate.

The next step uses KPL to create complex animations by the definition of simple
repetitive motions of objects based on stochastic processes along with a built-in
mechanism to automatically transition between different motions. The stochastic
processes are defined by rotation axes, periods, and magnitudes with some coherent
noise [27] applied to give more natural behavior. The mechanism to change between
motions gives the hierarchical control described above.

By changing the parameters of the stochastic movement in response to the environ-
ment and chaining sequences of motions together with the transitioning mechanism,
we are able to build complex animated behavior in the user interface.

We handle transitions between two actions having different tempos via a morphing
approach. At the start of the transition, we use the tempo of the first action, and at
the end, we use the tempo of the second action. During the time of the transition, we
continuously vary the speed of the master clock from the first to the second tempo.
In this way, any phase dependent synchronization of the two actions is always pre-
served during transitions. We may also define new actions as extended transitions
between two or more other actions. On a Pad++ surface with multiple actors, each
actor maintains its own individual tempo.

A related notion that we are exploring is peripheral attention. How does an actor
convey that a process is proceeding normally or abnormally, without distracting the
user from his/her current tasks? This is especially important in a zoomable environ-
ment where the ability to provide peripheral awareness of processes is an important
attribute of the paradigm.

We are also studying the semantics of the discrete state transitions that visually rep-
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resent shifts in attention. In this way an actor on the Pad++ surface can quickly con-
vey to users which other actors and users it is interacting with. We are also interested
in determining to what extent we can encode the texture of interactions in order to
convey the visual impression of complex activities going on at different scales with-
out requiring all the detail to be specified. We suspect that some of the same tech-
niques used in character animation might be effective here too.

6: IMPLEMENTATION

Pad++ is implemented in C++ under various versions of the Unix operating system
using the standard X graphics library system. It currently runs on SGIs, Suns, IBM
RS-6000s, PCs running Linux, and should be trivially portable to other Unix sys-
tems. Pad++ is implemented as a widget in Tcl/Tk and thus allows applications to be
written in the interpreted Tcl language. All Pad++ features are accessible through
Tcl making it unnecessary to write any new C++ code.

Efficiency
In order to keep the animation frame-rate up as the dataspace size and complexity
increases, we utilized several standard efficiency methods in our implementation,
which taken together create a powerful system. We have successfully loaded over
600,000 objects (with the directory browser) and maintained interactive rates of
about 10 frames per second. Even when objects are not visible, appropriate checks
must be done each time there is movement to see if those objects should now be vis-
ible. The key is that the rendering system takes a time roughly proportional to the
number of visible objects, independent of the number of objects in the database (on
average).

Briefly, the efficiency methods we use in Pad++ include:

      • Spatial Indexing: Objects are stored internally in a hierarchy based on
bounding boxes which allow fast indexing to visible objects.

      • Clustering: Pad++ automatically restructures the hierarchy of objects to
maintain a balanced tree which is necessary for the fastest indexing.

      • Refinement: Render fast while navigating by using lower resolution, and not
drawing very small items. When the system is idle for a short time, the scene
is successively refined, until it is drawn at maximum resolution.

      • Level-Of-Detail: Render items differently depending on how large they
appear on the screen. If they are small, render them with lower resolution.

      • Region Management: Only update the portion of the screen that has been
changed. Linked with refinement, this allows different areas of the screen to
refine independently.
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      • Clipping:  Only render the portions of large objects that are actually visible.
This applies to images and text.

      • Adjustable Frame Rate:Animations and zooming maintain constant percep-
tual flow, independent of processor speed, scene complexity, and window size.
This is accomplished by rendering more or fewer frames, as time allows.

      • Interruption : Slow tasks, such as animation and refinement, are interruptible
by certain input events (such as key-presses and mouse-clicks). Animations
are immediately brought to their end state and refinement is interrupted,
immediately returning control to the user.

      • Ephemeral Objects: Certain objects that represent large disk-based datasets
(such as the directory browser) can be tagged ephemeral. They will automati-
cally get removed when they have not been rendered for some time, and then
will get reloaded when they become visible again.

      • Optimized Image Rendering: The code to render zoomed images has been
very carefully optimized and allows real-time zooming of high-resolution
images.

Scripting Language Interface
An important consideration in the design and implementation of Pad++ is how to
create a very fast and efficient graphics system, and yet still make it extensible. We
wanted to make sure that we and others would be able to easily experiment with new
interface mechanisms. Originally, Pad++ was implemented entirely in C++, making
it very difficult for anyone but the authors to add new objects and interactions. Even
for the authors, going through the compile and link cycle was very slow and tedious,
making it difficult to do much experimentation.

We decided to create an interpreted scripting language interface to Pad++ to get
around this problem. This approach is becoming quite common, and works well as
long as the scripting language is at the right level. On one side, you want as much as
possible to be in the scripting language so that the system is as easy to modify as
possible. On the other side, it is critical that all speed-critical code be written as effi-
ciently as possible. In a system like ours, there are three classes of code, each of
which have different speed requirements:

      • Create objects:Slow — Scripting language is fine

      • Handle events:Medium — Small amount of scripting language is ok

      • Render scene:Fast — C++ or byte-compiled languages only

Rendering is done in C++ (for built-in Pad++ items) or in an efficient byte-compiled
language such as KPL (for user defined widgets or animated items). This results in



Last Modified: September 19, 1995 3:51 pm 20/30

animation performance which is quite good, even on Linux based PC platforms.

We chose Tcl [25] as our primary scripting language, largely because it comes in
combination with Tk, a Motif-like library for creating graphical user interfaces.
Pad++ is built as a new widget in Tk. This allows it to be used in combination with
standard non-zooming widgets such as menubars, buttons, sliders, etc. This lets us
make complete applications while we build and debug widgets within Pad++. Just
as importantly, it provides a mechanism to compare zoomable interfaces with tradi-
tional interface mechanisms in the same system.

The Tcl interface to Pad++ is designed to be very similar to the interface to the Tk
Canvas widget (which provides a surface for drawing structured graphics). While
Pad++ does not implement everything in the Tk Canvas yet, it adds many extra fea-
tures. The Tcl interface to Pad++ is summarized here to give a feel for what it is like
to program Pad++.

We are also experimenting with other scripting languages which are better suited to
some tasks — primarily those requiring higher speeds. As previously mentioned, we
use KPL for high-speed animations. We also are considering incorporating an alter-
native language, such as Scheme, for more general programming which needs high
speed interaction.

TCL Interface
There are many commands that create and manipulate objects, each referring to the
object’s unique integer id. Objects may be grouped by usingtags, a mechanism for
associating data with each object. Every command can be directed to either a spe-
cific object id or to a tag, in which case it will apply to all objects that share that tag.
Each Pad++ widget has its own name, and all commands start with the name of that
widget. In the examples that follow, the name of the widget is.pad .

Examples:

      • A red rectangle with a black outline is created whose corners are at the points
(0, 0) and (2, 1):

.pad create rectangle 0 0 2 1 -fill red -pen black

      • Put item number 5 at the point (3, 3), make the object twice as big, and make
the object anchored at that point on its northwest corner:

.pad itemconfig 5 -anchor nw -place “3 3 2”

      • Specify that item number 5 should be visible only when its largest dimension
is greater than 20 pixels and less than 100 pixels.

.pad itemconfig 5 -minsize 20 -maxsize 100
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It is straightforward to make scripts get evaluated when specific events hit objects,
or groups of objects. Simple macros get expanded within the event script to specify
information specific to that event. Some examples follow:

      • Make all items with tagfoo  turn blue when the left button of the mouse is
pressed over any of those objects:

.pad bind foo <ButtonPress-1> {
.pad itemconfig foo -fill blue

}

      • This is a single event binding for a group of objects that affects just the object
clicked on, using the macro ‘%O’ to expand to the specific object:

.pad bind foo <ButtonPress-1> {
.pad itemconfig %O -fill blue

}

Some basic navigation and searching mechanisms are provided by the Tcl interface.
A few basic ones are:

      • Smoothly go to the location (1, 0) with a magnification of 5, and take 1000
milliseconds for the animation:

.pad moveto 1 0 5 1000

      • Smoothly go to the location such that object number 37 is centered, and fills
three quarters of the screen, and take 500 milliseconds for the animation:

.pad center 37 500

      • Return the list of object ids that contain the text “foo”

.pad find withtext foo

Events
As briefly mentioned, it is possible to attach event handlers to items on the Pad++
surface so that when a specific event (such as ButtonPress, KeyPress, etc.) hits an
item, the appropriate event handler is evaluated. This system operates much as it
does with the Tk Canvas widget, but there are several significant additions:

 •  Modes

Every event handler is defined for a specificmode. The mode is a simple text
string and defaults toall  if it is not specified. The Pad++ surface has a set of
active event modes associated with it (that always includes theall  mode).
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Only those event handlers whose mode is currently active will be fired. This
allows the creation of many different event handlers that are selectable by set-
ting the Pad++ mode.

 •  Event Searching Protocol

When an event hits an item and there are no event handlers defined for that
item, there is a well-defined event searching protocol that specifies which
other items will be searched for event handlers. If the event went through a
portal, then the portals are checked for event handlers. The portals are
checked from the bottom up, that is, in the reverse order that event went
through the portals. To summarize, the searching order is as follows:

1. Most specific object

2. Objects associated by tag (“all ” being last)

3. Portals (and associated tag objects)

 •  PortalIntercept event

Portals can intercept events as the events pass through them with the Por-
talIntercept event. PortalIntercept is a new event sequence recognized by the
Pad++ bind command. PortalIntercept event handlers get called for every
event that passes through a portal in top down order. They do not replace
other event handlers, but instead get called before those handlers. A Por-
talIntercept command may execute any code, and then it can return a special
value that can modify the event. The modifications include killing the event,
stopping the event at the portal rather than passing it through, changing the
list of active modes on the surface the event hits for this event, and changing
the coordinates of the event.

 •  Passing Events

When an event is fired, it is often useful for a handler to pass the event on to
the next most general event handler. This is most commonly used to have a
single event trigger the event handlers for specific items as well as classes of
items.

Messages
Items can send arbitrary messages to other items or groups of items. This message
sending facility is analogous to the Event mechanism, including the Searching Pro-
tocol and passing mechanism.

Callbacks
In addition to the event bindings that every item may have, every Pad++ item can
define Tcl scripts associated with it which will get evaluated at special times. There
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are currently three types of these callbacks:

 •  Render Callbacks

A render callback script gets evaluated every time the item is rendered. The
script gets executed when the object normally would have been rendered. By
default, the object will not get rendered, but the script may render the object
at any time with therenderitem  function. An example follows where item
number 22 is modified to call the Tcl procedures beforeMethod and after-
Method surrounding the object’s rendering.

.pad itemconfig 22 -renderscript {
beforeMethod
.pad renderitem
afterMethod

   }
Instead of calling therenderitem  command, an object can render itself.
Several rendering routines are available to render scripts, making it possible
to define an object that has any appearance whatsoever. Items which define a
render script are calledprocedural objects and are used for creating animated
objects (those that change the way they look on every render) and custom
objects. They also can be used to implement semantically zoomable objects,
since the size of an object is available within the callback.

 •  Timer Callbacks

A timer callback script gets evaluated at regular intervals, independent of
whether the item is being rendered, or receiving events.

 •  Zooming Callbacks

Zooming callback scripts are evaluated when an item gets rendered at a dif-
ferent size than its previous render, crossing a pre-defined threshold. These
are typically used for creating efficient semantically zoomable objects. Since
many objects do not change the way they look except when crossing size bor-
ders, it is more efficient to avoid having scripts evaluated except for when
those borders are crossed.

Extensions
Pad++ is extensible with Tcl scripts (i.e., no C/C++ code). This provides an easy to
use mechanism to define new Pad++ commands as well as compound object types
that are treated like first-class Pad++ objects. That is, they can be created, config-
ured, saved, etc., with the same commands you use to interact with built-in objects,
such as lines or text. These extensions are particularly well-suited for widgets, but
can be used for anything.

Extensions are defined by creating Tcl commands with specific prefixes. Each
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extension is defined by three commands which allow creation, configuration, and
invocation of the extension, respectively. Defining the procedures makes them auto-
matically available to Pad++. No specific registration is necessary. All three proce-
dure definitions are necessary for creation of new Pad++ object types, but it is
possible to define just the command procedure for defining new commands without
defining new object types.

7: Physics-Based Strategies For Interface Design

Exploration of Pad++ is part of a research program to develop alternative strategies
for interface design. Our goal is to move beyond mimicking the mechanisms of ear-
lier media and to start to more fully exploit radical new computer-based mecha-
nisms. We propose an information physics view of interface objects that we think
provides an effective complement to traditional metaphor-based approaches.

While an informational physics strategy for interface design certainly involves met-
aphor, we think there is much that is distinctive about a physics-based approach.
Traditional metaphor-based approaches map at the level of high-level objects and
functionality. They yield interfaces with objects such as windows, trash cans, and
menus, and functions like opening and closing windows and choosing from menus.
While there are ease-of-use benefits from such mappings, they also orient designers
towards mimicking mechanisms of earlier media rather than towards exploring
potentially more effective computer-based mechanisms. Semantic zooming is but
one example mechanism that we think more naturally arises from adopting an infor-
mational physics strategy. Even geometric zooming, especially with the orders of
magnitude possible in Pad++, is not a mechanism that traditional metaphors would
lead designers to investigate.

We are not the first to following a physics-inspired course in thinking about interface
design. It derives, like most interesting interface ideas, from the seminal work of
Sutherland [32] on Sketchpad. Simulations and constraint-based interfaces that led
to the development of direct manipulation style interfaces are other examples of this
general approach. They too derive from Sutherland and continue to inspire develop-
ments. Recent examples include the work of Borning and his students [5] [6]. Wit-
kin [18] [34] in particular has taken a physics-as-interface approach to construction
of dynamic interactive interfaces.

Smith’s Alternate Reality Kit [29] [30] and languages such as Self [33] are also
examples of following a physics-based strategy for interface design. These systems
make use of techniques normally associated with simulation to help “blur the dis-
tinction between data and interface by unifying both simulation objects and inter-
face objects as concrete objects” [9]. More importantly, they are based on
implementation of mechanisms at a different level than is traditional. Smith, for
example, gives users access to control of parameters of the underlying physics in his
Alternate Reality Kit. With this approach comes the realization that one can do
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much more than just mimic reality. As Chang and Unger [9] point out about their
use of cartoon animation mechanisms in Self, “adhering to what is possible in the
physical world is not only limiting, but also less effective in achievingrealism.”

It is important to look at the costs as well as the benefits of traditional metaphor-
based strategies. They can lead away from exploration of new mechanisms and limit
views of possible interfaces in at least four ways.

First, metaphors necessarily pre-exist their use. Pre-Copernicans could never have
used the metaphor of the solar system for describing the atom. In designing inter-
faces, one is limited to the metaphorical resources at hand. In addition, the meta-
phorical reference must be familiar in order to work. An unfamiliar interface
metaphor is functionally no metaphor at all. One can never design metaphors the
way one can design self-consistent physical descriptions of appearance and behav-
ior. Thus, as an interface design strategy, physics, in the sense described above,
offers more design options than traditional metaphor-based approaches.

Second, metaphors are temporary bridging concepts. When they become ubiqui-
tous, they die. In the same way that linguistic metaphors lose their metaphorical
impact (e.g.,foot of the mountainor leg of table), successful metaphors also wind up
as dead metaphors (e.g. file, menu, window, desktop). The familiarity provided by
the metaphor during earlier stages of use gives way to a familiarity with the interface
due to actual experience.

Thus, after a while, it is the actual details of appearance and behavior (i.e. the phys-
ics) rather than any overarching metaphor that form much of the substantive knowl-
edge of an experienced user. Any restrictions that are imposed on the behaviors of
the entities of the interface to avoid violations of the initial metaphor are potential
restrictions of functionality that may have been employed to better support the
users’ tasks and allow the interface to continue to evolve along with the users’
increasing competency.

Similarly the pervasiveness of dead metaphors such as files, menus, and windows
may well restrict us from thinking about alternative organizations of interaction with
the computer. There is a clash between the dead metaphor of a file and newer con-
cepts of persistent distributed object hierarchies.

Third, since the sheer amount and complexity of information with which we need to
interact continues to grow, we require interface design strategies thatscale. A tradi-
tional metaphor-based strategy does not scale. A physics approach, on the other
hand, scales to organize greater and greater complexity by uniform application of
sets of simple laws. In contrast, the greater the complexity of the metaphorical refer-
ence, the less likely it is that any particular structural correspondence between meta-
phorical target and reference will be useful. We see this often as designers start to
merge the functionality of separate applications to better serve the integrated nature
of complex tasks. Metaphors that work well with the individual simple component
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applications typically do not smoothly integrate to support the more complex task.

Fourth, it is clear that metaphors can be harmful as well as helpful since they may
well lead users to import knowledge not supported by the interface. Our point is not
that metaphors are not useful but that as the primary design strategy they may well
restrict the range of interfaces designers consider and impose less effective trade-
offs than designers might come to if they were led to consider a larger space of pos-
sible interfaces.

There are, of course, also costs associated in following a physics-based design strat-
egy. One cost is that designers can no longer rely as heavily on users’ familiarity
with the metaphorical reference (at least at the level of traditional objects and func-
tionality) and so, physics-based designs may take longer to learn. However, the
power of metaphor comes early in usage and is rapidly superceded by the power of
actual experience. One might want to focus on easily discoverable physics. As is the
case with metaphors, all physics are not created equally discoverable or equally fit-
ted to the requirements of human cognition.

8: Future Directions

To adequately explore the effectiveness of the Pad++ substrate and the informational
physics design strategy discussed here will require development of a wide range of
applications. One domain we plan to investigate is construction of active documents.
Most tools for interacting with documents (like World-Wide Web browsers such as
Mosaic and Netscape) predefine all of the interactive widgets within the client.
Hooks are provided so that documents may access those widgets but there is no
method to provide new ones, except to re-define the standards, modify the client and
distribute the client to enough of the user population so it becomes the new standard
in practice.

Pad++’s extensibility ensures that new widgets can be defined by scripts which can
be included with a document. This will allow documents to provide new forms of
interactivity without depending on the client to supply it. We are currently in the
design stages of an extension to HTML we call the MultiScale Markup Language
(MSML), that will be the markup language to describe documents within Pad++.
MSML will allow logical formatting of documents with different sized components,
and will provide a method for allowing Pad++ scripts to be included with docu-
ments — allowing truly active documents.

In addition to data visualizations, we are investigating the use of Pad++ as a replace-
ment for standard windowing system. PadWin currently consists of a few basic
semantically zoomable gauges which display statistics such as the list of tasks being
scheduled, the state of the printer queue, or the names of people who are logged on.
We intend to extend these tools so that most of the computers resources and facili-
ties are accessible through navigation within PadWin. We are also producing a suite
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of zoomable applications for use in PadWin.

In order to support existing non-zoomable applications, PadWin will incorporate a
mechanism to control the placement of application windows on the screen to make
them blend into the Pad++ surface. By mapping, unmapping, and moving these win-
dows appropriately, PadWin will act as an extended virtual window manager where
the effective screen size is huge, and where zoomable and non-zoomable applica-
tions reside side by side.

Pad++ also seems well-suited to a collaborative work environment. While the origi-
nal Pad implementation allowed some basic shared workspaces (running from a sin-
gle process displaying on multiple X servers), we are designing a more sophisticated
approach. The goal is to be able to use portals to look remotely on to any Pad++ sur-
faces on the network (assuming that the right permissions are set). Each user’s sys-
tem will contain a spatial database server that will send updates to all other systems
that have portals looking on to it. With this approach, there may be a lag in retriev-
ing others’ data, but once it arrives, it will be cached within the local system so the
high-speed interactivity of Pad++ won’t be lost.

Finally, we are building a completely visual interface to Pad++ for creation of an
interactive visual dataspace. Multimedia authoring tools such as MacroMedia
DirectorTM and Apple’s Multimedia Authoring ToolTM are letting visual designers
without programming experience create beautiful and complex interactive hypertext
data retrieval systems. As we discussed with the layout of HTML however, having a
huge data surface potentially alleviates some of the problems of navigating within a
large hypertext document. To this end, we are building a set of tools that will allow
non-technical visual designers to create interactive zoomable multimedia systems.

9: Availability

The Pad++ substrate is approaching the point where we can start to make it available
to a wider community. Our goal is to make it freely available for non-commercial
use. See the Pad++ project home page (http://www.cs.unm.edu/pad++) for current
information.
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