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ABSTRACT 
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Daniil Yakimovich, Doctor of Philosophy, 2001 

 

Dissertation directed by Professor Victor R. Basili 
    Department of Computer Science 
 

 

Use of commercial off-the-shelf (COTS) products in software development 

can improve a product’s quality and reduce development time. However, it also can 

require a considerable integration effort. Early estimation of this effort will help 

developers to choose the right COTS products and to decide whether to develop their 

own software instead of using COTS. In this work we propose a COTS reuse process 

to help software developers evaluate COTS products and integrate the selected COTS 

products into their systems. The process also includes an approach for designing the 

architecture for COTS-based software systems and overcoming other 

incompatibilities between COTS products and the system. The process is based on the 

comprehensive reuse model by Basili and Rombach, and a classification scheme for 

software component incompatibilities. To test the model, projects from a graduate 

software engineering class were used. These empirical data showed that the 
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incompatibility classification and the proposed integration solutions were sufficiently 

sound and were used to improve the model. 
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Chapter 1. Introduction 

1.1. Problem statement 

Commercial-off-the-shelf (COTS) software is developed by a third party, 

usually a commercial vendor, and intended to be part of a new software system. 

Developed by professionals in the area, COTS software can possess high quality and 

provide very sophisticated packaged functionality. Thus, COTS products reuse can 

help software developers to reduce the development effort and increase the product’s 

quality [Gentleman 97], [Fox et al. 97], [Voas 98a], [Voas 98b]. Other benefits are 

quick feasibility of demonstrations and support of COTS products by their vendors 

[Fox et al. 97]. These benefits of COTS reuse make it an important issue in software 

engineering.  

 

When a software system is developed around a COTS product, it is called a 

"COTS-solution system." If a system includes a large proportion of COTS products it 

is called "COTS-intensive" [Wallnau et al. 98a]. However, the term "a COTS-based 

system" is generally used [Brownsword et al. 98], for all purposes.  

There are several groups of COTS products that have been successfully used 

in software development [Vidger et al.  98]: 

- geographic information systems (GIS) 

- graphics user interface (GUI) builders 

- office automation software, such as calendars, word processors, 

spreadsheets, etc. 

- e-mail and messaging systems 
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- databases 

- operating systems, including low-level software such as device drivers, 

window systems, etc. 

 

However, in practice, the COTS products did not turn out to be a “silver 

bullet”. Apart from the general reuse problems (selection, integration, maintenance, 

etc.), COTS products are plagued by their own specific problems [Fox et al. 97]: 

- Incompatibility: COTS component may not have the exact functionality 

required; moreover, a COTS product may not be compatible with in-house 

software or other COTS products; 

- Inflexibility: usually the source code of COTS software is not provided, so it 

cannot be modified; 

- Complexity: COTS products can be too complex to learn and to use imposing 

significant additional effort; 

- Transience: Different versions of the same COTS product may not be 

compatible, causing more problems for developers. 

Not surprisingly, some reports admit considerable difficulties of COTS usage 

[Garlan et al. 95], [Swanson, MacMagnus 97]. Even successful cases of COTS usage 

involved more effort than expected [Sparks et al. 96], [Medvidovic et al. 97], [Vidger, 

Dean 97]. We simply do not know how many projects failed due to problems caused 

by COTS, because it is unlikely that developers would ever report such a failure. 

Nevertheless, many publications warn about serious COTS-related problems [Dargan 

95], [Carney, Oberndorf 97], [Brownsword et al. 98], [Boehm, Abts 99]. 



 
14 

 

We believe that the reason for the COTS integration problem, which is the 

main concern of the present study, is that COTS products are not developed for a 

specific application, and since they are integrated into a system, they are used in a 

certain context with its dependencies. 

 

The system, which consists of software and hardware components, is 

developed within specific development and target environments. Since COTS 

products can interact with different components and parts of the system 

environments, plugging the COTS software into the system can require integration. 

The present work considers the following types of integration problems: functional, 

non-functional, architectural style, architectural, and interface (Figure 1). To achieve 

the successful reuse of COTS products, all integration problems must be overcome. 

 

This problem is deepened by lack of COTS-specific software reuse models, so 

developers do not always understand the problems, and the known reuse approaches 

for in-house software do not work very well because of specific COTS-related 

problems. Existing COTS research, which is to be discussed later, has not provided a 

widely accepted COTS reuse model. 

 

Thus, the objective of this study is to develop a model for COTS reuse with 

emphasis on evaluation and integration that: 

1. takes into account development of in-house software; 
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2. includes both COTS evaluation and integration; 

3. makes few assumptions about the system and COTS products (any type of 

life-cycle, COTS software, in-house software, architecture, etc.); 

4. includes practical recommendations to assist the developers in reusing COTS. 

 

 

 

 

 

 

 

 

 

Figure 1. COTS Usage and integration problems. 

This model addresses the COTS incompatibility problem, and helps 

developers to select COTS products based on their predicted integration effort and to 

perform the actual integration. The practical use of this model will be the reduction in 

development effort due to the selection of appropriate COTS products and the use of 

packaged integration guidelines. 
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1.2. The proposed approach and organization of the dissertation 

We believe that the COTS reuse problem is very complex, and a simple 

solution will not suffice. As it will be shown in the chapter on the related research, the 

existing models of COTS reuse do not provide a universal solution for COTS 

selection and integration. Thus, the proposed approach is a set of related models 

(Figure 2); the arrows show dependencies between the models and point to the 

dependent models. 

 

 

 

 

 

 

Figure 2. The models used for the proposed COTS reuse process. 

1. The architectural model is intended to identify an appropriate architectural 

style for a COTS-based system. This model uses a set of variables that 

describes architectural properties of software components and systems and 

builds the partial relation of compatibility on the values of these variables. 

One architectural assumption is compatible with another one, if a component 

with the second assumption can be converted into a component with the first 

assumption. For a set of components, an assumption compatible with the 

assumptions of each component can be an assumption of the system that can 

use all the components of the set. This approach will help to identify the 
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architectural style of the system into which the software components will be 

integrated. 

2. The incompatibility model helps to detect early the integration issues. This 

model first classifies components of the system and its environment, and then 

it classifies failures of interactions between software and other components 

(incompatibilities) as syntactic and semantic-pragmatic. The latter are further 

sub-classified with respect to the exact number of components that cause an 

incompatibility; there are 1-, 2-, and n-order semantic-pragmatic 

incompatibilities. If software developers are going to integrate a software 

component, they can analyze the components that will interact with it to 

identify the potential incompatibilities. 

3. The integration problem model helps to find solutions for integration issues. 

The architectural and incompatibility models aid the integration problem 

model. This model classifies the integration problems according the feasible 

strategies for their solutions, such as re- implementation, modification, 

tailoring, architecture changes, architectural style changes, and glueware. It is 

also possible to map an incompatibility into an integration problem, so that if 

the incompatibility model helps to find a potential integration issue, the 

integration problem model will help to find a solution for this issue. 

4. The comprehensive reuse model offers a mechanism for identifying the 

appropriate information. This model originally was a general model for reuse 

of any kind of knowledge, but in this work, it was adapted for COTS 

integration. This model provides template to describe the system 
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requirements, the candidate reuse components, including COTS products, and 

procedures for tailoring the candidate reuse components so that they would fit 

the system requirements.  

5. The effort estimation models helps to estimate the integration effort. This 

model defines an algorithm that accepts as its input system requirements, 

COTS products characterization, and the organization’s productivities. Based 

in the inputs, the algorithm then calculates an estimation of effort required to 

integrate the COTS products into the system for the given organization. 

6. Finally, the COTS activity model provides the entire COTS’ evaluation and 
integration process. This model uses the comprehensive reuse model, the 

integration problems model, and the effort estimation model. The COTS 

activity model adds COTS-specific activities to the development life-cycle, so 

that COTS products can be evaluated and integrated during the development 

process. 

 

The architectural, incompatibility, integration problems, and COTS activity 

models present the contribution of this work. The comprehensive reuse model was 

developed by Basili and Rombach [Basili, Rombach 91] for reuse of objects of any 

kind, and it was tailored for reuse of COTS products in this work. The effort 

estimation model, while an original contribution, is not fully developed yet. 

 

Due to the complexity of the problem and the solution, it does not seem that it 

is easy to validate the entirety of the proposed models. Nevertheless, we present in 
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this work a partial analytical and empirical validation of the incompatibility, 

integration problem, and architectural models. This is also a contribution of this work. 

 

This dissertation is organized as follows: 

- The rest of Chapter 1 gives detailed notions of COTS and software component 

reuse (Section 1.3) and coverage of COTS-related problems beyond those 

mentioned in the present section (Section 1.4); 

- Chapter 2 gives an overview of related work; 

- Chapter 3 provides a brief description of the proposed COTS reuse process 

and its subsidiary models; 

- Chapter 4 contains detailed description of the COTS reuse process and an 

example of its usage; 

- Chapter 5 contains an analytical validation of the incompatibility and 

integration problem models using the architectural mismatch model from the 

University of Southern California [Gacek 97]; 

- Chapter 6 describes an empirical case study based on data from software 

engineering class projects at the Univeristy of Maryland; 

- Chapter 7 is the summary of this dissertation. 

 

1.3. COTS definition and software reuse notions 

The acronym "COTS" stands for Commercial-Off-The-Shelf, so we must 

define what is "commercial", and what is "off-the-shelf". The official definition of the 
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term "commercial" is given in the Federal Acquisition Regulations [Oberndorf 97]. A 

commercial item is defined as follows: 

1. property customarily used for non-governmental purposes and has been 

sold, leased, or licensed (or offered for sale, lease or license) to the general 

public 

2. any item evolved from an item in (1) through advances in technology and is 

not yet available commercially but will be available in time to satisfy the 

requirement 

3. any item that would satisfy (1) or (2) but for modifications customarily 

available in the commercial marketplace or minor modifications made to meet 

Federal Government requirements 

4. any combination of items meeting (1) - (3) above 

5. services for installation, maintenance, repair, training, etc. if such services 

are procured for support of an item in (1), (2), or (3) above, as offered to the 

public or provided by the same work force as supports the general public; or 

other services sold competitively in the marketplace 

7. a non-developmental item developed exclusively at private expense and sold 

competitively to multiple state and local governments 

 

As for the term "off-the-shelf", it can mean that the item is not custom-built, 

but is available on the market without attachment to any particular project, and it is 

the user who is responsible for its deployment and usage. It is suggested in 

[Oberndorf 97] that the salient characteristics of a COTS product are: it exists a 
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priori; it is available to the general public, and it can be bought (or leased, or 

licensed). 

 

There are different viewpoints regarding the issue whether or not COTS 

software users can change it. One definition of a COTS component is "a software 

component that has been bought from a third party and that a developer uses on an as-

is basis" [Vidger, Dean 97]. "If you modify the source code, it's not really COTS - 

and its future becomes your responsibility" is a similar viewpoint [Boehm and Abts 

99]. John McDermid suggests another definition that does not imply that COTS 

products cannot be modified. According to him COTS software products are 

"standard commercial software developed without any particular application in mind" 

[McDermid, Talbert 98]. A classification of software components with respect to 

their source and modification assumes that the source of a software component and 

the possible modifications of it are independent variables, and that the source code of 

a COTS component is available to its users [Carney, Long 00]. 

 

In this work, COTS products are assumed to be any reusable software 

components bought from a third party which can be used in one of following ways: 

- Black box reuse: no changes are allowed in the software that is being 

reused; the source code is unavailable [Neighbours 94]. 

- Glass box reuse: no changes are allowed, but the source code is available 

and can be seen [Workshop 89]. 
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- Gray box reuse: the source code is available and formally controllable 

changes are allowed [Workshop 89]. Another definition of gray box reuse 

is when the component provides its own extension language or application 

programming interface (API) thus allowing users to adapt it [Haynes et al. 

97]. 

- White box reuse: everything can be changed [Neighbors 94]. 

 

Mostly we expect black box reuse for COTS products, because it is unlikely 

that any changes can be made due to unavailability of the source code and vendor's 

copyright. In the current state-of-practice most COTS software products are usually 

available as black boxes, and we shall be concerned primarily with this case. 

Nevertheless, it is possible that some COTS products can be reused as glass box, gray 

box, and even white box reuse, so these cases should not be ruled out completely.  

 

As for the term "software component", it can be defined [Meyer 99] as a 

program element with the following properties: 

- other program elements (clients) may use the element 

- the clients and their authors do not need to be known to the element's 

authors 

The following classification of components is given in [Meyer 99]: 

1) by level of software process task 

- analysis components, which take advantage of reusability for system 

modeling 
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- design components, also known as patterns 

- implementation components that are actually executable pieces of 

software ready to be integrated in a working software system 

2) by level of abstraction 

- functional abstraction, such as subroutines and functions in traditional 

libraries, each of which covers one particular function 

- casual grouping, such as Ada packages or C files, gathering arbitrarily 

related elements 

- data abstraction, such as classes in OO languages, each of which covers a 

type of object 

- cluster abstraction (or framework) which covers a set of related data 

abstractions intended to work together according to preset schemes 

- system abstraction, which is the case of coarse-grained binary components 

such as COM and CORBA components; MS Word, used as a component, 

falls into this category 

3) by level of execution: 

- static components integrated at compile or link time which are not 

changeable without recompiling 

- replaceable components, like static components, but with variants that can 

be substituted dynamically 

- dynamic components integrated at execution time 

4) by level of accessibility: 
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- interface descriptions with no source available; many commercial 

components are distributed in this form 

- complete source with little or no information hiding 

- information hiding, with reuse through the interface and source available 

for inspection, discussion, and correction 

 

Commercially available components may vary significantly in size, 

granularity, and packaging; COTS software component then can be a procedure, a 

class, a whole library, a stand-alone application, an application generator, or even a 

problem oriented language [Gentleman 97]. 

 

1.4. COTS reuse issues 

We discuss the issues associated with COTS reuse besides those mentioned in 

the problem statement (Section 1.1). 

 

First, software development using COTS has a life cycle different from the 

life-cycle of conventional software development. A study at NASA Flight Dynamic 

Division [Parra et al. 97] showed that the COTS-based development process being 

applied there had the following steps:  

1. requirement analysis 

2. package identification, evaluation and selection 

3. non-COTS development 

4. glueware requirements and development 
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5. system integration and test 

6. target system installation and acceptance test 

7. discrepancy resolution 

8. sustaining engineering 

The whole development process consisted of a non-COTS development process 

(steps 1, 3, 5, 6, 7, and 8), which used the traditional waterfall software development, 

and COTS development (steps 2, 4, and 5). It was found that information flows bi-

directionally between COTS and non-COTS processes. 

 

Although COTS products do not require design and implementation, they 

have the following activities in the project life cycle [Wallnau et al. 98a]: 

- examine the marketplace 

- qualify and select one or more products 

- adapt the product to some specific system requirements 

- assemble the system 

- update the products as needed 

The first two activities relate to the procurement of COTS products, which itself is a 

hard task [Breslin 86], [Connell, Shafer 87], [Kontio 95], [Maiden et al. 97], [Wallnau 

et al. 98b]. This process is complicated by the characteristics of the products, and the 

need to satisfy many requirements. For example, an approach for COTS selection, 

The Systematic Process for Reusable Software Component Selection (OTSO), has the 

following phases [Kontio 95]: 

- search: all relevant candidates are looked for 
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- screening: the best of them are picked for further evaluation 

- evaluation: they are evaluated according to a number of criteria 

- analysis: on the results of the evaluation the best candidate is chosen 

- deployment: the chosen alternative is used in development 

- assessment: the success of reuse of the component is assessed 

 

COTS products selection must start early in the project so that the COTS 

products will be available in time for their integration. A possible risk here is to delay 

the choice and consequently slip the schedule. Another risk is to make a poor choice, 

which can make the integration very difficult and deteriorate the quality of the 

product. 

 

Integrating a component into the system may require tailoring the component 

or writing a considerable amount of code for wrappers and glue [Vidger, Dean 87], 

[Vidger et al. 98]. There is a risk that integration can be more expensive than 

implementing the required functionality from scratch [McDermid, Talbert 97]. COTS 

products integration is considered in detail in the next chapter. 

 

After the system is developed, maintenance of a COTS-intensive system is a 

specific problem, because of updates of the COTS products and replacements of 

COTS products in the system with other ones [Hybertson et al. 97]. On the other 

hand, the vendor can halt support when the product is still in use [Gentleman 97]. 

Another problem with COTS products is security [Voas 98b], [Lindqvist, Jonsson 
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98], [Zhong, Edwards 97]. There is no guarantee that a purchased product is safe; it 

can be just a memory leak, or even a Trojan Horse that will destroy the entire system. 

Finding and isolating faults in a COTS-based system can be very difficult, because 

the source code may not be available, and the COTS products and their interactions 

can be very complex. In this case special techniques must be used [Hissam, Carney 

00]. Finally, COTS products require developers to be familiar with them, and there is 

a risk that the learning curve is very steep [Gentleman 97]. This will consume a lot of 

developers' time and effort, again presenting a serious threat to the schedule. 

 

Generally, although use of COTS allows for not writing new software, the 

required effort can be comparable to development from scratch. There is evidence 

both in support of and against the use of COTS products [Dargan 95], [Carney, 

Oberndorf 97]. COTS products are not a universal solution; rather, they require a 

careful study every time they are used, and research needs to be done to reduce costs 

of COTS usage.  
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Chapter 2. COTS Related Research and the Integration Problem 

Identification 

 

A considerable amount of research has been dedicated to COTS software 

usage. COTS integration, selection, security, maintenance, and other issues have been 

addressed in the previous chapter. This chapter discusses research related to 

approaches to the evaluation and the integration of COTS software products. 

 

The first two sections outline known approaches to represent information 

about COTS. 

- Section 2.1 presents the Comprehensive reuse model that helps to identify 

information from a COTS component, what it offers, and how to relate the two 

[Basili, Rombach 91]. 

- Section 2.2 describes specification templates for COTS intended to present 

structured information about COTS products [Dong et al. 99]. 

 

- Section 2.3 presents research dedicated to non-functional properties of COTS 

products [Kunda, Brooks 99], [Schneidewind 99]. This research helps to classify 

the non-functional integration problems used in the proposed integration problems 

model. 

 

- Section 2.4 describes the existing effort estimation models for COTS 

development [Smith et al. 97], [Boland et al. 97], [Abts et al. 00]. The limitations 
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of these models are discussed to explain why another effort estimation model was 

proposed in this work. 

 

- Section 2.5 describes a general process for COTS integration (ICAP) [Payton et 

al. 99]. This and the following three sections describe the known component 

integration approaches. The limitations of these approaches are given, which 

justify the need for the integration model proposed in the present work. 

- Section 2.6 gives an overview of COTS integration models: the integration 

approach for distributed architectures [Vidger, Dean 97], the layered architecture 

C2 [Medvidovic et al. 97], Infrastructure Incremental Development Approach 

[Fox et al. 97], and the four-fold integration process [Brownsword et al. 00]. 

- Section 2.7 outlines standard architectures for component integration (OMA, 

COM, etc.) [Baker 97], [Box 98], [Giguere 97], [Dashofy et al. 99]. 

- Section 2.8 relates to scripting languages [Ousterhout 98]. 

 

- Section 2.9 gives an overview of the USC model of architectural mismatches 

[Gacek 97]. This model will be used later in Chapter 5 for analytical validation of 

the proposed incompatibility and integration problems models and expanding the 

integration problems classification. 

 

- Section 2.10 gives general approaches to software components integration [Davis, 

Williams 97], [Garlan et al. 95], [Shaw 95]. These works show how the 
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integration process, proposed in this work, relates to the current state-of-the-art in 

component integration techniques. 

 

- Finally, section 2.11 concludes the chapter, presenting limitations of existing 

research and giving the reasons for conducting the present study. 

 

2.1. The comprehensive reuse model 

The comprehensive reuse model is intended for reusing different artifacts, 

such as products, processes, and knowledge [Basili, Rombach 91]. The model 

describes the transformation of reuse candidates into required objects through a reuse 

process. 

 

Each reuse candidate is an object; its interactions with other objects constitute 

the object interface, and the characteristics left by the environment in which the 

object was created are called the object context. The system, in which the object is 

integrated, has its own system context. The reuse process consists of reuse activities. 

Each activity has its own means of integration or activity interface. The 

organizational support provided for the experience transfer across different projects is 

called the activity context. 

 

The reuse candidates are characterized in terms of: 

- Name : what is the object’s name? (e.g., Oracle, open_window) 
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- Function: what is the functional specification or purpose of the object? (e.g., 

DBMS, opening a window) 

- Use: how can the object be used? (e.g., product, process, knowledge) 

- Type : what type of object is it? (e.g., source code, executable module) 

- Granularity: what is the object’s scope? (e.g., system level, component-

package) 

- Representation: how is the object represented? (e.g., languages such as Ada, 

binary format) 

- Input/output : what external input/output dependencies of the object are 

required to completely define/extract it as a self-contained entity? (e.g., global 

data referenced by a code unit, formal and actual parameters of a procedure) 

- Dependencies: what additional assumptions and dependencies are needed to 

understand the object? (e.g., assumption about user’s qualification) 

- Application domain: for what application classes was the object developed? 

(e.g., ground support software for satellite, non-specified) 

- Solution domain: in what environment classes was the object developed? 

(e.g., waterfall life-cycle model, spiral life-cycle model) 

- Object quality: what qualities does the object exhibit? (e.g., level of 

reliability, correctness, user- friendliness, defect detection rate, predictability) 

 

The required objects are described much in the same way as the reuse 

candidates. However, a required object may change its characteristics during the 

actual process of reuse, and the emphasis is on the system where the object is to be 
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reused. The distance between the characteristics of a reused candidate and the 

required object in the system must be bridged in the reuse process. 

 

The reuse process can consist of several activities. Each reuse activity is 

characterized in terms of: 

- Name : what is the name of the activity? (e.g., identify_COTS, 

evaluate_COTS) 

- Function: what is the function performed by the activity? (e.g., select 

candidate objects that satisfy certain characteristics of the reuse requirements) 

- Type : what is the type of the activity? (e.g., identification, evaluation) 

- Mechanism: how is the activity performed? (in the case of identification, e.g., 

by name, by function, by type) 

- Input/output : what are the explicit input and output interfaces between the 

reuse activity and the enabling software evolution environment? (in the case 

of identification, e.g., description of the reuse candidates and reuse 

requirements) 

- Dependencies: what are other implicit assumptions and dependencies on data 

and information regarding the software evolution environment? (e.g., the time 

at which reuse activity is performed, relative to the enabling development 

process). 

 

Although this model was originally developed for general reuse of processes, 

products, and knowledge, in the present study we tailor it for COTS software 
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products. For example, it is difficult to measure the object quality of a COTS software 

component (especially if the source is not available), if the solution domain is not 

defined exactly (a general purpose COTS library). On the other hand, additional fields 

can be added to this characterization scheme, e.g., the target platform field was added 

to the scheme in the present work. 

 

2.2. Specification templates for COTS 

A specification template, similar to the comprehensive reuse characterization 

schemes, has been suggested for COTS components in [Dong et al. 99]. This template 

allows describing COTS software components in a uniform way. The template has 

the following structure: 

- component name: the name of the component describes its identity. 

- functional interfaces 

- structural aspects of the services: syntactical information, such as names, 

types and number of parameters, structural design information, and other 

static information 

- behavior aspects of the services: the state transition diagrams illustrating 

the control model, the data flow diagrams denoting the data model, the 

collaboration diagrams describing component behavior interactions, such 

as call sequences, and other dynamic information 

- assumptions: preconditions of using the functionality, architectural design, 

the global architectural design, and the construction process 

- promises: post-conditions 
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- invariants 

- temporal properties: time-related constraints 

- non-functional properties: performance, security, reliability, concurrency, etc. 

- applicability: as operating system, specific languages, tools, environments 

- standards: as CORBA, COM, and JavaBeans 

- related components 

- similar components: components offering similar services 

- collaborators: components with which this component can collaborate 

- sample uses 

 

2.3. Non-functional characteristics of COTS products 

Factors that support COTS component selection have been studied in [Kunda, 

Brooks 99]. A total of 51 factors related to social- technical criteria, evaluation 

(assessment), and the search for alternatives have been found. The social- technical 

criteria include compliance issues (functionality), socio-economic (non-technical) 

issues, product quality characteristics, and architectural styles and frameworks. 

 

Assessing COTS products’ reliability, maintainability, and availability (RMA) 

is considered in [Schneidewind 99]. These important aspects are hard to evaluate in 

COTS products because the source code is usually unavailable, but developers must 

address these issues to prevent deterioration in quality. In order to provide developers 

information on their RMA, it was proposed to certify COTS products. 
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2.4. Integrating Components Architectures Process (ICAP) 

An integration process based on assessment of interoperability between 

software components has been offered in [Payton et al. 99]. The suggested Integrating 

Components Architectures Process (ICAP) consists of three phases:  

- pre-integration: describes the architectures of participating components and 

determines interoperability problems 

- correspondence identification: choosing an integration strategy 

- integration: implementation, evaluation, and testing 

ICAP lets developers predict and overcome architectural conflicts between integrated 

software components. While is somewhat similar to the process proposed in the 

present study, ICAP is too high- level to be really applicable. 

 

2.5. Cost estimation models for COTS-oriented software development 

There are several existing methods for estimating the cost of COTS 

integration. COCOMO and SLIM cost estimation models have been modified for 

systems using COTS [Smith et al. 97], [Boland et al. 97]. Another cost estimation 

model specifically developed for COTS products is COCOTS (COnstructive COTS 

estimation cost model) [Abts et al. 00]. This model is a modification of COCOMO for 

software processes that use components when the source code is unavailable (black-

box COTS components). The results look satisfactory, and other estimation 

techniques can be adjusted for COTS development for early cost estimation. 

Nevertheless, one must keep in mind that they merely give a numerical estimation, 

and do not provide guidance for the integration process. Further, some important 
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factors, such as the system architecture, can be overlooked, giving an incorrect effort 

estimation. Finally, since these models require data from many projects across the 

industry to calibrate their parameters the data for such calibration may be scarce. 

 

2.6. COTS integration models 

We can now consider specific COTS integration methods that have been 

developed and applied. The first two integration methods use specific software 

architectures that are more suitable for COTS integration than the conventional ones, 

while the third integration method is based on a special COTS-oriented life-cycle. 

 

In the first integration approach, it is suggested [Vidger, Dean 97] that all 

components must be wrapped so that all interactions are performed only through the 

wrappers; further, glue provides interconnections between them. Although this 

approach is very sound and promises a solution of the COTS integration problem, it 

requires a very specific architecture. The actual software system, which was built 

using this approach, integrated ODBC-compliant databases, ActiveX components, 

object libraries, and web servers. The COTS components were not tightly coupled, so 

they worked together in a distributed system. However, this approach may not work 

as well for closely coupled COTS software products, such as those described in 

[Garlan et al. 97]. It is clear that the types of components that can be integrated using 

this method might be limited. 
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Another type of architecture suitable for COTS integration is C2 [Medvidovic 

et al. 97], which is a component- and message-based architectural style. C2 

architecture is a hierarchical network of concurrent components linked together by 

connectors (message routing devices) in accordance within a set of style rules. C2 

allows the use of heterogeneous components with their internal architecture. It has 

asynchronous message passing and makes no assumption on shared address space, or 

a single thread of control. These features allow reusing COTS products with different 

characteristics. Research has been conducted on using different off- the-shelf 

middleware in C2 architecture [Deshofy et al. 99]. However, C2 uses a layered style, 

i.e., components of upper layers can send messages only to components of lower 

layers thus limiting the number of COTS that can be used within this architectural 

style. 

 

One more integration approach is to use a special development life-cycle [Fox 

et al. 97], the Infrastructure Incremental Development Approach (IIDA), which is a 

combination of the classical waterfall development model and the spiral development 

model, and especially designed fo r COTS integration. The central structure of IIDA is 

the technology-based layer of the application, built upon the business-specific layer. 

In IIDA each version of the infrastructure is an increment that is integrated into the 

existing infrastructure baseline. Within each version, development proceeds in time-

sequenced stages with iterative feedback to the preceding stages of definition and 

analysis, functional design, physical design, construction, and test. Stages of the 

development cycle are augmented with a series of structured prototypes for COTS 
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product evaluation and integration. For each COTS family, the prototypes evolve 

from initial analysis prototypes for a make/buy decision to a series of design 

prototypes for COTS product selection and detailed assessment, and, finally, to a 

demonstration prototype that becomes part of the development test bed. 

 

Another proposed COTS integration process consists of four types of 

activities [Brownsword et al. 00]: 

- engineering activities: 

- requirements activities 

- architecture and design activities 

- marketplace activities 

- construction activities 

- configuration management activities 

- deployment and maintenance activities 

- evaluation activities 

- business activities: 

- COTS business case activities 

- COTS cost estimation activities 

- vendor and supplier relationships activities 

- license negotiation activities 

- project-wide activities: 

- CBS (COTS-based systems) strategy activities 

- COTS risk management activities 
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- CBS trade-offs activities 

- cultural transition activities 

- contract activities 

 

This model helps developers to build COTS-based systems through a timely 

combination of the activities of these four groups. However, the model primarily 

addresses the manager’s perspective of software development, and it is less helpful 

for developers who need to do COTS integration. 

 

2.7. Architectures for component integration 

Other COTS integration work regards the use of COTS to support integration. 

When integrating COTS products, some other suitable COTS products can be used as 

glueware. Two groups of software products seem to be useful for this purpose: 

component-based architectures with their middleware (OMA/CORBA, 

COM/ActiveX, JavaBeans), and scripting languages (Perl, Tcl, JavaScript, ReXX, 

etc). Other standards, such as HTTP and CGI, can also be helpful for COTS 

integration; in practice, Perl and ActiveX are used [Vidger, Dean 97]. 

 

Component standards, such as OMA/CORBA, COM/ActiveX, and 

JavaBeans, have emerged recently as an attempt to create open architectures oriented 

for reuse of components. 
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Object Management Group [Baker 97] proposes OMA (Object Management 

Architecture) and its underlying architecture CORBA (Common Object Request 

Broker Architecture) as a standard means for remote procedure calling and methods 

invocation between objects, which can be implemented in different programming 

languages. OMA also supports full object-orientation including inheritance. Objects 

that are compliant with CORBA can be easily integrated using it; if they are not 

compliant, a CORBA-compliant wrapper must be implemented for them. 

 

The Microsoft Corporation created its own object-based Component Object 

Model (COM) and an ActiveX interface system based on it [Box 98]. This is a binary 

standard that allows making calls between different objects, and distributed COM 

(DCOM) also allows for objects on different computers. COM does not support full 

object orientation (i.e., it does not support inheritance), but instead supports 

aggregation. A drawback of COM is that it only works on Win32 platforms. 

 

JavaBeans is a component architecture for Java-based objects [Giguere 97]. 

Another off- the-shelf middleware for Java is Java Remote Method Invocation (Java 

RMI) [Dashofy et al. 99]. 

 

Besides the commercial component architectures listed above, there exists 

research devoted to combining different architectural styles and software components 

with different architectural assumptions [Abd-Allah, Boehm 96], [Gacek 97]. 

Although these works provide a good overview of possible architectural mismatches, 
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they do not provide solutions and do not take into account other integration problems. 

Later in this work, we shall show correspondence between their model and our 

model, and propose solutions for their mismatches. 

 

2.8. Scripting languages 

Other COTS products that can be used for integration and glueing are 

scripting languages, which offer another solution for COTS integration [Ousterhout 

98]. They are intended for operating with components written in system programming 

languages; for example, Visual Basic is a scripting language for objects implemented 

in Visual C++, and JavaScript is a scripting language for HTML and Java. The 

scripting languages describe the interaction protocol of components. Scripting 

languages can be used only for components that are designed using specific 

conventions, so that they are not a universal solution for COTS integration. 

 

2.9. The USC model of architectural mismatches 

Architectural mismatches between software components were studied at the 

University of Southern California (USC). One of their most recent works [Gacek 97] 

describes 23 such architectural mismatches. These mismatches were found and 

classified using the following conceptual features: 

- dynamism (a system can spawn new components dynamically or they all exist 

statically) 

- data transfers (data and control information flows) 

- triggering (events can or cannot be triggered automatically) 
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- concurrency (the system does or does not permit concurrent subsystems, such 

as threads, processes, etc.) 

- distribution (the system is based on a single machine or has subsystems on 

different ones) 

- layering (the system has or does not have a rigid hierarchy of component 

layers) 

- encapsulation (the system has restriction for accessing some components) 

- termination (whether the system terminates or does not terminate its 

execution) 

Besides the conceptual features above, the classification of mismatches involves 

different types of architectural connectors between software components: 

- call 

- spawn 

- data connector 

- shared data 

- triggered call 

- triggered spawn 

- triggered data transfer 

- shared machine 

 

Connectors and conceptual features define architectural mismatches; for 

example, the spawn connector and the conceptual feature of dynamism define a 

mismatch when a spawn is made into a subsystem, which originally forbade them. 
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Not all combinations of connectors and conceptual features cause a mismatch, and 

some combinations correspond to more than one mismatch. In Chapter 5 we shall 

discuss all the architectural mismatches in connection with proposed models. 

 

2.10. The Problem of COTS Products Integration 

Although use of COTS products has several issues, we will consider only the 

issue of integration and the effect of the integration cost on COTS selection.  

COTS components can suffer from general inter-component mismatches; for 

example, representation, communication, packaging, synchronization, semantics, 

control, and other properties [Shaw 95]. However, not all of them can work for the 

black-box reuse, which is the main case for the COTS products. To overcome these 

mismatches between components A and B, the following techniques can be used 

[Shaw 95]. It is usually possible to consider A as a COTS software component and B 

as an in-house component, since A and B in these examples are symmetrical. 

1. Change A's form to B's form: by completely rewriting one of the 

components to work with the other. Rewriting an in-house component in 

order to match the COTS component is feasible, but it can be very 

expensive depending on the in-house component. 

2. Publish an abstraction of A's form: APIs publish the procedure calls used 

to control a component, and in addition, Open Interfaces usually provide 

some abstractions. The feasibility of this approach depends on whether an 

abstraction of a COTS component is available. 
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3. Transform from A's form to B's form on the fly: some distributed systems 

do on-the-fly conversions from big-endian (the most significant byte of a 

word is stored first) to little-endian (the most significant byte of a word is 

stored last) representations. This approach may require very complex and 

expensive software for on-the-fly conversion.  

4. Negotiate to find a common form for A and B: modems commonly 

negotiate to find their fastest common protocol. This approach seems to be 

achieved for hardware only at this time. 

5. Make B multilingual: a portable Unix code will run on many processors, 

and implementing multilingual in-house software is feasible, but can be 

expensive. 

6. Provide B with import/export converters: some applications provide 

representation conversion services. This can work if there are 

representation mismatches (data format, etc.). 

7. Introduce an intermediate form: it can be used as a neutral base for 

components with different representations.  Feasibility of this technique 

will depend on whether the COTS component supports an intermediate 

form. 

8. Attach an adapter or wrapper to component A: some code can be written 

to leverage the difference between the interacting components. Writing a 

wrapper is a flexible solution; the wrapper can be tailored for any 

particular mismatch. 
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9. Maintain parallel consistent versions of A and B: A and B can maintain 

their own different forms, which depends on the availability of parallel 

forms of COTS software; maintaining parallel forms for in-house software 

can also be a problem. 

It seems that the most common integration technique, especially for COTS and black-

box reuse is writing glueware that can be of different types [Vidger, Dean 97].  

- Wrappers that are software designed and implemented to provide the only 

access to the wrapped component; 

- Glue that is the software (middleware) that manages the integration of the 

components; 

- Tailoring that enhances the functionality of a component in ways that are 

supported by the component vendor (gray-box reuse). 

 

A serious challenge for COTS integration can be differences in architectural 

assumptions among different COTS products, and between the COTS products and 

the target system [Davis, Williams 97], [Garlan et al. 95], [Shaw 95]. It was 

determined that using just four COTS products in one project with different 

architectural styles can increase the required effort [Garlan et al. 95].  

 

2.11. Conclusions 

Use of COTS products in software development should now grow. There are 

many advertisements for companies which include COTS integration in their 

services, on the Internet, and reports about projects that used COTS products are 
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available [Garlan et al. 95], [Boland et al. 97], [Parra et al. 97], [Rowe 97], [Swanson, 

MacMagnus 97], [Vidger, Dean 97], [Balk, Kedia 00], [Crnkovic, Larsson 00], 

[Morisio et al. 00], [Seacord 00]. Although currently far from being a "silver bullet," 

COTS products are a reasonable approach for software development. An important 

issue of COTS reuse is the integration of COTS components into the system. It may 

not be an easy task because the problem of software reuse was not solved 

satisfactorily for industrial software development. Moreover, COTS products are 

more difficult to integrate than in-house software due to their incompatibility, 

inflexibility, complexity, and transience. Usually COTS products must be tailored, 

and some glueware written for their integration. The known approaches for 

integration use either a special development process [Fox et al. 97], or creating 

special architectures with specific types of COTS products [Vidger et al. 97], 

[Medvidovic et al. 97]. Nevertheless, we can conclude that the existing COTS reuse 

research is not entirely satisfactory, and the following problems persist:  

1. Too high- level – sometimes researchers approach a problem from a manager’s 

viewpoint, omitting low-level details, thus making their ideas less useful for 

developers. 

2. Fragmentary – sometimes researchers attack a particular problem, such as 

integration, evaluation, or security, without connections to other issues. For 

example, typical works on COTS evaluation do not contain detailed 

information on COTS integration, although the cost of COTS usage should 

include integration costs. 
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3. Narrow – sometimes there are too many specific assumptions. For example, 

the proposed architectures for integrating COTS products use narrow 

assumptions about the COTS products and the architectural design of the 

system. 

 

Practitioners might be interested in a general approach for COTS reuse, which 

would include COTS evaluation, integration, and the connection between them, and 

which is the objective of this study. Although the proposed model is still somewhat 

fragmentary, because it addresses primarily COTS selection and integration, it is an 

attempt to find a balance between the high- levelness and the narrow, while trying to 

be both grounded and general. 
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Chapter 3. The proposed solution for COTS integration and evaluation 

 

The proposed approach for COTS integration and evaluation process is based 

on the following models (Figure 3): 

 

 

 

 

 

 

Figure 3. The models used for the proposed COTS reuse process. 

1. Architectural model [Yakimovich et al. 99] helps to identify an appropriate 

architectural style for integrating COTS products into the system. 

2. Incompatibility model [Yakimovich et al. 99b] is a low-level model of 

interactions that helps early prediction of the possible incompatibilities between 

components (including COTS software) of a software system and its environment. 

3. Integration problems model [Yakimovich et al. 99b] gives a high- level 

classification of integration issues and possible integration strategies to overcome 

them. 

4. Effort estimation model for COTS integration giving means to estimate COTS 

integration effort.  

Architectural model Incompatibility model 

Integration problems 
model 

Comprehensive 
reuse model 

Effort estimation 
model 

COTS activity model 
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5. Comprehensive reuse model [Basili, Rombach 91] allows for identifying 

appropriate information about reuse candidates (including COTS software), the 

requirements for the system, and of reuse activities. 

6. COTS activity model describes the whole COTS reuse process by augmenting 

the software development life-cycle with COTS-specific activities. 

 

First, we give an outline of the COTS activity model showing their 

interactions with the other models. Then we present other models (except the 

comprehensive reuse model, which was described in Chapter 2), and Chapter 4 

provides a full description and an example of application of the COTS activity model.   

 

3.1. The COTS activity model 

In this study, we do not assume any particular life-cycle model (e.g., waterfall, 

spiral, etc.). However, the proposed model assumes that it is possible to add specific 

COTS activities to a software development process that contains the conventional 

phases of requirement analysis, design, coding, and testing. 

 

The main idea of the proposed reuse process is to combine evaluation with 

integration. The present work evaluates COTS products with respect to the integration 

effort only, leaving aside issues such as security, vendor support, maintenance, etc., 

which can be considered in a future work. 

We assume that it is impossible to evaluate COTS products during the early 

stage of software development because some important information about the project 



 
50 

is not yet known, e.g., the system’s architectural style and architecture. If developers 

select a COTS product based only on its functionality, there is a risk that they will run 

into integration problems later on due to COTS products’ incompatibility with the 

system’s architecture. Another assumption about effort estimation is that the 

integration strategies (techniques) that are actually applied for overcoming integration 

problems must be considered when COTS products are evaluated. 

 

The COTS activity model consists of the following are COTS-specific 

activities, which are attached to appropriate life-cycle phases (Fig. 4):  

- Organization characterization is intended to obtain information about the 

organization to find later effort estimation. This activity does not generally 

depend on the particular project, so it may be performed even outside the life-

cycle of a specific project. At this point we already can see a necessity to have a 

mechanism for identifying information and for structural presentation, and this is 

the reason for using the comprehensive reuse model.  

- High-level COTS products and project characterizations collect information 

about the COTS market and the project (system’s requirements). The search for 

COTS products and their characterization is best performed after the project 

characterization, because information about project requirements can focus 

market search on specific COTS products. Once a COTS product has been 

characterized, information can be stored to avoid a repeat characterization of the 

same product in the future. 

 

Requirements analysis 

Organization 
characterization 

Project characterization 
(high- level) 

COTS products characterization 
(high- level) 

COTS functionality assessment (effort estimation based on functionality) 
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Figure 4. COTS-related activities in a life-cycle. 

- COTS functionality assessment is to obtain an effort estimation based on 

functional and non-functional integration issues. This effort estimation uses 

information from organization, high- level project, and high- level COTS product 

characterizations. If no suitable COTS products are found here then either the 

system’s requirements must be renegotiated, or developers must implement the 

required functionality.  
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- COTS architectural style design is done early in the design phase. An analysis of 

architectural integration issues is done to give an effort estimation based on 

architecture. This effort estimation uses information from the organization, high-

level project, and high- level COTS product characterization, and the outcome 

affects the requirements and the system’s architecture. If the effort required in 

integrating the COTS products into the system’s architecture is too high, then 

developers can either find other COTS products, or change the system’s 

architecture. 

- Low-level COTS products and project characterization are done after the 

completion of COTS architecture design, and COTS products are selected to 

obtain low-level information necessary for COTS integration. 

- COTS integration (design, coding, and testing) is performed to design and 

implement glueware. The integration can also include COTS adapting, when 

white- and gray-box COTS products are modified in order to fit into the system. 

Analysis of architectural and interface integration problems is done using 

information from organization, low-level project, and low-level COTS products 

characterization. If the cost of the glueware after its design is found to be 

prohibitive for further implementation, other COTS products can be selected.  

  

If there are any considerable changes in the organization, in the COTS market, 

or in the requirements, then the appropriate COTS activities (organization 

characterization, COTS products characterization, and project characterization) can 

be performed again, which can cause re- iteration of the whole COTS reuse process. 
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There are three activities that estimate effort: COTS functionality assessment, 

COTS architectural style design, and COTS integration (design). The effort 

estimations are based on prediction of integration work required for overcoming 

incompatibilities between the COTS products and other parts of the system and its 

environment. Therefore, the COTS reuse process must include models for estimating 

effort, finding incompatibilities, and identifying integration solutions, including 

designing the system’s architectural style. These models will be described in the 

following sections. 

 

3.2. The architectural model 

The architectural style and architecture for a COTS-based system must reflect 

the architectural assumptions of the integrated COTS products. In this work, we 

consider the following architectural assumptions: component packaging, type of 

control, type of information flow, synchronization, and binding [Shaw, Clements 97]. 

However, this list of assumptions is not final and can change; for example, we have 

added triggering and spawning after we performed the analytical validation of the 

proposed models (Chapter 5). 

 

First, we introduce the notion of compatibility, which is usually applied to 

programming languages, e.g., “compiler X is ANSI compatible,” but in this work the 

definition is expanded to include other component characteristics. 
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We say that assumption A is compatible with assumption B, if software 

components with assumption B can be relatively easily converted into components 

with assumption A. For example, the synchronous type of synchronization is 

compatible with the asynchronous type, because asynchronous components can be 

made synchronous by adding a loop waiting when a message arrives. If assumption A 

is compatible with assumption B then B is convertible into A, and in this case we 

write: A=B, or B=A. 

 

If A=B and B=C then it possible to convert a C-compliant component into a 

form with assumption B and then into a form with assumption A. Therefore, the 

relation among compatible components is transitive. 

 

Assumption C is a common upper element for assumptions A and B if it is 

compatible with both (i.e., C=A and C=B). Assumption C is the minimal common 

upper element for assumptions A and B if C is their common upper element and there 

exists no assumption D such that C=D, C?D, and D is a common upper element for A 

and B. We are going to study their possible values with respect to the compatibility 

relation and to build partially ordered sets of values for the architectural assumptions; 

this will help in integrating COTS software products without additional 

modifications. 
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The system’s architecture must allow both for usage of in-house software and 

all the selected COTS products. If a COTS product can be modified in order to suit 

the architectural style (e.g., porting a COTS product to the desired operating system 

or converting it to the required programming language), the cost of the required 

modification must be estimated. If the COTS products cannot be modified or if is too 

expensive, the approach based on compatibility can be used. First, COTS products 

and the baseline architectural style are characterized with respect to their architectural 

assumptions, and the values of their assumption variables are found. Then the 

common upper element is found for each set of values for each assumption. The 

result is a set of values that are compatible with the assumptions of the baseline 

architecture and the COTS products. The claim is that the architecture described by 

the resulting assumptions will allow integration of the COTS products and in-house 

software [Yakimovich et al. 99]. If the common upper element was also minimal then 

the cost of transition from the baseline architecture to the new one is be minimal. The 

effort required for transition to the new architecture is the sum of the effort of 

changing the in-house software, the effort of writing wrappers for in-house and COTS 

software, and the effort of writing glue for the whole system. This estimation is used 

for decision on the COTS product and the final architecture. Below we describe the 

values of the architectural assumptions and give an example of applying this 

approach. 

 

Component packaging discusses how a component is packaged, e.g., 

programming languages, binary formats. Although there are potentially infinite 
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number of all possible languages and other packaging types, four principal classes of 

the values can be found: executable programs, shared libraries, object modules, and 

source code modules. The executable programs are compatible with everything else 

because all components can be wrapped as executable programs. Source code and 

object modules can be converted into shared libraries, and the source code can be 

compiled into an object code. Thus, we have the following ordering of these classes 

(Fig. 5). 

 

 

 

 

 

 

Figure 5. Ordering of the types of packaging. 

Type of control signifies the assumptions made about providing control flow 

to the component. The possible types of assumptions are multiple processes, multiple 

threads, centralized control, and no control. A component with no assumptions can be 

used as a single process (centralized control) or put into a thread or a process. A 

component, assuming that it has centralized control, can be wrapped into a thread. 

This is true, however, only if its packaging allows for this, thus raising a question 

about dependency between different architectural assumptions. A thread in turn can 

be converted into a process (Fig. 6). 
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Figure 6. Ordering of the types of control. 

Information flow refers to the type of protocol used in inter-component 

interactions: data (message passing, shared data), control (procedure calls, remote 

procedure calls), or mixed. A glue code with mixed information protocols can be used 

to facilitate interactions between components with pure control and data protocols 

(Fig. 7). 

 

 

 

Figure 7. Ordering of the types of information flow. 

Synchronization refers to whether or not a component blocks when waiting 

for a response (synchronous or asynchronous). Asynchronous components can be 

made synchronous by adding a loop that waits for a message arrival (Fig. 8). 

Figure 8. Ordering of the types of synchronization. 

Mixed control-data protocols 

Data flow protocols Control flow protocols 

Synchronous 

Asynchronous 

Multiple processes 

Centralized control 

No assumption 

Multiple threads 



 
58 

Binding refers to how components are attached to connectors, and how the 

participants of interactions are determined. The types of binding can be divided into 

five classes: static binding (e.g., procedural languages), compile-time dynamic 

binding (e.g., object-oriented languages), run-time dynamic binding (e.g., CORBA, 

COM), topological dynamic binding (e.g., in pipes-and-filters architectures), and 

mixed binding that support different bindings simultaneously (e.g., CORBA plus 

C++). It seems that static binding is convertible in any other binding, and mixed types 

of binding are compatible to other types (Fig. 9). 

 

 

 

 

 

Figure 9. Ordering of the types of binding. 

Later in this study, an example will demonstrate how the characterizations of 

architectural assumptions are used for architecture design of the COTS-based 

systems. The values of the variables describing the assumptions may be refined in a 

future work, as well as the set of variables itself. However, we believe that this 

approach has a potential for development of COTS-based systems and can be applied 

in practice. 

 

Mixed types of binding 

Topological dynamic 
binding 

Run-time dynamic 
binding 

Compile-time 
dynamic binding 

Static binding 



 
59 

3.3. The incompatibility model 

This model is intended for early prediction of all the potential 

incompatibilities between a software (especially COTS) component and other parts of 

a software system and its environment. It should give developers an early warning 

about integration problems and help estimate the integration effort. 

 

We assume that the inter-component incompatibilities are essentially failures 

of inter-component interactions and only information about the local environment of 

a software component being integrated is necessary to predict its incompatibilities. 

We need to know about how it interacts with other components at the intermediate 

level, but we do not need any global assumptions about the system, except its 

topology (what components and connectors constitute the system). In order to classify 

the incompatibilities, therefore, we should study the interactions first. 

 

First, the components interact with other system components, and with the 

system environment. The system components can be either software or hardware 

(excluding everything related to the environment, such as CPU and memory, but 

including devices directly controlled by the system, such as on-board devices) that are 

used by the system. The environment can be of the development phase, which 

includes compilers, debuggers, and other development tools; or it can be the 

environment of the target system, which includes Operating Systems, virtual 

machines (Java), interpreters (Basic), and other applications and utilities used by the 

target system. 
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Figure 10. Interactions of software components. 

Two main layers can be distinguished in the inter-component interactions: 

- Syntactic layer, which defines the representation of the syntax rules of the 

interaction, e.g., the name of invoked function; the names, types, and the order of 

the parameters or data fields in the message, etc.;  

- Semantic-pragmatic layer, which defines the semantic and pragmatic 

specification of the interaction, i.e., what is the functionality and how it is 

performed by the component. For example, invoking the function "SQRT(x)" 

calculates the square root of the argument x and returns it to the caller. However, 

in this work we do not consider semantic and pragmatic issues separately. The 

semantic-pragmatic incompatibilities can be classified according to the exact 

number of components that caused the interaction to fail: 

- 1st order semantic-pragmatic incompatibility is when components can be put 

together, but a component does not work according to the requirements 

(wrong, missing, extraneous functionality, or non-functional problems, such 

as usability) or has an internal error.  

- 2nd order semantic-pragmatic incompatibility refers to when components can 

be put together, they satisfy requirements, but ambiguities in their interaction 
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cause a problem. The reason can lie in different interpretations of the same 

data; for example, metric units or imperial units. 

- Nth order semantic-pragmatic incompatibility is when components can be put 

together, and each component and each pair works, but a larger group of 

components has a problem, e.g., insufficient memory for two programs or data 

sharing violations. 

Below we present examples of different incompatibilities (Table 1): 

 

 

 

 

 

 

Table 1. Interaction incompatibilities. 

1. interactions with software 

1.1. syntactic: 

1.1.a. different types of information flow, e.g., control instead of data. 

Type of component System Environment 
Type of 
incompatibility layer 

Software Hardware Development Target 

Syntactic 1.1a, b, c 2.1a 3.1a 4.1a 
Semantic-pragmatic 
1st order 

1.2a 2.2a 3.2a 4.2a 

Semantic-pragmatic 
2nd order 

1.2b 2.2b 3.2b 4.2b 

Semantic-pragmatic 
nth order 

1.2c 2.2c 3.2c 4.2c 
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1.1.b. different types of binding: static, dynamic compile-time, 

dynamic run-time, topological, etc. As a result a component cannot 

find another one. 

1.1.c. different interface protocol: different number of parame ters or 

data fields, or different types of parameters or data fields.  

1.2. semantic-pragmatic: 

 1.2.a. 1st order refers to an internal problem. These incompatibilities 

appear when the COTS product does not match the required 

functionality (e.g., a function performs addition instead of 

multiplication), or due to its poor quality it still does not work properly 

(an internal error). It could also be that the integrated software is solely 

responsible for the failure of interaction with the COTS product. 

1.2.b. 2nd order refers to different assumptions between two 

components, including the issue of synchronization. These 

incompatibilities are products of a mismatch between the COTS 

product and other components surrounding it. Even when two 

components have correct functionality, they can fail to work together 

due to some differences. For example, if one object expects to receive 

the size of an angle in radians, but another sends the size in degrees, 

the result can hardly be correct; another example of a mismatch is 

between an asynchronous and a synchronous component. 

1.2.c. Nth order refers to a conflict between several software 

components. Even when the COTS product works correctly and 
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correctly interacts with other components, some incompatibilities can 

appear as the result of a combined interaction with several other 

software components. For example, an object that controls rotation of 

a spacecraft receives the command for rotating n degrees from a 

commanding object, but occasionally there is another commanding 

object, which sends the same command at the same time in the system. 

Every single interaction is correct, but the spacecraft rotates twice as 

fast as it should. 

2. interactions with hardware  

 2.1. syntactic: 

 2.1.a. different type of protocol. A software component cannot work 

with a piece of hardware, because they assume different protocols 

(e.g., TCP/IP and Decnet). 

2.2. semantic-pragmatic: 

2.2.a. 1st order refers to wrong functionality of hardware or the COTS 

component. A hardware component does not work correctly (e.g., a 

printer does not support the Cyrillic alphabet), or the COTS 

component causes a failure. 

2.2.b. 2nd order refers to different assumptions between software and 

hardware, and an interaction between software and hardware 

components does not work correctly. For example, if a program tries 

to print a Cyrillic text, but the printer has a different coding for the 

Cyrillic alphabet, the output will be unintelligible. 
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2.2.c. Nth order refers to a conflict between several software 

components over hardware, and this results in failure. For example, if 

there are several applications simultaneously accessing a single printer 

then the output will be unintelligible. 

3. interactions with the Development Environment 

 3.1. syntactic: 

3.1.a. For example, the environment does not understand the 

packaging of a software component (e.g., a C program can not be 

compiled by a Fortran compiler because of a different component’s 

representation).  

 3.2. semantic-pragmatic: 

3.2.a. 1st order refers to wrong functionality of the environment or the 

COTS component. The environment does not work properly (e.g., a 

defect in the compiler version), or the component has an error (e.g., a 

program can not be compiled because of a syntax error in it). 

3.2.b. 2nd order refers to different assumptions between the software 

component and the environment. A software component cannot 

interact with the environment (e.g., a program is written in an old 

dialect of a language and can not be compiled by a newer compiler).  

3.2.c. Nth order refers to a conflict between several software 

components over the environment. An interaction among several 

software components and the development environment causes an 
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incompatibility (e.g., two or more C modules cannot be compiled or 

linked together because of a name collision).  

4. Interactions with the target environment  

4.1. syntactic: 

4.1.a. Platform type: the environment does not understand the 

packaging of a software component (e.g., a program uses another OS, 

or an interpreter cannot run a program written in another language). 

4.2. semantic-pragmatic: 

4.2.a. 1st order refers to wrong functionality of the environment or the 

COTS component; this occurs when the environment does not work 

properly (e.g., the OS crashes), or the component has an internal fault 

(e.g., a memory violation in a program).  

4.2.b. 2nd order refers to different assumptions between the software 

component and the environment; this occurs when a software 

component does not interact with the environment correctly (e.g., the 

OS version performs some functions used by the component in a way 

other than expected by the component’s developers). 

4.2.c. Nth order refers to a conflict between software components over 

the environment, including the control issue. An interaction among 

several software components and the environment causes an 

incompatibility (e.g., a conflict between two object-oriented 

frameworks in a one-process program for the control flow [Sparks et 

al. 96]). 
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 Developers can use this model to find all the potential incompatibilities 

between a software component to be integrated and other component of the system 

and its environment. First, the developers should analyze syntax supported by the 

components; if two interacting components have different syntax rules, there can be 

syntactic incompatibilities. The developers should then analyze matching between the 

components and their specifications; if they are different there can be 1st order 

semantic-pragmatic incompatibilities. The next step is to look at each pair of 

interacting components; there can be 2nd order semantic-pragmatic incompatibilities. 

Finally, all groups of three and more interacting components are to be analyzed to 

identify potential nth order semantic-pragmatic incompatibilities. We believe that the 

incompatibility model can allow for exhaustive search of potential integration 

problems of software components. 

 

3.4. The integration problems model 

The incompatibility model, introduced in the previous section, is a low-level 

one, describing the interactions between components on the physical level. This 

model can be used for thorough analysis of the interactions and for finding all the 

potential incompatibilities. However, this model does not provide possible solutions 

for the incompatibilities and its overall perspective may be at too low a level for 

developers that use the model. We have to introduce another conceptual model of 

integration problems and integration strategies. Developers can use this model to 

identify the required modifications of the system for solving the integration problem. 
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We also give a mapping between the incompatibilities and integration problems 

(Table 2). 

 

Different integration problems have different solutions, but generally we can 

find five types of problems with related solution techniques. A type of related 

integration techniques is called an integration strategy. We first define six integration 

strategies. We then define five problem types and the appropriate integration 

strategies for each problem type.  

 

The following integration strategies can be identified: 

1. Tailoring: sometimes COTS developers give to users ways to adjust the 

component’s properties by changing its parameters without modifying the 

component. This strategy is possible when the component allows gray-box 

reuse. 

2. Modification: if the COTS component’s source code is available (white-box 

reuse), developers can modify the component to solve certain integration 

problems. 

3. Re-implementation: a component that does not satisfy certain conditions can 

be re-implemented in order to overcome problems. Re-implementation and 

following strategies can be used when only black-box reuse of COTS 

components is allowed. 

4. Glueware: certain minor problems, such as different names, types of 

arguments, etc., can be overcome using a relatively simple code that is placed 
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between the interacting software components to enable their interactions. A 

specific case of glueware is a wrapper, which is put around a component so 

that all interactions with the component must pass through it. 

5. Architectural changes: if the code required to solve an integration problem is 

complicated, it must be included in the system as an independent component, 

and the system’s architecture modified accordingly. For example, adding a 

special monitor can solve a limited resource conflict; however, this does not 

require changing the overall system’s architectural style. 

6. Architectural style changes: an integration problem can be so severe that the 

system’s architectural style must be changed. For example, integration of a 

CORBA component may result in the use of SOM architecture by the whole 

system. 

 

We assume that some incompatibilities can cause problems of different types. 

For example, syntactical software incompatibilities can be caused by different types 

of binding, which can require a special architectural solution for the whole system, or 

by a different order of parameters that can be overcome by a simple wrapper. We now 

identify the following five types of integration problems and the corresponding 

integration strategies: 

Functional problems refer to all the 1st order semantic-pragmatic 

incompatibilities that imply wrong functionality, and the integration strategy 

is re-implementation or modification of faulty components. 
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Non-functional problems: if non-functional requirements, such as portability, 

maintainability, usability, performance, etc., are not met, then the COTS 

software should be discarded, or the unsatisfactory components must be re-

implemented. 

Architectural style problems: these problems can lead to change in the overall 

system’s architecture, but the incompatibilities causing them are different. In 

this work we consider the following architectural assumptions of software 

components with their respective incompatibilities: packaging (syntax 

development and target environments), control (nth order semantic-pragmatic 

target environment), information flow (syntax software), binding (syntax 

software), synchronization (2nd order semantic-pragmatic software) [Shaw 

95], [Yakimovich et al. 99]. The integration strategy used is architectural style 

changes, which imply that the system’s architecture is transformed in order to 

overcome architectural incompatibilities. 

Architectural problems: problems of this type are conflicts between components 

in the system (e.g., deadlocks). The related incompatibilities are n-order 

semantic-pragmatic software and hardware. The possible integration strategies 

include changing the system’s configuration without changing the overall 

architectural type (architectural changes) and possibly using glueware in easy 

cases. 

Interface problems: these problems are incompatible interfaces between the 

components caused by some syntax and 2nd order semantic-pragmatic 
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software and hardware incompatibilities (other than architectural and 

architectural style problems). The possible integration strategy is glueware. 

 

The integration problems can be solved using tailoring or modification, but 

the solution strongly depends on the particular COTS component being integrated and 

the options made available by its developers. So we do not connect the tailoring and 

modification integration strategies to any integration problem type. 

 

Table 2 below gives the correspondence between the incompatibilities and the 

types of integration problems with their integration strategies. However, this table is 

based on current experience (see examples of incompatibilities in Section 3.3), and 

cannot be seen as final.  

 

The notation of this table is: F – functional problem; NF – non-functional 

problem; AS – architectural style problem; A – architectural problem; I – interface 

problem. The columns of the table represent types of components, and the rows 

represent types of interactions layers; together they define incompatibilities. Thus, 

integration problems corresponding to an incompatibility can be found in the 

corresponding cell. 

Type of component System Environment 
Type of interaction 
layer 

Software Hardware Development Target 

Syntactic I,AS I I,AS I,AS 
Semantic-pragmatic 
1st order 

F,NF,AS F,NF F,NF F,NF 

Semantic-pragmatic 
2nd order 

I,AS I I,AS I,AS 
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Semantic-pragmatic 
nth order 

A A A,AS A,AS 

 

Table 2. Types of integration problems and incompatibilities. 

It appears that several incompatibilities have more than one corresponding 

integration problem. However, it is possible to find the exact type of integration 

problem by first identifying a possible solution as the following procedure shows: 

1. Is the problem system-specific? Can modifying the system without the 

component modification solve it? If yes, then the problem can be further 

classified. 

1.1. Can writing a simple glueware solve the problem? If yes, this is an interface 

problem. 

1.2. Can changing the system’s architecture without changing the overall 

architectural style solve the problem? If yes, this is an architectural problem. 

1.3. Can changing the system’s architectural style solve the problem? If yes, this 

is an architectural style problem. 

2. Is the problem requirements-specific? Is modifying the component the only 

solution? If yes, this is either a functional or non-functional problem. 

 

For example, if a syntax software-software incompatibility has been found, we 

have to decide what type of integration problem it is. If we believe that a simple 

wrapper can be sufficient (e.g., there is a different function name), this problem can 

be classified as interface. If there is a serious problem (e.g., different type of binding) 
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that is going to affect the whole system’s architectural style then this is an 

architectural style integration problem. 

 

In this chapter, we have introduced the types of integration problems. Later 

(Chapter 5), we shall a give a more detailed classification of the integration problems. 

 

3.5. The effort estimation model 

The total COTS software usage cost is the sum of acquisition costs, further 

development costs, and integration costs [Kontio 95]. However, in this study we 

concentrate primarily on the integration cost (effort) estimation and the actual product 

integration. Evaluation and integration are tightly connected, because the integration 

cost depends on the actual integration process. The proposed effort estimation model 

is bottom-up and algorithmic: each of the COTS product components is analyzed with 

respect to all its possible interactions with the system to be integrated in. If an 

incompatibility is found, the effort to overcome is the amount of integration work 

divided by the productivity of organization for this type of work. The overall 

integration cost is the sum of overcoming all the incompatibilities between the COTS 

product’s components and the system. 

 

If it is impossible to give a precise numerical value of the integration effort, 

then the user can try ranking the candidate COTS products with respect to their 

integration efforts, so that they can be compared among themselves.  
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To estimate the integration effort the developers have to answer the following 

sequence of questions: 

- What are the incompatibilities? - What is the difference between the system's 

requirements and the COTS products? This difference can be found using the 

incompatibility model. 

- How are they to be overcome? - What strategies can be used to integrate the 

COTS software products (re- implementation, glueware, architectural changes, 

etc.)? The integration problems model can help identify possible solutions. 

- What is the amount of integration work? - This is a quantitative estimation of the 

above two items. The amount of work is expressed in lines of code or another 

numerical unit (e.g., function points). This work does not suggest any procedure 

for estimating this amount, but we believe that an expert opinion or industry-wide 

data can be used for that. 

 

Different types of incompatibilities can be found at different phases of 

software development when the relevant data is available. Therefore, by using the 

same algorithm we have three effort estimation models for overcoming different 

types of integration problems: 

- COTS functionality assessment effort estimation model based on functional 

integration issues 

- COTS architecture design effort estimation model based on architectural issues 

- COTS integration effort estimation model based on resolving conflicts and 

implementing glueware 
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The algorithm of applying this model at the three COTS activities can be 

represented as follows: 

1. Characterize the productivity of the organization with respect to different 

integration strategies (or even techniques, if it makes the analysis more precise). 

This can be done separately from the project, because this is organization-

dependent data rather than project-dependent. So it should be updated with the 

changes within the organization. 

2. Characterize the system being developed in order to find later incompatibilities 

between the system and the candidate COTS products. The type of 

incompatibilities found depends on the time in the project life-cycle. 

Incompatibilities that cause functional and non-functional integration problems 

can be detected in the requirements analysis phase. Incompatibilities that cause 

architectural style integration problems can be detected early in the design phase. 

Interface and architectural incompatibilities can be found only late in the design 

phase. 

3. Search the COTS market, find, and characterize the set of suitable COTS products 

P in order to find incompatibilities between the system being developed and the 

candidate COTS products. 

4. For each evaluated COTS product p from P, find out which components C are 

actually to be integrated in the system (depending on the system’s requirements). 

4.1. For each component c from C, find out its incompatibilities I with the system and 

its environment. 
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4.1.1. For each incompatibility i from I, estimate how much work is to be done to 

resolve it. 

4.1.2. Using this amount of work and the productivity of the organization, which is 

obtained in step 1, compute the integration effort estimation e as the amount 

of work divided by the productivity. 

4.2. For all incompatibilities I of a component c, sum up the effort estimations e to 

obtain integration effort estimations E(c). 

5. For all components C of a COTS product candidate p, sum up these effort 

estimations E(c) to obtain integration effort estimation E(p). 

6. The COTS products from the set P can be now compared using these overall 

integration effort estimations E(p). 

This effort estimation model may not seem ready for practical use; however, 

elaboration of this model can be a part of future research. 
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Chapter 4. The COTS Activity Model 

 

This chapter presents the details of the COTS activity model, which defines 

the entire process of COTS evaluation and integration. 

 

We shall demonstrate the proposed model in the following fictitious example 

where we will select a 3D-graphics engine for a software system. The graphics engine 

should be a library that can be linked to the programs of the system. The graphics 

engine is not required to work with any special hardware and no specific non-

functional requirements exist (it is assumed that most commercially available 

graphics engines have sufficient security, usability, etc.). Besides drawing 3D images, 

the graphics engine must be able to save and restore images in files. The 

programming language for system implementation is not yet known, but the system 

must run on Macintosh. 

 

Special COTS activities are performed in the suggested reuse process for the 

effort evaluation of COTS integration, the assessment of its impact on the software 

development, and the actual COTS integration. We will describe COTS activities and 

demonstrate the whole process using the 3D-graphics engine example. 

 

4.1. The organization characterization 

Even when incompatibilities between the COTS product and the system are 

known, additional information is required to estimate the effort needed to bridge the 



 
77 

difference, because effort is a function of two parameters: the difference itself and the 

expertise of the organization in the specific field. Thus, the context of the 

development organization must be characterized with respect to the expertise of the 

organization in the integration strategies (Figure 11).  

 

 

 

 

 

 

Figure 11. High- level project characterization. 

Knowledge of the integration strategy productivities of the organization can 

serve as the basis for trade-offs when choosing COTS products. For example, if 

developers have a high level of domain expertise, but they are less experienced with 

platforms, it might be better to select a COTS product with less required functionality 

(the developers can fill the gaps themselves) but one that is perfectly suitable for the 

required platform. If developers have little expertise with peripheral devices, the 

COTS product to be used should have few problems with the system’s hardware. It 

might be difficult to give exact quantitative estimations of the organization 

capabilities, but even qualitative estimations can be helpful for COTS selection. 

 

The information about the productivities of the development organization can 

be obtained from the experience of the past projects or by other means, e.g., from 
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estimations based on the people’s education and experience. A questionnaire can be 

developed to gather this information directly from the developers.  

 

Name: organization characterization 

Function: a characterization of the development organization with respect to its 

productivity 

Type: characterization 

Mechanism: subjective judgment or historical base- line measurement data 

Input: historical data, questionnaires, and other means to find useful data about the 

organization 

Output: the productivity values for specific integration strategies: 

- glueware 

- architectural changes 

- architectural style changes 

- re-implementation – domain expertise 

- modification 

- tailoring 

Dependencies: This activity can be performed outside of the life-cycle, but it should 

be re-done every time the organization changed considerably. The information 

obtained from organization characterization will be used for deciding on the COTS 

product selection at COTS functionality assessment, COTS architecture design, and 

COTS integration activities.  
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Example: To obtain the information on the organization’s productivity the 

following questionnaire could be used: 

Questionnaire. 

What is the productivity of the organization (based on your past project history) with 

respect to the following areas? If you do not have historical data to answer these 

questions, you can use expert opinion. 

1. Domain functionality          ____________ LOC/staff-hour; 

2. Architectural style changes ____________ LOC/staff-hour; 

3. Architectural changes         ____________ LOC/staff-hour; 

4. Interfaces                            ____________ LOC/staff-hour. 

Other information about the organization, such as platform experience, is not used in 

this example, although it can be determined. The hypothetical organization has the 

following productivity (found using the past project data) that is required for the main 

integration strategies: 

Domain functionality (3D-graphics) – 10 LOC/staff-hour; 

Architectural style changes – 5 LOC/staff-hour; 

Architectural changes – 20 LOC/staff-hour; 

Interfaces (glueware) – 25 LOC/staff-hour. 

Then a group of experienced developers with a large domain experience was hired for 

the new project. Consequently, the domain functionality productivity increased to 15 

LOC/staff-hour, which was reflected in the organization data used for COTS 

integration. 
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4.2. The high-level project and COTS products characterizations 

The high- level project and COTS characterization are complimentary within 

the comprehensive reuse model, so we can consider them together. The goal of the 

high- level project characterization is to clarify project requirements with respect to 

possible COTS integration, and provide information to software engineers who are 

responsible for COTS selection to let them know what to look at. The high- level 

COTS products characterization is intended to describe the candidate COTS products 

using the same template that is used for project characterization, so that developers 

can match the templates for the project and the COTS products to find the differences 

between the requirements and the reuse candidates (COTS products). 

 

The high- level project characterization can be described as follows (Figure 

12): 

 

 

 

 

 

Figure 12. High- level project characterization. 

Name: high- level project characterization 

Function: a characterization of the project requirements based upon the templates 

below, 
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81 

Mechanism: using comprehensive reuse templates 

Input: requirements document(s), information about the COTS software product 

market 

Output: high- level data about the project (as the comprehensive reuse template) 

Dependencies:  

Input: this activity is to be done during early requirements analysis phase. 

Information on the input/output interfaces can be added during the design 

phase (it may not be required earlier). 

Output: the output information will be used by COTS functionality assessment 

and COTS architectural style design activities. 

 

High- level COTS products characterization can be defined as follows (Figure 

13): 

 

 

 

 

 

 

 

Figure 13. High- level COTS products characterization. 
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Type: characterization and, possibly, identification 

Mechanism: using comprehensive reuse templates 

Input: descriptions of COTS products from the market, system requirements and/or 

the high- level project characterization if the project characterization activity has been 

done before 

Output: high- level data about the candidate COTS products (as the comprehensive 

reuse template) 

Dependencies: 

Input: this activity can be done early during the requirements analysis when 

the desired COTS functionality is known or even outside the life-cycle (as an 

independent market characterization). 

Output: this information will be used at COTS functionality assessment and 

COTS architectural style design activities. It can be helpful to do this activity 

after the high-level project characterization to use the project characterization 

for COTS selection. Anyway, the requirements documents can be used to find 

out what functionality is needed and what COTS products can be useful.  

 

The output characterization templates can give a high- level description of a 

required set of functionality covered by COTS, e.g., graphical users interfaces, 

mathematical libraries, etc. The project characterization describes what functionality 

is needed and what is the system’s context, while the COTS products characterization 

describes what functionality is provided by the COTS products and what is their 
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required context. However, since the templates for both activities are similar, we 

provide only a template for COTS products characterization.  

 

Name : what is the product’s name? (This may not be available for the project 

characterization.) 

Function:  

Project characterization: what are the functional requirements for the 

product?  

COTS products characterization: what is the functional specification of the 

product? 

Packaging :  

Project characterization: what are the types, granularities, and representations 

of COTS products that can be integrated into the system?  

COTS products characterization: what are the representation, type, and 

granularity of the product? 

Non-functional requirements:  

Project characterization: what are the requirements of the product concerning 

the user? [Mylopoulos et al. 1992], [Kunda, Brooks 99]?  

COTS products characterization: what are the specifications of the product 

concerning the user? 

The list of non-functional requirements can include: 

- efficiency 

- maintainability 
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- performance 

- reliability 

- usability 

- security 

This list of requirements is not final and can be revised in the future; further, there is 

no specification on how to measure these variables. 

Hardware :  

Project characterization: what is the hardware used in the system (not related 

to the platform)?  

COTS products characterization: what hardware is used by the product? 

This hardware does not include platform hardware that is controlled through the OS 

(CPU, memory, etc.), but is controlled directly by the system, such as on-board 

devices. Moreover, only devices controlled through low-level (input/output ports) are 

considered here. If a piece of hardware is controlled through operating system calls, 

we consider it as a part of the target platform, and if it is controlled using a software 

device driver, we consider it as software. 

Development platform:  

Project characterization: what is the development platform of the system? 

COTS products characterization: what is the development platform for the 

product? If the product is an executable program, this item is not applicable. 

The characterization includes product representation, such as programming language, 

and other specifications about the development environment where the product can be 

used. The following information can be used: 
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- operating system 

- programming language, compilers 

- linker 

- other development tools (e.g., profilers, graphics editors) 

- required libraries 

Target platform:  

Project characterization: what kind of platform is the system designed for?  

COTS products characterization: what platform is required for using the 

product? 

This information can include 

- operating system 

- required libraries and other run-time support software 

- required hardware (memory, CPU, disk space, devices, etc.) 

Input/output :  

Project characterization: what type of interfaces does the system’s software 

components use? This information can become available only during the 

design phase. 

COTS products characterization: what interfaces does the COTS product’s 

component have? 

The high- level model requires high- level information, such as information flow type 

(control or data), binding (static, dynamic, etc.), and synchronization (synchronous or 

asynchronous). 
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The project and COTS products characterization scheme has the following 

differences from the original one [Basili, Rombach 91]. The field ‘Use’ is omitted 

because we only consider software products. The fields ‘Type’, ‘Granularity’ and 

‘Representation’ are included in the new field ‘Packaging’. The ‘Application domain’ 

field is not used because most COTS products are not bound to a particular domain 

(horizontal reuse). The ‘Solution domain’ field is not used because this information 

may not be available for most generic COTS products (e.g., GUI, data bases, math 

libraries). The information from the ‘Object quality’ field is included in ‘Non-

functional requirements’ with other user-oriented characteristics. The scheme for 

project characterization is changed similarly. However, the proposed characterization 

scheme is tentative and can be changed if its usage in practice reveals any problems. 

 

Example: Project characterization: the requirements for the engine (the 

project) are defined as follows according to the high- level characterization scheme: 

Function: drawing 3-dimensional objects, supporting input and output from 

files for 3D images (it could be a more detailed list of required functions, but 

for this example it is not relevant). 

Packaging: a function or class library that will be used with the program being 

developed, but where the programming language has not been defined. 

Hardware: not relevant (no special hardware is used). 

Non-functional requirements: not relevant (we consider that there are no 

special non-functional requirements in this example). 
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Development platform: not defined at this point, but will be defined later 

during the design phase. 

Target platform: Macintosh. 

Input/output: not defined at this point. 

 

COTS products characterization: after the initial COTS software market 

search, three products were found to be the main leads in the technology: OpenGL, 

QuickDraw3D, and Direct3D [Thompson 96]. OpenGL is a function library available 

for a number of languages and platforms, although its capabilities are somewhat 

limited (the required functions for saving images in files are not supported). 

QuickDraw3D is an object-oriented library available for both Windows and Mac 

platforms; it can be called directly from C/C++ only, but it provides functions that let 

us read and write images in a common 3-D metafile (3DMF) format. Direct3D is a 3-

D API for Windows, which can be used from C/C++ only, but provides functions for 

reading and writing images from files. These products are characterized as follows: 

Name: OpenGL. 

Function: 3D-graphics, however it does not provide functions for 

saving/restoring images in files.  

Packaging: a function library available in C/C++, Ada, FORTRAN, Java. 

Hardware: no special requirements. 

Non-functional specifications: not relevant for this example. 

Development platform: C/C++, Ada, FORTRAN, Java. 

Target platform: Unix, Win NT/95, Macintosh. 
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Input/output: depending on the implementation language, generally control 

flow, procedural, static binding. 

 

Name: QuickDraw3D. 

Function: 3D-graphics, file functions are provided. 

Packaging: object-oriented library, callable from C/C++. 

Hardware: no special requirements. 

Non-functional specifications: not relevant for this example. 

Development platform: C/C++. 

Target platform: Win NT/95, Macintosh. 

Input/output: control flow, synchronous, object-oriented. 

 

Name: Direct3D. 

Function: 3D-graphics, file functions are provided. 

Packaging: object-oriented library, callable from C/C++. 

Hardware: no special requirements. 

Non-functional specifications: not relevant for this example. 

Development platform: C/C++. 

Target platform: Win NT/95. 

Input/output: control flow, synchronous, object-oriented. 
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4.3. The COTS functionality assessment 

The main goal of this activity is to select a candidate set of COTS products 

from the market and decide whether or not to use COTS at all. This activity uses 

functional characteristics, non-functional characteristics (e.g., security, performance, 

reliability, etc.), platform, and hardware requirements for effort estimation. The 

COTS products, whose integration effort with respect to the criteria above is found 

reasonable by the developers, become candidates for further evaluation and usage. If 

no suitable COTS products are found, the developers can try to renegotiate the 

requirements or to implement the required functionality without using COTS. 

 

In this work, we do not give a specific suggestion for the requirements 

checking process. Nevertheless, we assume that known techniques of component 

classification and retrieval [Albrechtsen 92], [Girardi, Ibrahim 94], [Jeng, Cheng 95] 

can be adapted. An approach for COTS component evaluation based on Analytic 

Hierarchy Process can be used for COTS evaluation [Kontio 95], [Polen et al. 99]. 

Another feasible approach for evaluating COTS packages with respect to the system’s 

requirements is based on use cases and scenarios [Maiden at al. 99]. 

 

This reuse activity can be described in the terms of the comprehensive reuse 

model as follows (Figure 14):  
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Figure 14. COTS functionality assessment. 

 

Name : COTS functionality assessment 

Function: selection of reuse candidates from the COTS market according to 

the system’s requirements and organization context 

Type : evaluation, prediction 

Mechanism: evaluation by function, non-functional characteristics, platform, 

and hardware characteristics; platform and hardware requirements can be seen 

generally as part of non-functional requirements, but they are made separate in 

this scheme for the sake of convenience 

Input :  

- characterizations of the COTS products available in the market (from 

high-level COTS product characterization) 

- organization context (from organization characterization) 

- system’s requirements (from high-level project characterization) 

Output:  
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- cost (effort) values for integration of selected COTS products with respect 

to considered attributes of the COTS products and the decision for use 

COTS or writing new software 

- the set of COTS software products – candidates for reuse, whose 

integration effort estimation (see above) is reasonable; one or more COTS 

products can be selected at this point 

- a future integration process must include the lists of the selected COTS 

product’s functionality classified according to its correctness, relevance, 

and hardware compatibility, including what needs to be re- implemented if 

the COTS product is integrated 

- if no potentially useful COTS products are found, we need to specify what 

requirements could not be met using COTS products, so that these 

requirements can be renegotiated or implemented from scratch 

Dependencies:  

Input: it must be done after the requirements analysis phase, 

organization, project, and COTS product characterization activities. 

Output: the results of this activity will be used during COTS 

architecture design and COTS integration activities. 

 

The COTS functionality assessment is defined as a sequence of the following 

steps: 

- Functionality check: this step aims to evaluate the gap between the COTS 

product and the requirements in functionality. This step covers certain semantic-
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pragmatic 1st order incompatibilities in the COTS product (other semantic-

pragmatic 1st order incompatibilities in the COTS product are covered by the 

non-functional requirements check) that represent functional and non-functional 

integration problems. Missing, wrong, or extraneous functionality will require re-

implementing from scratch. If the benefits of the COTS product usage are less 

than the cost of re-implementation, the COTS product should not be used. 

- Non-functional requirements check: this step aims to evaluate the gap in non-

functional characteristics between the COTS product and the requirements. This 

step covers some semantic-pragmatic 1st order incompatibilities; if they prove 

unsatisfactory and cannot be improved, the COTS product should not be used at 

all.  

- Platform check: this step can be applied if the decision on the system’s platform 

has been done. The goal of this step is to evaluate the gap between the platform 

(development and target) of the COTS product and the system, to determine 

syntax incompatibilities between the COTS product and the development and 

target environments. If the COTS products cannot be used on the desired platform 

(a particular OS or programming language) and cannot be ported then it must be 

discarded; however, if developers feel they can port the product on the required 

platform, they can keep this product while taking into account the effort of its 

porting. 

- Hardware compatibility check: this step aims to evaluate the gap between the 

hardware required by the COTS product and the hardware available in the system, 

and this step covers syntax, semantic-pragmatic 1st and 2nd order 
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incompatibilities between the COTS product and the hardware. First, the 

hardware required by the COTS product and the hardware of the system must be 

checked; the system can lack the hardware required by COTS, or they can be 

incompatible. In this case the possible solutions are modifying COTS or adding 

the required hardware. If all possible solutions are too expensive then the COTS 

product should not be used.  

 

Example: we perform here a functionality assessment for the three COTS 

products using the comprehensive reuse model. 

 

OpenGL: 

Functionality check: the input/output functions for saving images in files are missing, 

and the gap in effort needed that can be estimated at approximately an additional 

1500 LOC. 

Non-functional requirements check: We do not assume any special requirements in 

this example. 

Platform check : Macintosh is supported. 

Hardware check. We do not assume any special requirements in this example. 

 

QuickDraw3D: 

Functionality check. QuickDraw3D satisfies the requirements completely. 

Non-functional requirements check. We do not assume any special requirements in 

this example. 
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Platform check . Macintosh is supported. 

Hardware check. We do not assume any special requirements in this example. 

 

Direct3D: 

Functionality check. Direct3D satisfies the requirements completely. 

Non-functional requirements check. We do not assume any special requirements in 

this example. 

Platform check . Macintosh is not supported, so Direct3D can be used only if it can be 

ported to Macintosh. This gives us a gap equivalent (considering the size and 

complexity) of 100000 LOC. 

Hardware check. We do not assume any special requirements in this example. 

QuickDraw3D satisfies all requirements – no additional effort is required;  

OpenGL will require re-implementation of some functionality, the estimated effort is 

(1500 LOC)/(15 LOC/staff-hour) = 100 staff-hours;  

Direct3D does not work on Macintosh, so we need to port it to the desired platform. 

The estimated effort is  

(100000 LOC)/(5 LOC/staff-hour) = 20000 staff-hours. 

The integration effort for Direct3D is so much higher than for OpenGL, that if 

developers do not change the target platform to Win NT/95, Direct3D is impractical 

to use. So the result of this activity is the set of candidates: QuickDraw3D that does 

not require additional work at this point, and OpenGL, which lacks several functions; 

however, OpenGL is retained because it has some advantages over QuickDraw3D in 

other aspects. 



 
95 

 

4.4. The COTS architectural style design 

The purpose of this activity is to select the COTS products most suitable for 

the system’s architectural style, and to properly modify it to allow integration of the 

COTS products. This activity uses integration effort estimation based on architectural 

properties. If this integration effort for all candidate COTS products is too high, the 

developers can go back to COTS functionality assessment and try to find other COTS 

products or change the baseline architectural style to reduce the integration effort. 

Other radical solutions include renegotiating the requirements and re- implementing 

the required functionality from scratch. 

 

This activity is described as follows (figure 15): 

 

 

 

 

 

 

 

Figure 15.COTS architecture design. 
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Function: to select one COTS product to be integrated out of the candidate 

set, and to design a software architectural style and then an architecture in 

which the selected COTS products can be integrated 

Type : evaluation, prediction 

Mechanism: by evaluation of architectural assumptions of the COTS products 

and the system (the baseline architectural style); the criteria for selecting the 

COTS products are the estimation of the effort required to insert the COTS 

products into the system’s architecture 

Input :  

- system requirements (from project characterization) and the baseline 

architecture 

- candidate COTS products (from COTS functionality assessment) 

- organization context (from organization characterization) 

Output:  

- the cost (effort) values for COTS candidates integration effort with respect 

to their architectural properties, and the decision to integrate the candidate 

COTS products or to select other ones 

- the COTS product to be integrated, or, possibly, more than one COTS 

product (for each set of required functionality) for backup purpose 

- the system’s architectural style 

- if no COTS product could be selected from a set of candidates then we 

have to assume that architectural problems caused this failure; this 
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information can be used for re-selecting the candidate COTS products, 

renegotiating the requirements, or implementing new software 

Dependencies:  

Input: this activity must be done early during the design phase, after 

the COTS functionality assessment. 

Output: the output of this activity will be used during low-level COTS 

product characterization, low-level project characterization, and 

COTS integration activities. 

 

The candidate COTS products and the baseline architectural style (that is the 

original architectural style chosen for the in-house software) are analyzed for the 

purpose of evaluation with respect to the COTS integration from the viewpoint of 

developers in the context of the project and the development organization. This 

activity analyzes architectural style integration problems, and applies architectural 

style changes according to the architectural model. 

 

Example: after the design phase the baseline architectural type was decided to 

be a concurrent system (a set of interacting real-time Ada programs). We will 

estimate what architectural style and architecture can fit both the in-house software 

(Ada programs) and the COTS products. QuickDraw 3D (QD3D) is implemented in 

C++, and it cannot be compiled with the Ada programs. Therefore, we must look at 

the highest level of the system where the library can be integrated. The architectural 
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assumptions of the system, the QD3D library, and their minimal common upper 

elements are given in the table below (Table 3). 

 

Table 3. The architectural assumptions of the real-time system, the QD3D library and 

their minimal common upper element (the resulting architecture). 

The minimal common upper element has the following values: 

Packaging: since it is not possible to link QD3D to the processes, it must be put into a 

separate wrapper-program that will work as a driver for the library. 

Control: the library driver can be an independent process in the system; it can have a 

closed loop of control in which it reads messages from processes-clients, translates 

them into calls for the library objects, and sends back the results. 

Information flow: the information flow in the system must support the conversion 

between Ada and C++, which can be done by the library wrapper. 

Synchronization: the interactions in the system can become synchronous because of 

the library. This can pose some risk to the system’s performance because the library 

can start long computations without sending back a response to the callers. 

Variables The baseline 
architecture (the 
whole system) 

QuickDraw 3D The minimal 
common upper 
element 

Packaging Executable 
programs 

C++ class library 
(source code) 

Executable programs 

Control Multiple processes No assumption Multiple processes 
Information flow Control, remote 

procedure calls 
Control, method 
invocation 

Control, mixed 

Synchronization Asynchronous Synchronous Synchronous 
Binding Static Compile-time 

dynamic 
Compile-time 
dynamic 

Triggering  Not used Not used Not used 
Spawning  Not used Not used Not used 
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Binding: the C++ objects in the library require dynamic binding. To refer to a 

particular object created by QD3D, its actual address must be used. So the driver and 

the user processes must be able to handle such addresses, or the user processes can 

use symbolic representations of the objects translated into the real object addresses by 

the library driver. 

Triggering: it is not used by QD3D. 

Spawning: it is not used by QD3D. 

Estimated effort: is the effort spent on the driver for QD3D, including accepting 

messages from other processes and translating them into the proper C++ calls, 

supporting handlers for the C++ object available for the Ada programs, and correcting 

synchronization. To obtain effort estimation, we have to take into account the number 

of functions in the library, the method of naming the objects (emulation of object 

orientation), and the implementation of synchronization between the driver and the 

Ada programs.  

 

Now we try another candidate, OpenGL, that has an implementation as an 

Ada function library. Consequently, OpenGL can be added as a library to the 

programs and it can be considered at the level of the individual programs. The 

architectural assumptions of the system, the OpenGL library, and their minimal 

common upper elements are given in the table below (Table 4). 
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Table 4. The architectural assumptions of the Ada programs, the OpenGL library and 

their minimal common upper element (the resulting architecture). 

In this case OpenGL can be included in the Ada programs as an additional library 

without changing the system’s architecture from baseline one. 

Packaging: Ada. 

Control: centralized. 

Information flow: control, procedure calls. 

Synchronization: synchronous. 

Binding: static. 

Triggering: not used. 

Spawning: not used. 

Estimated effort: no special effort required for integration OpenGL in this 

architecture. 

 

At this point the developers must make a choice between QuickDraw3D and 

OpenGL. The use of OpenGL is cheaper than the use of QD3D from the perspective 

Variables The baseline 
architecture (the 
programs) 

OpenGL The minimal 
common upper 
element 

Packaging Ada program Ada function 
library 

Ada program 

Control Centralized No assumption Centralized 
Information 
flow 

Control, 
procedure calls 

Control, procedure 
calls 

Control, procedure 
calls 

Synchronization Synchronous Synchronous Synchronous 
Binding Static Static Static 
Triggering  Not used Not used Not used 
Spawning  Not used Not used Not used 
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of the system’s architectural style, although in order to choose between them other 

functional and non-functional characteristics must be considered as well. It is known 

from the COTS functionality assessment that OpenGL lacks certain functions. The 

question is what is cheaper: re- implementing these functions or writing wrappers for 

QuickDraw3D? Let us suppose that the amount of work required for architectural 

integration of QuickDraw3D was estimated as 5000 LOC; then we can estimate the 

required effort as 

(5000 LOC) / (5 LOC/staff-hour) = 1000 staff-hours.  

The integration effort for OpenGL (re- implementation of the file functions) was 

estimated as 100 staff-hours. Since the effort estimation for QuickDraw3D (1000 

staff-hours) is much higher than the effort estimation for OpenGL (100 staff-hours), 

the latter is a better candidate. 

 

4.5. The low-level project and COTS products characterizations 

The low-level project characterization activity receives information about the 

project from the design phase and COTS architectural style design activity. 

 

 

 

 

 

Figure 16. Low-level project characterization. 
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Function: a characterization of the system’s requirements based on the template 

below. 

Type: characterization 

Mechanism: using comprehensive reuse templates 

Input: design document(s), including descriptions of the system’s architecture and 

the interface layouts 

Output: low-level data about the project for use by other COTS activities (as the 

comprehensive reuse template) 

Dependencies:  

Input: this activity is to be done during design phase after COTS architectural 

style design activity.  

Output: the output will be used by COTS integration activity. 

 

The low-level COTS products characterization activity receives selected for 

integration COTS products from the COTS architectural style design activity.  

 

 

 

 

 

 

Figure 17. Low-level COTS products characterization. 
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Function: a characterization of the COTS products based on the template below. 

Type: characterization 

Mechanism: using comprehensive reuse templates 

Input: documentation for the selected COTS products 

Output:  low-level data about the candidate COTS products (as the comprehensive 

reuse template) 

Dependencies: 

Input: this activity should be done during the design phase after the COTS 

architectural style design activity. 

Output: the result of this activity will be used at the COTS integration activity. 

 

Unlike the high- level characterization, low-level information, such as the 

exact interface description, is used here. Nevertheless, the characterization schemes 

for both levels are generally similar. The following template can be used for 

characterization of the COTS products: 

 

Name : what is the product’s name? (This may not be available for the project 

characterization.) 

Function:  

Project characterization: what are the functional requirements for the 

product?  

COTS products characterization: what is the functional specification of the 

product? 
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Packaging :  

Project characterization: what are the types, granularities, and representations 

of COTS products that can be integrated into the system?  

COTS products characterization: what are the representation, type, and 

granularity of the product? 

Hardware :  

Project characterization: what hardware is used in the system (not related to 

the platform)?  

COTS products characterization: what hardware does the product use? 

Information about the exact hardware protocols, such as port numbers, can be 

included in the low-level characterization. 

Development platform:  

Project characterization: what is the development platform of the system? 

COTS products characterization: what is the development platform for the 

product? If the product is an executable program, this item is not applicable. 

This includes the product representation, such as the programming language, and 

other specifications of the development environment where the product can be used. 

The following information can be used: 

- operating system 

- programming language, compilers 

- linker 

- other development tools (e.g., profilers, graphics editors) 

- required libraries 
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Target platform:  

Project characterization: what kind of platform is the system designed for?  

COTS products characterization: what is the platform for using the product? 

This information can include 

- operating system 

- required libraries and other run-time support software 

- required hardware (memory, CPU, disk space, devices, etc.) 

Input/output :  

Project characterization: what type of interfaces does the system’s software 

components have? This information can become available only during the 

design phase. 

COTS products characterization: what interfaces does the COTS product’s 

component have? 

Input/output : what interfaces do the system software components have? Information, 

including detailed specifications, is required primarily for the low-level 

characterization.  

Dependencies: certain implementation details, such as possible interdependencies 

between components, are included in the low-level characterization. 

 

Example: Project characterization: the system requires a set of functions for 

2- and 3-dimensional graphics. Each function is described here according to the 

comprehensive reuse template. We show only one function, others are similar. 

Function: drawing a rectangle. 
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Packaging: Ada procedure. 

Hardware: not relevant. 

Development platform: standard Ada-95 compiler for MacOS. 

Target platform: MacOS, OpenGL library. 

Input: procedure Rect(x, y, w, h: Real); where  

(x,y) – the coordinates of the left bottom corner of the rectangle; 

w – its width; 

h – its height. 

Output: none. 

Dependencies: the graphics mode must be initialized prior to calling this 

function. Other settings (color, mode, texture) can also be applied. 

 

COTS products characterization: each function of OpenGL, which is 

potentially used, is described here according to the comprehensive reuse template. 

We show here only one function of OpenGL. 

Function: drawing a rectangle. 

Packaging: Ada procedure. 

Hardware: not relevant. 

Development platform: a standard Ada 95 compiler for MacOS. 

Target platform: MacOS, OpenGL library. 

Input: procedure glRectf(x1:GLfloat;  y1:Glfloat; x2:Glfloat; y2:GLfloat); 

where  

(x1,y1) – the coordinates of one vertex of the rectangle; 
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(x2,y2) – the coordinates of the opposite vertex of the rectangle. 

Output: none. 

Dependencies: from the OpenGL manual - see also glBegin, glVertex. 

 

4.6. The COTS products integration 

After the architecture has been designed during the COTS architectural style 

design activity, the selected COTS products can be completely integrated, so that the 

goal of this activity is to completely enable COTS products to be used within the 

project.  

The list of COTS products’ functionality to be re- implemented is received from the 

COTS functionality assessment activity. Information from low-level project and COTS 

product characterization is used to find the architectural and interface integration 

problems. This part of the reuse process includes re- implementing functionality, 

adapting COTS product, resolving conflicts, and writing glueware. Although this 

activity is mainly constructive, it yields effort estimation for resolving architectural 

integration problems and implementing glueware. 

 

If some COTS products are discarded, the developers can go back to COTS 

architecture design or even to COTS functionality assessment and try to select 

another COTS product, considering the lessons from the rejected COTS product. 

Other possible options are renegotiating the requirements and re- implementing the 

required functionality from scratch. 
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The COTS products integration activity is defined as follows according to the 

characterization scheme for reuse activities in the comprehensive reuse model (Figure 

17): 

 

 

 

 

 

 

 

Figure 18. COTS integration (design). 

 
Name : The COTS products integration 

Function: integrate the selected COTS produc t into the system 

Type : integration, prediction 

Mechanism: writing glueware, modifying COTS, writing new software; 

estimation of the effort in writing glueware is used for COTS evaluation 

during this activity 

Input 

- low-level characterization of the COTS product to be integrated 

- characterization of the organization 

- the system’s design, requirements, and architecture (low-level project 

characterization) 

Project characterization 
low-level templates System’s architecture 

COTS integration 
(design) 

COTS products 
set III low-level 
characterization 

templates 

Productivity templates Incompatibility classification: 
interface issues and conflicts 

COTS products to integrate + 
effort estimation for integration + 
glueware design + new software 

design 
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- the decisions on the COTS products taken during the previous activities 

(e.g., what to re- implement) 

Output:  

- effort estimation for COTS integration with respect to resolving conflicts 

and interface, mismatches, decision on integrating the selected COTS 

products or choosing other ones 

- glueware 

- new software 

- modified COTS products 

- if the integration cost is too high to afford COTS usage we need to 

determine what problem is the reason for it; the lessons learned here 

should help us redesign the system or select other COTS products 

Dependencies:  

Input: this activity is to be done after the COTS architecture design, low-level 

COTS products characterization, and low-level project characterization 

activities. 

Output: the results of this activity are used in coding and testing phases. 

 

The following steps are applied: 

- COTS functionality re -implementation: some COTS func tionality could be 

wrong, missing, or even extraneous, so that the developers have to develop the 

missing functionality, to fix or to develop the wrong functionality, and to mask 

the extraneous functionality. 
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- COTS adapting : this step is intended to overcome different integration problems 

by adapting the COTS product either by tailoring or modifying the components. 

- Interface compatibility check: this step deals with interface integration 

problems, such as the interfaces of the interacting components. If these cannot be 

modified, some glueware must be written, and its cost must be taken into account. 

- Architectural problems  check: this step deals with architectural problems, such 

as deadlocks when accessing a database or a simultaneous access to a device. 

Possible solutions are modifying components, changing the system’s architecture, 

and adding monitoring components to prevent conflicts. If these solutions are too 

expensive then some components must be discarded. 

 

After the design phase, the effort of writing glueware can be estimated from 

the obtained metrics and the organization productivity. If this effort is prohibitive 

then backup COTS products can be tried or even a rollback to the COTS functionality 

assessment can be made. If the integration is affordable, it is implemented during the 

coding phase. Missing functionality is re-implemented, glueware is coded, and the 

COTS products are modified if it is necessary. The glueware, COTS software, and the 

entire system are tested during the testing phase.  

 

Example: If OpenGL has been selected at the previous activity, the 

developers must re- implement the input/output functions that are missing from it. If it 

appears that they cannot design or implement them cheaply then QuickDraw3D 
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should be used instead, although it must be noted that this will require considerable 

architectural changes. 

 

Another problem concerns the matching project and COTS product 

descriptions, which is obtained from low-level characterization activities. In our 

example, we try to integrate the OpenGL function for drawing rectangles. Matching 

the requirements characterization and the description of the actual procedure, we see 

that they coincide except for the input format:  

procedure Rect(x, y, w, h: Real); and  

procedure glRectf(x1:GLfloat;  y1:Glfloat; x2:Glfloat; y2:GLfloat); 

respectively. The integration problems here are due to different function names (a 

syntax incompatibility) and to different arguments (2-order semantic-pragmatic 

incompatibility). To overcome this interface problem, some glueware must be 

written. The size of the glue procedure can be roughly estimated to be 5 LOC, 

because its function is just to make a call 

glRect(x,y,x+w,y+h)  

with the proper naming and argument conversion. The estimated effort is  

(5 LOC)/(25 LOC/staff-hour) = 0.2 staff-hours  

for this glue function. 

 

Although this example does not specify how we arrived at the estimations of 

work and effort and the set of candidate COTS products being used is small, we hope 

that it helps to explain how the proposed reuse process can work in practice.  
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Chapter 5. An analytical validation of the incompatibility and integration 

models 

 

The USC model of architectural mismatches (outlined in Section 2.9) is 

different from the classification proposed in the present work [Gacek 97]. The USC 

model is specific and rather top-down from an architectural point of view. It considers 

how to combine systems of different architectural styles (blackboards, pipes-and-

filters, event-based, etc.), and then analyzes the types of connectors and design issues 

with respect to these architectural mismatches. On the other hand, the comprehensive 

COTS integration model presented in this dissertation is more abstract and bottom-up 

dealing with inter-component incompatibilities. However, the architectural 

mismatches can be mapped to the integration problems. The architectural mismatches 

provide very good examples of integration problems and can be very helpful for 

software developers, but the USC model does not offer possible ways to solve their 

mismatches. The proposed COTS comprehensive integration model does give some 

possible strategies for overcoming the integration problems, which makes it more 

helpful for software developers. 

 

The analytical validation of the incompatibility and integration problem 

models using the USC model is will be done as follows: 

1. We map the USC architectural mismatches onto the incompatibility and 

integration problems classifications of the comprehensive COTS integration 
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model. The mappings will also provide some insights into solutions for the 

USC mismatches. 

2. We identify the USC architectural mismatches that are not covered by the 

incompatibilities and integration problems models, and improve these models 

by extending them to cover all the USC architectural mismatches. 

If the incompatibility and integration problem models allow for classification of the 

USC architectural mismatches, we consider that these models are expressive enough 

and passed the validation. 

 

After the validation, we can go further and use the USC model to build an 

expanded integration problems model with sub-types of integration problems 

covering all incompatibilities. To do that, we identify the incompatibilities and types 

of integration problems such as functional, non-functional, architectural, interface, 

and conflicts that do not correspond to any USC architectural mismatches. Since the 

USC model does not offer examples of several incompatibilities or integration 

problems, we introduce new sub-types of the integration problems using concepts 

similar to those of the architectural mismatches.  

 

5.1. Mapping the USC architectural mismatches onto incompatibilities 

and integration problems classifications 

The 23 USC architectural mismatches can be classified in terms of the 

incompatibility and integration problems models as follows: 



 
115 

1. Two concurrent threads share data, with potential synchronization problems. This 

is an nth order semantic-pragmatic software incompatibility (conflict, architectural 

problem). Possible solutions include adding component(s) for monitoring access to 

the shared data. 

2. Two threads have data connectors to 2 different control components in a third 

thread (it is impossible for the third thread to execute in the two components 

simultaneously). This is an nth order semantic-pragmatic software incompatibility 

(conflict, architectural problem). Possible solutions include adding component(s) for 

monitoring access to the third thread or splitting it into two threads. 

3. Two control components in the same thread share a blocking data connector, 

creating a possibility of deadlock. This is an nth order semantic-pragmatic software 

incompatibility (conflict, architectural problem). Possible solutions include adding 

component(s) for monitoring access to the shared data connector, making it non-

blocking. 

4. A layering constraint is violated. This may be a syntax (if access to the components 

from wrong layers are forbidden physically) or 2nd order semantic-pragmatic 

software incompatibility (interface problem). Possible solutions include inserting a 

chain of glueware components in the layers between the interacting components to 

transmit interactions between them without violation to the layering. 

5. Different sets of recognized messages are used by two subsystems. If the problem is 

in the representation of the messages, this is a syntax software incompatibility 

(interface problem), and it can be solved using glueware that filters the right messages 

to each subsystem. If the subsystems conflict over intercepting the messages, this is 
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an nth order semantic-pragmatic software-software incompatibility (conflict, 

architectural problem) and a monitoring component to receive and re-direct messages 

to the proper subsystem can solve this problem. 

6. A spawn is made into a subsystem, which originally forbade them. If the spawn is 

forbidden syntactically (the command to spawn is not supported by the subsystem) 

then it is a syntactic software incompatibility (interface problem). A piece of 

glueware can be inserted to translate the spawning command into a form accepted by 

the subsystem. However, it can be that the subsystem does not support spawns at all; 

in this case it will be a 1st order semantic-pragmatic software incompatibility 

(architectural style problem) that can be solved by implementing spawning 

components to respond to the spawning command. 

7. An unrecognized trigger message is used. This is a syntactic software 

incompatibility (interface problem). A piece of glueware can filter or convert this 

kind of message into those that are accepted by the system. 

8. A triggered spawn is made into a subsystem, which originally forbade them. If the 

subsystem does not understand the specific triggering spawn command, this is a 

syntactic software incompatibility (interface problem) and can be overcome by using 

a piece of glueware which converts the spawn command into a proper form. If the 

subsystem does not allow triggered spawns whatsoever, this is a 1st order semantic-

pragmatic software incompatibility (architectural style problem) and the triggered 

spawn must be re-implemented or the triggering invocation must not be issued. 

9. A trigger refers to a subsystem, which originally forbade them. This is a syntactic 

software incompatibility (interface problem) and can be overcome using a piece of 
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glueware to convert the trigger command into a proper form, or the triggering 

invocation must not be issued. If the subsystem does not allow triggers whatsoever, 

this is a 1st order semantic-pragmatic software incompatibility (architectural style 

problem) and the triggered functionality must be re-implemented or the triggering 

invocation must not be issued. 

10. A data connector is made into a subsystem, which originally forbade them. This is 

a syntactic software incompatibility (interface problem) and can be overcome by 

using a piece of glueware to convert data from the data connector into a proper form 

accepted by the callee. 

11. A shared data relationship refers to a subsystem, which originally forbade them. 

This is an nth order software semantic-pragmatic (conflict, architectural problem). A 

possible solution is to add monitoring components to prevent conflicts over sharing 

data. 

12. A trigger refers to a subsystem, which forbids explicit or implicit data connectors; 

hence the trigger may never occur. This is a syntactic software incompatibility 

(interface problem) that can be overcome by glueware receiving the data trigger and 

converting it into a form accepted by the subsystem.  

13. A spawn is made into a subsystem which is not concurrent. This is an nth order 

semantic-pragmatic target platform incompatibility (conflict over the control thread, 

architectural style problem). A possible solution is to attach the subsystem to a 

concurrent one that can be spawned. 

14. A triggered spawn is made into a subsystem that is not concurrent. This is an nth 

order semantic-pragmatic target platform incompatibility (conflict over the control 
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thread, architectural style problem). A possible solution is attaching the subsystem to 

a concurrent one that can accept triggered spawns. 

15. A remote connector is extended into or out of a non-distributed subsystem (i.e., a 

subsystem originally confined to a single node). This is an nth order semantic-

pragmatic target platform incompatibility (conflict over the control thread, 

architectural style problem). A possible solution is attaching the non-distributed 

system to a distributed wrapper (a program that would support the protocol of the 

remote connector). 

16. A node resource is overused (this is actually checked by summing across the 

subsystems’ usage of that particular resource). This is an nth order semantic-

pragmatic target platform (hardware) incompatibility (conflict, architectural 

problem). A possible solution is monitoring access to the overused resources. 

17. Data connectors connecting control components that are not always active may 

lead in deadlock or loss of data. This is a 1st order semantic-pragmatic software 

incompatibility (architectural style problem) which can be overcome by making the 

data connectors buffered and non-blocking. 

18. Erroneous assumption of single-thread. This is an nth order semantic-pragmatic 

target platform incompatibility (architectural style problem) that can be overcome by 

wrapping the component into a thread in a multi-threaded system or into a process in 

a multi-process system. 

19. (Triggered) Call to a non-terminating control component. This is a 1st order 

semantic-pragmatic software incompatibility (architectural style problem). A possible 

solution is modifying the component to make it terminating. Another solution is to 
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use time-out mechanisms for invoking potentially non-terminating components (the 

control will be forcibly returned to the caller after a certain period of time). 

20. Erroneous assumption of same underlying component. This is a syntactic target 

platform incompatibility (architectural style problem). Possible solutions are 

modifying some of the components and creating a distributed system based on 

different platforms. 

21 (Triggered) Call to a private method. This is a syntactic software incompatibility 

(interface problem). Glueware can be used to solve this problem by providing a 

public method that calls a private one. 

22. (Triggered) Spawn to a private method. This is a syntactic software 

incompatibility (interface problem). Glueware can be used to solve this problem by 

providing a public method that spawns a private one. 

23. Sharing private data. This is a syntactic software incompatibility (interface 

problem). Glueware can be used to solve this problem by providing a public access to 

the private data.  

 

Thus, our incompatibility and integration problem models proved to be 

powerful enough in order to classify the USC architectural mismatches, so these 

model can be considered validated with respect to the USC model.  

 

Moreover, the architectural mismatches do no t cover all types of integration 

problems and incompatibilities. Now we will to expand the classification of 

integration problems to fill the gaps in the incompatibility table (Table 5). 
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Incompatibi
lity 

Integration 
problem 

Software Hardware Development 
environment 

Target 
environment 

F     
NF     
I 4, 5, 6, 7, 8, 

9, 10, 12, 
21, 22, 23 

   

A     

syntactic 

AS 10, 12   20 
F     

NF     
I     
A     

1st order 
semantic-
pragmatic 

AS 6, 8, 9, 17, 
19 

   

F     
NF     
I 4    
A     

2nd order 
semantic-
pragmatic 

AS     
F     

NF     
I     
A 1, 2, 3, 5, 11 16    

Nth order 
semantic-
pragmatic 

AS    13, 14, 15, 
16, 18 

 

Table 5. Mapping the architectural mismatches into incompatibilities (the mismatches 

corresponding to more than one incompatibility are in bold font) and integration 

problems. 

The notation for the ‘integration problem’ column of this table is: F – 

functional problem; NF – non-functional problem; AS – architectural style problem; 

A – architectural problem; I – interface problem. The rows and columns define 

incompatibilities. 
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Although the USC mismatches are all called architectural, not all the 

integration problems they represent are architectural style or architectural. Glueware 

can solve some of the architectural mismatches; the refore, they can be classified as 

interface integration problems. Therefore, in our mapping, we classified the USC 

architectural mismatches as follows: 

architectural style problems:  

- 6, 8 (spawning) 

- 9 (triggering) 

- 10,12 (data-control conversion) 

- 13, 14, 15, 18 (concurrency) 

- 17, 19 (synchronization) 

- 20 (packaging) 

architectural problems: 

- 1, 3, 11 (data conflict) 

- 2 (thread conflict) 

- 5 (message conflict) 

- 16 (resource conflict) 

interface problems: 

- 4 (layering violation) 

- 5, 7 (unrecognized message format) 

- 6, 8 (unrecognized spawning command) 

- 9 (unrecognized triggering command) 

- 10, 12 (unrecognized data connector) 
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- 21, 22, 23 (encapsulation violation) 

In the following subsections, we identify a sampling of integration problems that can 

be added to Table 5 besides the USC architectural mismatches. 

 

5.1.1. The functional and non-functional integration problems 

In this and following sections, we shall introduce types of integration 

problems, which are numbered from 24 for consistency with the USC architectural 

mismatches that are considered themselves as types of integration problems.  

 

Requirements-related (functional and non-functional) integration problems of 

our model are not covered by the USC architectural mismatches at all. So, we 

introduce these types of integration problems into the new and extended integration 

problems model to fill gaps in Table 3: 

24. A component does not provide required functionality. For example, a graphics 

library has no function for drawing ellipses. This is a 1st order semantic-

pragmatic functionality between software and other types of components 

(software, hardware, and target platform – except the development platform 

which can be considered separately). 

25. A component has extraneous functionality (e.g., a DBMS has indexing even 

for very small data bases, which unnecessarily increases their size) – 1st order 

semantic-pragmatic functionality between software and other types of 

components. 
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26. A component has wrong functionality (e.g., a mathematical library has an 

algorithm for solving polynomial equations other than required, which has 

insufficient precision) – 1st order semantic-pragmatic functionality between 

software and other types of components. 

27. A component does not satisfy non-functional requirements (e.g., it has poor 

usability) – 1st order semantic-pragmatic functionality between software and 

other types of components. The exact type of the non-functional requirement 

(e.g., usability, efficiency, reliability, etc.) can further specify the integration 

problem, so that there is an integration problem for each non-functional 

property. 

 

5.1.2. The architectural style integration problems 

The USC architectural mismatches are properties of a deployed system only, 

but they do not address development platform architectural issues. However, 

components may not integrate during development. Thus, we can add integration 

problems related to development. 

28. Different assumptions on component packaging (programming language or 

object code format) – syntactic software-development platform 

incompatibility. This is an architectural style integration problem, and solving 

it can require making an independent program for each type of component 

packaging (i.e., the Java program, the C++ program, etc.). 

29. A component is unsupported by the development platform  (e.g., certain 

component does not compile or link) – 1st order semantic-pragmatic software-
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development platform incompatibility. This is a functional rather than 

architectural style problem, and the troublesome component must be 

discarded, or the development environment must be modified to solve the 

problem. This problem can appear as a result of changing a version of the 

environment (e.g., a compiler) when some functionality becomes obsolete and 

is no more supported, so that certain programs cannot be compiled anymore. 

30. A component is not correctly supported by the development platform (e.g., the 

produced code does not work correctly) – 2nd order semantic-pragmatic 

software-development platform incompatibility. This problem can be caused 

by ambiguities in specifications (e.g., library function specifications), which 

can be treated differently by the environment, and the program that uses it. If 

glueware can help to solve a problem of this kind, this is an interface 

integration problem. In some cases, it can be an architectural style problem 

when the platform must be modified. 

31. Development platform resources are overused by components (e.g., two 

subprograms use the same name of a variable causing a name-space collision 

between them) – nth order semantic-pragmatic software-development 

platform incompatibility. 

 

The USC architectural mismatch model also does not take into account binding, 

which is the way in which a software component establishes connections with other 

components. Binding can be static (e.g., in procedural languages), compile-time 

dynamic (i.e., in object-oriented languages), or run-time dynamic (e.g., using 



 
125 

protocols, such as COM, CORBA, or JavaBeans). A problem can arise when a 

component may try to establish connection with another component, which does not 

support it. For example, if a component is being integrated into a COM system, it 

must be able to use COM binding interface. So, we may add one more architectural 

style integration problem. 

32. Different assumptions on the component binding (e.g., static instead of 

dynamic, or absence of CORBA support) – syntactic software-software 

incompatibility. 

Currently, we do not know much about the incompatibilities between software and 

development platform. Therefore, issues of the development period can be a part of 

future research. 

 

5.1.3. The architectural integration problems 

As for the architectural problems, it is possible to point out at least one more type 

of architectural problem not covered by the USC model: 

33. Two threads make calls to another component and the j oint action is 

incorrect. For example, a thread makes a decision on spacecraft maneuvering 

and sends a command to the thruster; if two such threads send simultaneous 

commands to rotate the spacecraft 180 degrees, the net result will be a 

command to rotate 360 degrees, which is not correct. This architectural 

integration problem can be classified as nth order semantic-pragmatic 

software-software incompatibility. 
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5.1.4. The interface integration problems 

The interface problems can be solved using glueware that provide a proper 

interface between interacting components. The USC architectural mismatches model 

presents several possible sources for interface problems. Nevertheless, other interface 

problems can be pointed out: 

34. Unrecognized call between different components (e.g., a different name of a 

callee function or different names or types of arguments) – this is a syntactic 

software-software incompatibility. 

35. Different assumptions on the data semantic (e.g., one component assumes that 

the angles are measured in radians, another component assumes that the 

angles are measured in degrees; so an angle size passed from the first 

component to the second will be misinterpreted) – this is a 2nd order 

semantic-pragmatic incompatibility. This problem can occur between all kinds 

of connectors: call, spawns, triggers, etc., so it is possible to consider several 

interface problems for each type of connectors (in the USC model only the 

unrecognized trigger mismatch can be considered as this type of problems). 

 

Table 6 gives the extended classification of integration problems using the 

USC architectural mismatches and the new integration problems added to cover all 

the incompatibilities. However, most cells are still empty, but future research can fill 

in some cells. An advantage of the proposed incompatibility and integration problems 

models is that they help find and classify integration problems, as demonstrated in 
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this chapter. For example, it is easy to introduce integration problems for hardware 

similar to the integration problems for software. 

 

Incompatibi
lity 

Integration 
problem 

Software Hardware Development 
environment 

Target 
environment 

F     
NF     
I 4, 5, 6, 7, 8, 

9, 10, 12, 
21, 22, 23, 
34 

   

A     

syntax 

AS 10, 12, 32  28 20 
F 24, 25, 26,  24, 25, 26 24, 25, 26 24, 25, 26 

NF 27 27 27 27 
I     
A     

1-order 
semantic-
pragmatic 

AS 6, 8, 9, 17, 
19 

 29  

F     
NF     
I 4, 35    
A     

2-order 
semantic-
pragmatic 

AS   30  
F     

NF     
I     
A 1, 2, 3, 5, 

11, 33 
16    

n-order 
semantic-
pragmatic 

AS   31 13, 14, 15, 
16, 18 

 

Table 6. Extended USC architectural mismatches as integration problems. 

 

5.2. Implications for the architectural model 

Although we did not discover any new incompatibilities or integration 

problem in the USC architectural mismatches, the mismatches reveal two new 
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properties for the proposed architectural model: triggering and spawning. Systems 

with triggering capabilities can intercept external events that trigger event routines; 

systems without triggering capabilities are not able to intercept messages. Systems 

with spawning capabilities can dynamically spawn new executable components; for 

example a UNIX program can use a system call “fork” to do that, while systems 

without spawning capabilities stay with the same structure throughout execution.  

 

Triggering refers to whether a component uses a triggering on external events 

or it does not. Two values can be used: triggering is used when a component invokes 

certain functionality at an event and is not used when a component has no 

functionality invoked when an event occurs. If a component uses triggering, it will be 

difficult to put it into a system that does not support of acceptance of external 

messages. On the other hand, a component that does not use triggering will not create 

this problem when being integrated into a system with triggering (Fig. 19). 

 

 

 

Figure 19. Ordering of the types of triggering. 

Spawning refers to whether or not a system can dynamically create 

executable components. Components that do spawn require this capability from the 

system and cannot be integrated into a system that does not allow spawning. 

Components that do not use this capability can be integrated into systems with or 

without spawning (Fig. 20). 

Triggering is used 

Triggering is not used 
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Figure 20. Ordering of the types of spawning. 

Developers should be aware of these properties, because it may not be 

possible to integrate a component with triggering or spawning behavior in a system 

without these capabilities. 

 

5.3. Summary of results 

In this study, we validated the proposed incompatibility, integration problems, 

and architectural models by comparing them with the USC architectural mismatches 

model. The following conclusions can be drawn: 

- The incompatibility and integration models allow for classification of all the 

USC architectural mismatches; 

- The integration problems model is able to suggest possible solutions for the 

USC architectural mismatches; 

- 12 new integration problems were added to the integration problems 

classification besides the USC architectural mismatches; 

- Adding the triggering and spawning features from the USC architectural 

mismatches expanded the architectural model. 

Spawning is used 

Spawning is not used 
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- It was shown how the incompatibility, integration problems, and architectural 

models could be expanded using by classifying integration issues from other 

model. 

 

In the future, empirical data from real projects can be used for refining and 

expanding the classification and testing feasibility and efficiency of the proposed 

solutions. Other research can address development platform characteristics of a 

system, which can be used to identify possible integration problems. 
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Chapter 6. Empirical validation of the proposed models using case 

studies from a software engineering class 

 

The most important hypotheses about the model, which will be tested 

empirically, are the usefulness and the feasibility of the reuse process, the precision of 

the effort estimation model, the completeness and correctness of the incompatibility 

and integration problem models, and the usefulness of the proposed integration 

techniques. 

 

Two different approaches can be used to test on model with actual process 

that use COTS products: 

- In a direct case study, our approach is actually applied to a COTS-based 

development. The results of the process and the degree of conformance are 

measured to test the models. 

- In an indirect case study, a COTS-based development is performed using any 

model (including an ad hoc approach). The results of the project are compared 

against what would have happened if the proposed model were applied. 

Both types of stud ies have their advantages: the direct case study would allow for an 

easy check of the feasibility of the process and the effort estimation model, but the 

indirect case study can be used to improve the model by observing successes and 

failures of other COTS integration approaches. However, the direct case study can be 

applied only if the developers agree to do so, otherwise the model can only be tested 

using the indirect case study. 
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In this study, students were taught the incompatibility and integration 

problems models, but they were not required to apply them to their projects. 

However, the students had to submit incompatibility report forms describing the 

integration problems that they found. The students were not graded for their reports, 

but we used them to estimate the usability and the effectiveness of the models. 

 

6.1. The actual project and its development scenario 

To test the proposed model, we used projects developed by students from an 

experiment that was run in the senior level software engineering class at the 

University of Maryland. The following hypotheses were tested: 

- The proposed effort estimation model is applicable. This hypothesis was tested, 

although limitations of available data made the results inconclusive; 

- The proposed integration techniques are applicable. In this indirect case study, 

we showed how the proposed integration techniques, especially the architectural 

style changes, would have been useful. 

- What are the sources of incompatibilities? We showed that some 

incompatibilities were caused by discrepancies between the requirements and the 

software component to be integrated but some were caused by poor design 

decisions. 

Later, we shall demonstrate how these questions were researched. 

 

The student population consisted of upper division undergraduate students and 

graduate students. The students varied considerably in experience, with 
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approximately one third having industrial development experience and almost all 

having participated in some group project in at least one other class. 

 

The projects used as case studies were for the same application domain 

(Parking Garage) and for the same requirements. The task was to evolve a parking 

garage control legacy system to support new e-commerce capabilities. Actually, the 

parking garage control system (PGCS) does not operate a real garage, but simulates 

it. The control system provides functionality for selling non-reserved and monthly 

garage tickets and controlling the gates of the garage. The monthly tickets are sold by 

the garage cashier and are valid through a month. The non-reserved tickets are issued 

every time a client enters the garage without a monthly ticket, and are valid for fifteen 

minutes after they are paid at the cashier’s. 

 

The program has a main loop that printed the set of possible options and 

waited for input of a user’s command. The possible options are 

- to enter the garage with a monthly ticket, 

- to enter the garage without a monthly ticket, 

- to buy a monthly ticket, 

- to pay a non-reserved ticket, 

- to leave the garage, 

- to quit the sys tem, 

- to type information about the ticket, and 

- to edit a ticket. 
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The parking garage control system (PGCS) was implemented by the 

researchers and given to the students in the class. The developers (the students in the 

class) had to implement a web extension of this system that would allow the clients to 

reserve monthly parking spots and also keep track of their reservations using web 

browsers. So, a new set of requirements was created and the legacy system had to be 

enhanced to support these new requirements. One of the constraints the developers 

faced was that the existing infrastructure of the garage (gates, controls, cashier 

terminal) had to remain the same, and developers had to preserve the interface of the 

simulator or create a similar one. Using new technology and dealing with a new set of 

requirements, the new system must make reservation service and clients control web 

accessible. 

 

The legacy system was implemented in C++ and the size of the source code 

was 718 LOC, including blank lines and comments. It consisted of two parts: the C++ 

class library which implements the basic garage functionality whose source code was 

not provided to the students, and the garage simulator including the cashier’s 

interface whose source code was available. Partial unavailability of the source code 

was used to make the project more challenging and realistic, considering that most 

COTS products are black-boxes. 
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6.2. Team organization 

Initially, there were 42 students in the class, organized into 14 teams of three 

people each. The students had different software development experience. Based on 

the experience questionnaires they were classified as having high (H), medium (M), 

and low (L) experience. High expertise students had some experience with industrial 

environments and software development processes. Medium expertise meant that they 

had participation only in software development processes in class projects, and low 

meant that the students just developed personal software or had no experience with 

software processes. Experience in software design and integration were not 

considered separately. One student from each HML group was randomly chosen to 

compose a team. After two students dropped the study, two teams became HL and 

HM two–people teams. 

 

All the teams followed a previously planned software development process, as 

they were developing the new software. However, each team defined the 

development platform and the infrastructure to be used for the project. To support the 

study, the students received one-hour of training on software architectures and 

architecture styles, and another hour of training on the integration model. Moreover, 

the model description and integration guidelines were made available at the class web 

page. Although the integration model had no rigid process, it could have helped the 

students locate the incompatibilities and solve them. 

 



 
136 

6.3. Potential integration problems 

The new set of parking garage requirements and the old parking garage 

system were designed to have at least one integration problem of each type in the 

project. The following are incompatibilities between the legacy code and new web 

interfaces due to the differences between the specifications of the legacy-parking 

garage control system and the requirements for the new system: 

- Incompatibility between web browsers and C++ legacy code. The old legacy 

code was written in C++, so that it could be used directly by the new web 

application if it was written in C++ too; this is possible, if the new system uses 

CGI scripts implemented in C++ only, but not in other languages (Perl). The new 

system cannot use Active Server Pages (ASP) technology with its JavaScript and 

Visual Basic Script languages. This issue is a syntax incompatibility and an 

architectural style integration problem, more specifically different assumption on 

the component packaging (integration problem 28, hereafter we shall use the 

integration problem numeration from section 3.4). 

- Old and new systems assume their own control threads. The legacy system was 

implemented as a stand-alone program providing the interface for the garage’s 

cashier and other parking garage functionality. The web scripts should have their 

own control flows, but even if they are written in C++ (see the previous 

incompatibility), they will still not work together. This is a conflict over 

development platform incompatibility and an architectural style integration 

problem, and an erroneous assumption of a single thread in the UCS architectural 

mismatch model (integration problem 18). 
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- Number of tickets was increased for the new system. The new web system must 

process a larger number of tickets than the old one; therefore, it is not possible to 

use the old system’s file where the ticket data is stored, because it is too small. 

This is internal incompatibility causing both functional (missing functionality) 

and architectural integration problems. As for the type of architectural problem, 

the present classification does not give a very close type of it, so we can 

introduce a new type of architectural problem – a wrong assumption on shared 

data that requires introduction of a new data structure. This type of integration 

problem was not introduced previously, so we add it to the integration problems 

list as integration problem 36, which is inadequate data structure. 

- Number of tickets usages must be recorded. The new system must keep count of 

how many times a ticket was used. The old system did not do that, and this 

information was not stored in the ticket data file. It is one more reason to create a 

new file or a database for tickets in the new system. This is an internal 

incompatibility, which, like the previous one, can be both functional (missing 

functionality - integration problem 24) and architectural (a wrong assumption on 

shared data) integration problems. 

- Monthly tickets can be renewed. Unlike the legacy parking garage system, in the 

new system a monthly ticket can be renewed. This is an internal incompatibility 

and a functional problem (missing functionality – integration problem 24). 

- Date format was not American. The old system used non-American date format 

(day/month/year) for dates on tickets, and the new system would use the 

American date format (month/day/year). This issue can be considered a 2-order 
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semantic-pragmatic incompatibility (mismatch), and it could also be considered 

an interface problem (different assumptions on the data semantic – integration 

problem 35) between the legacy system and the new web system, or it could be 

downgraded to a minor non-functional issue (usability – integration problem 27). 

- The integrity of ticket data should be provided. Both the legacy system and the 

new web system can simultaneously access the ticket data (data sharing 

violation), causing damage to data consistency. This is an n-order semantic-

pragmatic software incompatibility, and an architectural integration problem 

(data conflict – integration problem 1). 

Different types of integration problems were presented in the project, although just 

one presented interface and non-functional problems.   

 

6.4. Using the architectural model to design the system architecture and 

architectural style 

Now we shall demonstrate how the architectural model could help design the 

system’s architecture. According to the model, we have to analyze the architectural 

assumptions of the software components, both COTS and in-house to be integrated; 

in this example, the parking garage control system (PGSC) and languages and tools 

for web applications, using either CGI or ASP scripts. The two tables below give 

these assumptions and the common upper elements for both cases. 

 

Tables 7 and 8 show that in both cases (CGI and ASP) the developers have to 

use the multiple programs architectural style. Although a CGI script could be 
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integrated in one program with the PGCS, they both assume their own execution 

control. To cope with this integration problem, these two applications must be 

wrapped into separate threads, or processes even as stand-alone programs. In case of 

ASP, only independent programs make a possible solution, due to differences in 

packaging. In the case of CGI, it is still possible to use a threading library for keeping 

the two applications working together in one program. Nevertheless, it is much 

simpler just to use independent programs, especially, if they both use data flow to 

exchange information. 

 

 

Table 7. The architectural assumptions of the PGCS and CGI scripts. 

 

Variables PGCS CGI script of the 
web application 

Common upper 
element(s) 

Packaging C++ program C/C++ program C++ program 
Control Centralized Centralized Multiple threads/ 

Multiple programs 
Information 
flow 

Data (ticket file) ? ? 

Synchronization Synchronous Synchronous Synchronous 
Binding Dynamic Static/Dynamic Dynamic 
Triggering  Not used ? ? 
Spawning  Not used ? ? 
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Table 8. The architectural assumptions of the PGCS and ASP script. 

As for the information flow, the web script can use both control or data flow 

to exchange information with the PGCS. However, if the script uses data flow so will 

the resulting system, but if the script uses control flow (invoking some routines for 

updating ticket data), the resulting system will have mixed control-data flow to 

support all system applications. Hence, the selection of data flow for the script should 

simplify the solution. Synchronization and binding generally coincide for the PGCS 

and scripts, so it should not be a problem. Triggering and spawning are not used by 

the PGCS, so it is not important whether the scripts use them, especially if the system 

uses independent programs for packaging. 

 

Thus, the architectural model suggests using independent programs for the 

PGCS and the web application (script) and exchanging information via data flow. 

Here is an example of a possible system architecture with this style.  

 

 

Variables PGCS ASP script of the 
web application 

Common upper 
element(s) 

Packaging C++ program VB Script or 
JavaScript program 

Independent 
programs 

Control Centralized Centralized Multiple threads/ 
Multiple programs 

Information 
flow 

Data (ticket file) ? ? 

Synchronization Synchronous Synchronous Synchronous 
Binding Dynamic Dynamic Dynamic 
Triggering  Not used ? ? 
Spawning  Not used ? ? 

Legacy parking garage 
control system 

Web application 

Ticket data file from New ticket data file 
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Figure 21. A possible architecture for the upgraded system. 

The architecture depicted in Figure 21 uses the architectural style identified 

above and it is clear that the legacy system and the new web application have in 

common the ticket data file. Because of the functional incompatibilities that hinder 

usage of the legacy ticket data file for the new system, it should have its own ticket 

data file or database. The data needs to be consistent for both data systems, so that 

each time one of the subsystems updates its data, it updates information of the other 

subsystem. This can be done by either conversion between the two ticket data 

storages (as shown on the Figure 21), or by direct operation with the other 

subsystem’s ticket data. Possible data sharing violation can be prevented by using a 

monitor to access the ticket data storage. 

 

Similar architectures were actually used by most of the teams. However, a 

common problem was the absence of connectivity between ticket databases of the 

legacy and web subsystems; in effect, there were two absolutely independent sets of 

tickets, which means that real integration was not achieved. 

 

Only one team used a very different type of architecture. In their system the 

web application sent messages to the legacy subsystem using sockets. The downside 

of this approach was that the modified legacy system could not have simultaneous 
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control threads for the original cashier’s interface and the new message-processing 

loop, so in spite of the requirements the cashier’s interface was discarded. 

 

The first reason for this failure was the attempt to combine the data flow of 

the PGCS and the control flow of the script, which resulted in mixed information 

flow (data and control). The problem could have been resolved if the code that 

handled commands from the script, and the code that manipulated the ticket data were 

placed in separate programs (although it would be just an unnecessary complication 

of the project). However, since the code was placed in the same program with the 

PGCS, it caused a conflict in the execution control between the PGCS and the socket 

handling code, which was solved at the expense of requirements.  

 

This example demonstrates how the proposed architectural model could help 

in the design of the architectural style and avoid project failures. 

 

6.5. Data collection and analysis 

The actual case study plan is based on the goal-question-metric framework 

(GQM) [Basili 92]. The three research goals aimed at learning more about COTS 

integration and testing the integration model in practice. The following type of data 

were used: 

Qualitative data 
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The experience questionnaire (Appendix 1): it allowed us to understand 

developers’ experience and evenly distribute the developers among teams. 

Qualitative evaluation of the model (Appendix 2): this information provided 

some direct feedback from the developers who learned about the proposed 

model in the class. 

Quantitative data 

Incompatibility report forms (Appendix 3): the developers used them to report 

the incompatibilities they found between the old and new systems they found. 

These forms gave data about the incompatibilities and also how well the 

developers understood the integration model. 

Software process effort table (Appendix 4): these tables filled in by the 

developers allowed for the estimation of the effort they spent for integration 

and development activities. 

Source code for the projects – the source code was analyzed to understand the 

design of the system and what integration problems were or were not solved. 

Table 9 gives the general description of the projects implemented by the students.  

 

 

 

 

 

 

Tea
m # 

Effort 
spent for 
finding / 

Effort 
spent for 

developing 

Incompat
ibilities 
reported 

Languages used for 
web application/ 
extension of the 

Grade 
for 
new 

Grade 
for 

integra
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finding / 
reporting 
incompati

bilities 

developing 
new code/ 
glueware 

reported 
seeded / 

new 

extension of the 
legacy system  

new 
system 
(max 

4) 

integra
tion 
(max 

2) 
1 1.5 / 1 18 / 3 1 / 0 CGI (C++, 

JavaScript) / C++ 
4 1.5 

2 1 / 1 7 / 2 (unf.) 1 / 1 ASP (JavaScript, VB 
Script)/ C++, ODBC 

3.4 1.5 

3 8 / 2 30 / 6 1 / 1 CGI (C++) / C++ 2.2 1 
4 1 / 0.5 15 / 30 0 / 1 ASP (JavaScript, VB 

Script) / VB, C++ 
4 0 

5 2 / 1 6 / 2 2 / 0 ASP (JavaScript, VB 
Script) / VB, C++ 

4 0 

6 3 / 1 45 / 4 3 / 1 NA / NA 4 1.5 
7 10 / 2 73 / 13 2 / 3 NA / C++ 3.4 1 
8 NA NA 0 / 1 Lotus Notes / C++ 0 0.5 
9 2 / 0.75 32.5 / 5 0 / 0 CGI (C++) / C++ 2 0.2 
10 4 / 2 30 / 12 1 / 1 CGI (JavaScript, 

C++) / C++ 
2.8 1.5 

11 3 / 3 10 / 5 3 / 1 CGI (C++) / C++ 4 0 
12 9 / 2 45/20(unf.) 3 / 0 CGI (Perl) / C++ 2.7 1 
13 3 / 1.5 20 / 4 0 / 2 NA / NA 1.6 1 
14 2 / 0 45 / 3 2 / 0 NA / C++ 2.9 1 

 

Table 9. The general project data. 

The fields represent  

- team number, which was assigned for each team 

- effort spent for finding and reporting the incompatibilities (person/hours); the 

former is the time spent looking for the incompatibilities between the new code 

and the old one, and the latter is the time spent for classifying the incompatibility 

according to the proposed classification and filling in the incompatibility report 

form. 

- effort that was spent for developing new code and glueware (person/hours) 
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- number of reported incompatibilities: those caused by the differences between 

the requirements for the new system and the legacy system (seeded) and caused 

by developers’ design decisions (new) 

- languages and environments used for web applications and extensions of the 

legacy systems 

- the grade assigned for the quality of the web application 

- the grade assigned for the integration between the web application and the legacy 

system; it was the sum of three grades: problem identification (maximum 0.25), 

proposed solution (maximum 0.5), and implemented solution (maximum1.25), 

which in turn included availability from the web user interface, functionality of 

the PGCS, and techniques used to solve the integration problems (or at least a 

proposal) 

The students did not provide some data; in this case the table gives the value NA (not 

available); in a number of cases, the students did not submit the source code of their 

project, so it was not possible to find out the implementation language. 

 

It is important to note that none of the projects was completed. Some projects 

fully implemented the web application, while many implemented it with just minor 

defects, but none achieved complete integration with the legacy system. On the one 

hand, the incompleteness of projects does not allow for comparison; on the other 

hand, the reasons for such incompletion reveal the difficulties in COTS and legacy 

integration. The lessons learned from these difficulties can help other software 

developers improve their integration processes. 
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We did not measure specifically the size of each project; however, it is 

possible to say that they are from several hundred LOC to one thousand and more 

LOC. 

 

6.6. The feasibility of the integration model 

Goal 1: to analyze the integration incompatibility of the COTS model for the 

purpose of understanding with respect to feasibility from the viewpoint of developers 

in the context of a software project that needs to integrate components into an 

application. 

 

We need to investigate whether the incompatibility model and proposed 

integration techniques are technically sound. Since the integration model had no well-

defined process, we could not measure the degree of conformance directly. However, 

the types of incompatibilities and the possible solutions defined the model informally, 

so we still could estimate the degree of conformance indirectly, comparing the actual 

and proposed types of incompatibilities and integration solutions. 

 

  Question 1.1. Does the model cover all the incompatibilities encountered? 

Yes. The incompatibility report forms filled in by the students did not yield new types 

of incompatibilities not presented in the model. However, further analysis showed 

that one new type of “pseudo” incompatibility, such as learning should be considered. 
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- Some incompatibilities are difficult to classify objectively: the date format used in 

the old system (dd/mm/yy) could be treated as either a non-functional integration 

problem, or as an interface one depending on the rigidity of the requirements. If 

the requirements allowed using this format then it could be considered a non-

functional usability problem. If the requirements for the new system demanded 

using the American date format (mm/dd/yy) then conversion between data in the 

old system ticket file and the new one might be necessary, thus creating an 

interface integration problem. Another example of this ambiguity is the instance 

when two components assume different operating systems. If this problem cannot 

be solved, it can be considered a non-functional problem (portability), but if the 

developers decided to use a heterogeneous architecture to allow for these 

different components then this is an instance of an architectural integration 

problem. 

- Some incompatibilities can cause different kinds of integration problems: the 

new requirements for the tickets (larger number of tickets and keeping track of 

usage) not only meant adding new functionality to deal with these requirements, 

but also required new data structures and a new architecture for the system. 

- There can also exist “learning” incompatibilities: some problems can be solved, 

but finding a feasible solution requires too much time that is not affordable 

because of schedule constraints. For example, one team barely had enough time 

to learn Lotus Notes API for C++. 

- The incompatibility classification is difficult to use: the subjects had certain 

problems classifying incompatibilities. For example, one team reported the 
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incompatibility between ASP and C++, but this incompatibility was classified 2-

order semantic-pragmatic rather than syntax. Two teams reported absence of 

connectivity between the web code and the ticket database as a n-order and a 2-

order semantic-pragmatic incompatibility respectively, although this can be seen 

either as a 1-order semantic pragmatic incompatibility (the web code has no 

proper functionality), or as a syntax one (if the web code cannot use database 

interface due to language incompatibilities). Most incompatibilities reported were 

not incompatibilities at all, but rather necessities to change the earlier design that 

often did not relate to integration between different parts of the system. However, 

this can be attributed to insufficient training in the model provided to the 

students. 

 

Question 1.2. Does the model cover all the integration techniques used by the 

developers? Yes; the developers did not use any techniques that were not covered by 

the proposed model. Most subjects used ad hoc approaches to solve the integration 

problems; however, the designs used in the projects are similar to the designs based 

on the architectural model (Section 6.5). The main difference was that some teams 

used just one database for tickets, accessing it from both the old and the new systems 

without having two separate databases and performing data exchanges between them. 

However, this approach required making more changes in the old system. 

 

Question 1.3. Did the subjects find the integration model (incompatibilities 

and solutions) useful? Figures 22 and 23 illustrate the evaluation of the integration 
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model obtained from questionnaires. The students were distributed in three groups of 

high (H), medium (M), and low (L) software development experience. The answers 

used the scale: 1 – misleading; 2 – useless (it makes some sense but it would be 

possible to come up with the same ideas without the model); 3 – somewhat useful; 4 – 

very useful. For example, 50% of high-experienced developers found the 

incompatibility model somewhat useful (Figure 22). 

 

The data shows that most developers admitted that the incompatibility model 

appeared to be either somewhat or very useful. This is true for all experience groups, 

although it is interesting that developers with medium experience liked the 

incompatibility model more than the other two groups. Perhaps, those with higher 

experience already had their own ideas about the integration problems, and the people 

with low experience knew too little to appreciate integration problems. 

 

Generally, the students found the incompatibility and integration problems 

models to be quite useful. We may assume that the model has passed the sanity 

check; however, some developers found the terminology of the model vague, and the 

examples not very practical. This must be improved before using the proposed model 

again. Also more rigid procedures for integration must be designed. 
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Figure 22. The distribution of the incompatibility model usefulness evaluation along 

students with different level of software development experience. 

 

Figure 23. The distribution of the integration solutions usefulness evaluation along 

students with different level of software development experience. 
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6.7. The effort estimation model feasibility 

Goal 2: analyze the integration solution size/effort, for the purpose of 

characterization with respect to the integration problem type, the degree of familiarity 

with it, and the programming language from the viewpoint of researchers in the 

context of a software project that needs to integrate components into an application. 

 

Due to the small number of projects and their incompleteness, we did not 

collect enough data to find any quantitative relations, although some qualitative 

conclusions can be supported. 

 

Question 2.1. What is the relation between the effort/size of an integration 

solution and the type of integration problem (incompatibility)? The architectural style 

and architectural integration problems turned out to be the most difficult. Most 

projects solved the functional problems and provided the required functionality, but 

none achieved complete integration between the legacy parking garage control system 

and the new web application. The most common problem was either losing the 

cashier’s interface of the legacy system (at least three teams), or in keeping two 

completely independent databases for the tickets. 

 

There could have been different reasons for losing the interface, including that 

some teams may have misunderstood the requirements. However, one team reported 

that they wanted to create their own interface but they did not have enough time to do 

that. Another team used an architecture where the web application sent data to the 
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legacy system using sockets, so that the legacy system had to intercept this data 

besides handling the interface. This approach caused a problem that can be classified 

according to the USC model as an erroneous assumption of a single-thread. The 

modified legacy program could not handle two event loops (without some 

sophisticated code) and one of them had to be dropped. This case gives support for 

the necessity of selecting the right type of information flow: data or control, and the 

right distribution of executable threads for the subsystems during the design of the 

system’s architecture. 

 

As for the absence of consistency between the ticket databases, it is difficult to 

find the exact reason in each case. This problem could have occurred because of the 

developers’ decision to simplify the project at the expense of integration of the 

subsystems, or be the result of a poor design. 

 

Question 2.2. What is the relation between the effort/size of the integration 

solution, the type of the integration problem, and the degree of familiarity with it? 

Due to the small amount of data no reliable relations could be found. 

 

Question 2.3. What is the relation between the effort/size the integration 

solution, the type of the integration problem, and the programming language of the 

system? Since the language for the new system was not specified, the developers 

could choose any language for the web application and extension of the legacy 

parking garage control system. Unfortunately, not all teams submitted their source 
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code, and therefore, the number of data points is not large. However, some 

observations can be made. 

Three teams Active Server Pages (ASP) with JavaScript and Visual Basic Script, as 

their web interfaces. They all used MS Access database for storing the ticket data. 

One of these teams used Open Data Base Connectivity (ODBC) interface to allow the 

modified legacy control system access to the new ticket database. This solution 

resulted in a rather large program, but it had just minor problems with integration 

(grade 1.5 out of 2.0 for the integration). Another team tried to use MS Visual Basic 

for the extension of the legacy code, but they failed to build connectivity between the 

old code implemented in C++ and the new code in Visual Basic. More specifically, 

they did not find out how a program written in one of these languages could use 

dynamic linkage library written in another language. This team was graded 0.0 for 

integration. The third team did not provide their legacy system extension code, and 

they achieved no integration (grade 0.0). 

One team used a very original solution based on Lotus Notes. They came up with a 

right design for the system, but unfortunately learning how to integrate the Lotus 

Notes API with C++ consumed too much time, and the project was not finished by 

the due date (grade 0.5). 

 

Other teams whose source code was available for analysis used older 

approaches for their web application based on Common Gateway Interface (CGI). 

One team wrote the CGI in Perl, others used C++. The team that used Perl had a good 

design for the system, but again the project was not finished due to lack of time 
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(grade 1.0). Most teams used CGI scripts written in C++, and two of them faired quite 

well (grade 1.5); one team gave up integration on the grounds that the source code 

was not available (grade 0.0); other teams were graded from 0.2 to 1.0 because of 

different problems (especially losing the cashier’s interface from the simulator and 

having two disjoint sets of tickets). It seems that use of unfamiliar languages 

increased development time, or even seriously hindered completion of the project. 

The teams that used mostly CGI with C++ for their web application had a better 

chance of completing the integration. 

 

These cases show the importance of considering familiarity of COTS products 

for their selection. This in turn gives support for the proposed effort estimation 

model, which takes into account the organization productivity. The organization 

productivity must use familiarity as one of the main criteria; if familiarity is low 

productivity is decreased, or else the learning time must be added onto the total effort 

as an overhead. Another option is to use a special “learning” pseudo-incompatibility 

between the COTS product and the developers; to overcome this pseudo-

incompatibility the developers have to learn about the product spending certain effort. 

 

The effort estimation model still requires further validation and calibration for 

industrial use; however, it is possible to say that any effort estimation model used for 

COTS integration should consider besides the size of the problem, its developers’ 

capabilities, including both the relative complexity of the problem (e.g., architectural 

problems are harder than functional for specific developers), and the degree of 
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familiarity with COTS product to that needs to be integrated. Thus, the organization 

factors were correctly included into the proposed effort estimation model. 

 

6.8. The incompatibility sources 

The hypothesis behind this goal is that some incompatibilities are caused by 

differences between the requirements for the new system and the COTS products to 

be used, and can be predicted during the requirements analysis. However, some 

incompatibilities can appear because the system design creates other potential 

integration problems. These incompatibilities can be detected after the design phase 

only, and they can be avoided if the design is done carefully. So the goal was to see 

whether all incompatibilities were intrinsic to the requirements, or some of them 

emerged because of the system’s design or other reasons. 

 

Goal 3: analyze the incompatibility causes for the purpose of characterization 

with respect to the software life-cycle phases from the viewpoint of developers in the 

context of a software project that needs to integrate components into an application. 

 

Question 3.1. What incompatibilities are introduced during the requirements 

analysis phase and which ones during the design phase (if any)? In the project 

description above, we gave the incompatibilities that were due to differences between 

the requirements and the specifications in the existing legacy system. The project data 

and the incompatibility report forms submitted by the subject showed that some more 

incompatibilities appeared because of certain design solutions. 
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- Code was not provided for DEC Alpha: the object code for the legacy system 

was available originally for PC and Sun only; however, a number of teams 

preferred to use an account on DEC Alpha. Making a DEC Alpha version of the 

system solved this problem. This was somewhat against the nature of the 

experiment, but otherwise it would have been too difficult for the subjects. This 

is syntax software–target platform incompatibility, and an architectural style 

integration problem (a wrong assumption on the underlying platform in the USC 

model – integration problem 20). 

- Systems for DEC Alpha exceeded the program size limit: due to the C++ 

compiler on the DEC Alpha computers, the resulting parking garage control 

program turned out to be over 1Mbyte, which was the limit for executable 

programs on the users’ accounts. Fortunately, the system administrators changed 

the limit for the developers. This is a syntax software-target platform 

incompatibility, architectural style integration problem (a component is 

unsupported by the target platform – integration problem 29). 

- Permission denial when sending mails using CGI: two teams reported that their 

mail scripts could not create temporary files when sending mail. This was 

overcome by setting proper permission. This is a 1-order semantic-pragmatic 

target platform incompatibility, functional integration problem (missing 

functionality – considering the CGI server a COTS product to integrate – 

integration problem 24). 

- Problems with the CGI server: one team could not make their CGI server work, 

so they had to write a web simulator to show the functionality of their system. 
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This is a 1-order semantic-pragmatic target platform incompatibility, functional 

integration problem (missing functionality – integration problem 24). 

- Tickets could not be stored in a list: two teams originally planned to store the 

ticket information in a linked list, but when they realized that it was contrary to 

the requirements for persistent ticket data, they had to change the design in favor 

of array- like structures. This is 1-order semantic-pragmatic internal 

incompatibility, functional (missing func tionality to save and load the ticket data 

– integration problem 24) and architectural (an inadequate data structure – 

integration problem 36) integration problems. 

- Connection could not be created between VC++ and Visual Basic programs: one 

team could not find out how to call a dynamic linkage library written in VC++ 

from Visual Basic and vise versa. This is a “learning” pseudo- incompatibility, 

technically this problem can be solved, but it requires knowledge the developers 

did not possess. 

- Learning Lotus Notes API took too much time: one team that used Lotus Notes 

for their project spent too much time learning LN API for C++. This is a 

“learning” incompatibility; the developers had just too little time to master a new 

tool. 

 

Although these incompatibilities entirely fall within the proposed 

classification, they appeared because of certain decisions made by the developers 

during the design and implementation phases. On the contrary, the “seeded” 

incompatibilities are discrepancies between the project requirements and the COTS 
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products selected before the requirements analysis phase (the parking garage control 

system); the developers cannot avoid them, but they can introduce more 

incompatibilities due to the following reasons: 

- design that does not match the requirements or components to be used in the 

system (e.g., COTS or legacy code) 

- selection of COTS products or a platform that is not compatible with other 

system components 

- selection of tools, languages, and COTS products unfamiliar to the developers, 

potentially requiring too much time to learn 

 

So these data show that developers can avoid introducing more 

incompatibilities in the project and increase its complexity. 

 

6.9. Validation and feedback for the models 

The data from the case studies support the following conclusions with respect 

to validation of the incompatibility and integration problems models: 

- The proposed classifications reflect the real issues, although the models require 

better training and examples for users. 

- The proposed models are useful, but do not provide a sufficiently explicit process 

for implementing the process needed. 

- The developers generally found these models reasonable. 

 

Other feedback concerning the models include: 
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- Real examples are useful to illustrate the incompatibility and integration 

problems models. 

- The integration process should include clear and explicit guidelines. 

- The terms of the incompatibility and integration problems models were not self-

evident to the developers and should be better defined. 

- One new integration problem was discovered – if a data structure to be integrated 

into the system is not adequate for the requirements, a proper data structure has to 

be implemented. 

 

The comprehensive reuse schemes can be improved using feedback from the 

project. The input/output field for low-level templates should also include the data 

formats used by the components and required by the system. 

 

A new field of conflicts should be added to the low-level templates, because 

they are a very common reason for architectural problems: 

Conflicts: 

 Project characterization: what are the interactions between the components, 

including the COTS products to integrate (they can be found from the system’s 

architecture)? Are they potential sources of conflict? For example, are there any 

databases or other data items that can be shared between different components, 

including COTS products to be integrated? 

 COTS product characterization: what components will the product interact 

with (they can be found from the system’s architecture)? Can these interactions cause 
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conflicts? For example, does the COTS product share an access to a database or any 

other data item with other software components? 

 

Another thing discovered in the case study are the “learning” pseudo-

integration problem, which can be solved technically, but the developers are 

insufficiently familiar with the appropriate techniques. In this case the resulting 

integration effort is determined more by learning than by actually applying 

integration techniques. Thus, the effort estimation model should take into account 

learning, so that little knowledge about the COTS and/or integration techniques 

results in a low productivity rate and consequently in greater effort. 

 

6.10. The flaws of the case study 

However, there were several weaknesses in the case study that should be 

addressed in a follow up study: 

- There was a risk that some students did not understand exactly the project goal, 

so the requirements for the integration should have been made clear. 

- More incompatibilities should have been seeded to collect more data. 

- The information on integration and architectures should have been given earlier 

to developers, in order to be more helpful. 

- Questionnaires should have asked who exactly designed and implemented the 

integration solution and how the particular integration solution was derived. This 

might have helped to find correlations between integration solutions, experience 

of the developers, and other variables. 
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6.11. The lessons for the developers 

Based on the lessons from the case studies, we can advise the following things 

for a software development process that uses legacy and/or COTS products: 

- Study the COTS and legacy code specifications or even prototype before the 

design phase; inconsistent design decisions can add more to integration problems. 

- Choose the appropriate architectural style for the system. For example, it might 

not be good to use control flow where data flow is more natural and vice versa. 

- Check the functional and non-functional requirements for the new system, so 

they can require reworking some old code and changing the architecture. 

- Check the data formats, if they are different among different components, 

wrappers will be useful. 

- Check for possible conflicts. Even if each pair of components or subsystems 

appears to work perfectly, together they can cause serious problems. For 

example, either two programs can work together without accessing a database, or 

each program can work accessing its own copy of the database, but if both 

programs access the same database they can violate its integrity. 

- Design the new code to perform the required functionality and for integration 

with COTS products. If the new code works correctly by itself, it does not imply 

that it can be easily integrated with the COTS products. 

- Allow for sufficient learning time. If you do not know well tools, languages, and 

environment, learning time can be unaffordable. 
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The case study also shows that 

- Integration of different software components, such as legacy code and COTS 

products can be a difficult task. It was easier for the students in the class to 

implement new functionality than to integrate new code with other components. 

- Architectural style and architectural problems were most difficult to solve. 

- Some incompatibilities can be introduced at the design phase by poor selection of 

design solutions, platforms, or COTS software components. 
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Chapter 7. Summary of dissertation 

7.1. Contributions 

The present work has the following contributions: 

1) A classification of incompatibilities between software components and othe r 

parts of a software system and its environment has been proposed. 

2) A model of integration problems and their solutions has been proposed. 

3) An approach for finding an architectural style for a COTS-based system has 

been proposed. 

4) A COTS integration process based on the comprehensive reuse model has 

been proposed; this process includes COTS integration and estimation of the 

COTS integration effort. 

5) A mapping between the proposed incompatibility classification and the 

architectural mismatches found by Gacek and Abd-Allah was given. This 

allowed for creating a classification of integration problems, and 12 more 

integration problems were added to the 23 architectural mismatches. It was 

also showed how the integration problems classification can be further 

expanded using the proposed incompatibility and integration problem models. 

6) A case study based on projects from a software engineering class has been 

conducted. The case studies helped to test and improve on the model and 

produced other results that can be useful for researchers and developers. 
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7.2. Limitations of model validation 

The empirical validation was limited primarily by the available data. The 

projects for the case study were taken from a university class, not from industry; 

therefore, our case studies have several drawbacks: 

- The developers lacked experience and might not use the best existing practices, 

and real problems might not occur. 

- There were no alternative COTS products, so COTS evaluation and selection 

were not performed in the case studies. 

- The whole COTS integration process was not tested, but only the incompatibility 

classification and some aspects of integration. 

- The students used mostly ad hoc integration techniques and did not follow the 

proposed process closely. 

- The collected quantitative data, such as effort, was not precise enough, and 

because of that the effort estimation model was not tested. 

- The number of incompatibilities in the developed system was not sufficient to 

make any quantitative analysis. 

 

Thus, the proposed model requires further validation based on data from real 

industrial projects.  
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7.3. Open issues 

The proposed comprehensive reuse model for COTS software products 

provides some insight on the COTS integration and evaluation problem, but it does 

not give a complete solution for it. A number of related issues are left open: 

1) The proposed model primarily addresses questions of selection and 

integration, leaving unanswered such issues as acquisition costs, safety, 

vendor’s reliability, etc. A complete model must take these issues into 

consideration. 

2) The proposed model is not sufficiently prescriptive, and the exact algorithm of 

its application by developers still needs to be developed. 

3) The templates for COTS products and project characterization have to be 

further specified based on data from real projects: we need to better 

understand what parameters must be included in the templates and how to 

represent their values. 

4) The integration problems classification is should be further developed; both 

analytical and empirical research can be used to expand it. 

5) The effort estimation model requires validation and calibration using practical 

data. 

6) The architectural model requires further refining of the architectural features, 

their values, and their orderings. 

 

Future research, both theoretical and experimental, can target development of 

the COTS integration process that would embrace all COTS-relevant aspects: 
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integration, selection, maintenance, security, vendor’s reliability, etc., to allow 

software developers to select COTS products based on all parameters during the life-

cycle of the software system. 

 

7.4. Future work 

The proposed COTS integration approach should be applicable in a real 

development environment. We hope to apply the proposed approach in the Software 

Engineering Laboratory (SEL) environment. SEL is a research group supported by 

NASA/Goddard Space Flight Center, the Computer Science Corporation, and the 

University of Maryland. The focus of SEL’s research is improvement of software 

development process in the Goddard SFC environment. 

As recent studies have shown, use of COTS software in software development for 

NASA is growing. Thus, the SEL environment can be a good proving ground for the 

proposed COTS integration process. We hope that adopting the proposed process to 

the SEL environment can be useful for developers. 
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Appendix 1. Experience questionnaire 
 
 

Experience Questionnaire  - CMSC 435 
 

 

Name __________________________________________________ 
 
 

General Background 
Please estimate your English-language background: 

__ I am a native speaker. 
__ English is my second language. [Please complete both of the following.] 
 My reading comprehension skills are: 

__ could be better 
__ moderate 
__ high 
__ very high 
My listening and speaking skills are: 
__ could be better 
__ moderate 
__ high 
__ very high 

 
What is your previous experience with software development in practice? 
(Check the bottom-most item that applies.) 
__ I have never developed software. 
__ I have developed software on my own. 
__ I have developed software as a part of a team, as part of a course. 

__ I have developed software as a part of a team, in industry. 
 
Please explain your answer.  Include the number of semesters or number of 
years of relevant experience. (E.g. “I worked for 10 years as a programmer in 
industry.”) 
 
 
 

Software Development Experience 
Please rate your experience in this section with respect to the following 5-

point scale: 
1 = none 
2 = studied in class or from book 
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3 = practiced in a class project 
4 = used on one project in industry 
5 = used on multiple projects in industry 
 

Experience with Requirements 
• Experience writing requirements 1 2 3 4 5 
• Experience writing use cases 1 2 3 4 5 
• Experience reviewing requirements 1 2 3 4 5 
• Experience reviewing use cases 1 2 3 4 5 
• Experience changing requirements for maintenance 1 2 3 4 5 
 

Experience in Design  
• Experience in design of systems 1 2 3 4 5 
• Experience in design of systems from requirements/use cases 1 2 3

 4 5 
• Experience with creating Object-Oriented (OO) designs 1 2 3 4 5 
• Experience with reading OO designs 1 2 3 4 5 
• Experience with the Unified Modeling Language (UML)  1 2 3 4 5 
• Experience changing designs for maintenance 1 2 3 4 5 

Experience in Coding 
• Experience in coding, based on requirements/use cases 1 2 3 4 5 
• Experience in coding, based on design  1 2 3 4 5 
• Experience in coding, based on OO design 1 2 3 4 5 
• Experience in maintenance of code 1 2 3 4 5 
 

Experience in Testing 
• Experience in testing software 1 2 3 4 5 
• Experience in testing, based on requirements/use cases 1 2 3 4 5 
• Experience with equivalence-partition testing 1 2 3 4 5 
 

Other Experience 
• Experience with software project management?  1 2 3 4 5 
• Experience with User Interface (UI) design?  1 2 3 4 5 
• Experience with software inspections?  1 2 3 4 5 
 
 

Experience in Different Contexts 
 
We will use answers in this section to understand how familiar you are with 
various systems we may use as examples or for assignments during the class. 
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Please rate your experience in this section with respect to the following 3-
point scale: 

1 = I’m really unfamiliar with the concept. I’ve never done it. 
3 = I’ve done this a few times, but I’m no expert. 
5 = I’m very familiar with this area. I would be very comfortable doing this. 

 
Experience in using and integrating software components 

• Building a system that involved reusing other components  
(e.g. from a reuse library) 1  3  5 

• Building a system that involved reusing other components  
but adjusting the functionality for some of them 1  3  5 

• Adjusting a system’s architecture so that existing software components  
could be integrated with the system 1  3  5 

• Solving conflict resolution problems resulting from trying to use an  
existing software component as part of another system (e.g. deadlocks,  
data sharing violations, and so on)  1  3  5 

• Writing specific code (glueware) to integrate an existing software with  
some application 1  3  5 

• Other (please specify)  1  3  5 
  
_____________________________________________________________________
__ 
 
How much do you know about… 
• Using a parking garage?  1  3  5 
• Using a web based system? 1  3  5 
• Using an e-commerce system?  1  3  5 
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Appendix 2. Integration model evaluation form 
 

CMSC435-0201-spr00 
Individual Questionnaire - 2/2 

 
Name  _______________________________ 

Please note that your answers on this question will not affect your grade in any way. These 
are questions we need to know in order to make effective use of the data from the study. 
 
Please evaluate the guidelines you received to guide the integration of the system (COTS 

integration model): 

1.  Training 
Were you present in class for the software architecture discussions and COTS 

integration guidelines training? (yes / no)  

 

 

If you answered yes, how effective did you think the training was? Did it help you 

understand the procedures better? Was there something missing, or something that we 

could have done better? 

 

 

 

 

 

 

If you answered no, how did this affect what you did during the integration phase? 

Did you make some effort to make up for having missed the training? What did you 

do? (e.g. have your partner explain the procedure to you) How much time did it take? 
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2. Using the guidelines to integrate COTS 
 
Use the following scale for the items 2.1, 2.2 and 2.3: 
0 – misleading (the model contradicts to the reality);  
1 –absolutely useless (it makes sense, but still it would be easy to do integration without 
knowledge of this model); 
2 –somewhat useful (the model gave some useful hints); 
3 –really helpful (the part of the model really facilitated implementation of the project). 
You can also describe your opinion using your own words. 
2.1. Usefulness of the incompatibility classification:   ___ 

 

 

2.2. Usefulness of the proposed integration solutions:  ___ 

 

 

2.3. Usefulness of the proposed integration process :  ___ 

 

2.4. Timeliness of the process 

Use the scale  timely, too early, too late, or please specify  
The following activities were done: 

4.1. Low-level design and COTS architecture design  ________________ 

4.2. COTS integration specification                            _________________ 

 

 

3. Completeness of the proposed integration process. 
What would you like to know about software integration, which was not in the proposed 
process? 
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4.  Suggestions on the terminology. 

Did you feel comfortable with the terminology used to describe the integration problems? If 
not, what other words would be appropriate to designate types of incompatibilities and 
integration problems? 
 

 

5. Other comments on the proposed model. 
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Appendix 3. Incompatibility report form 
 

Incompatibility Report Form 
Team#_______ 

Description – what was the nature of the incompatibility problem (e.g., missing 
functionality; different interface, data format, language, OS; etc.), and what was the particular 
incompatibility. 

When found – the phase when the incompatibility was first detected: 1 - requirements 
analysis, 2 - high level design, 3 - low level design, 4- coding, 5 - testing 

Solution – a brief description of the solution used to overcome the incompatibility (e.g. 
writing glueware, modifying the old system, changing the system’s architectural style, etc.) 

Effort to overcome  – the effort in person-hours required to solve the incompatibility 
problem. 

Amount of code to overcome  – the amount of written specifically to solve the problem (if 
any), not including blank lines and comments. 

Inc.# Description When found Solution Effort to 
overcome 

Amount 
of code 

to 
overcome 

01  
 

    

02  
 

    

03  
 

    

04  
 

    

05  
 

    

06  
 

    

* Use additional pages if necessary 
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Appendix 4. Time table form 
 

SCHEDULE AND ESTIMATES 
 
 

PGCSPP01 TEAM:  Effort in Person-hours Du
e 
by 

Activities Estimate Measured  

Project Plan    

Requirements    

Read new requirements    
Read old requirements (PBR – customer):    
             Individual Reading 1    
             Individual Reading 2    
             Individual Reading 3    
             Team meeting     
             Describe initial use cases    
Create Requirements Description    

Milestone 1   01-
Ma
r 

Create Use Cases    
Create Initial testing cases (PBR – tester):    
             Individual Reading 1    
             Individual Reading 2    
             Individual Reading 3    
             Team meeting    
             Describe the test cases    
Report requirement defects report    
Fix requirement defects    

Milestone 2   08-
Ma
r 

High Level Design    

Understand old design    
Create Artifacts:    
             Class Diagrams    
             Sequence Diagrams    
             State Diagrams    
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             Class Descriptions    
Milestone 3.1   29-

Ma
r 

Inspect design for consistency (OORT’s-
horizontal):  

   

             Individual reading 1    
             Individual reading 2    
             Individual reading 3    
Fix design defects    

Milestone 3.2   05-
Apr 

Inspect design for traceability (OORT’s – 
vertical): 

   

             Individual reading 1    
             Individual reading 2    
             Individual reading 3    
             Team reading    
             Report the defects    
Fix design defects    
Measure the Product    

Milestone 4   12-
Apr 

 
 

PGCSPP01 TEAM: 1 Effort in Person-hours Du
e 
by 

Activities Estimate Measured  

Low Level Design    

Evolve Artifacts:    
             Class Diagrams    
             Sequence Diagrams    
             State Diagrams    
             Class descriptions    
Design Software architecture:    
             Package diagrams    
             Deployment Diagrams    
Measure the Product             
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Milestone 5   03-
Ma
y 

Coding and Testing    

Find integration mismatches    
Create integration mismatches report    
Create Artifacts:    
             source code for the new parts    
             source code for solving integration 
             mismatches 

   

             Execute Unit testing Execute Integration  
             Testing 

   

Create testing plan     
Create final testing cases    
Execute test cases    
Report system-testing results    
Maintenance    

Create Maintenance plan    
Packaging and delivering    

Create delivering plan    
Milestone 6   10-

Ma
y 

Package the product    
Write the simplified User’s Guide    
Deliver the product    

Milestone 7   17-
Ma
y 
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Appendix 5. Definitions 

In this dissertation we use the following terms and definitions: 

- Architecture – the definition of the components of a software system and the 

interactions (connectors) among them. 

- Architectural style – the type of architecture of a software system, e.g., object-

oriented, concurrent, pipe-and-filter, main program and subroutines, etc. 

- Architectural changes – an integration strategy that involves changing the 

system’s architecture by adding new components and connectors without 

changing the architectural style. 

- Architectural style changes – an integration strategy that involves changing the 

overall system’s architectural style to overcome certain integration problems. 

- Baseline architectural style – the architectural style accepted at the design phase 

(as the architectural style chosen for the system being developed) based on the 

available tools and the programming paradigm for in-house software. This 

architectural style can be changed during the COTS architectural style design 

activity allowing the integration of COTS products. 

- Black-box reuse – reuse of software components, which cannot be modified 

because their source code is not available. 

- Component – a software or hardware unit that can be part of a larger system. 

Software components include procedures, modules, objects, files, etc. Hardware 

components are devices with their software drivers. 
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- Conflict – a type of integration problem caused by interactions between one 

component (the object of the conflict) and several others; for example, 

insufficient memory (the object) for several programs. 

- COTS – commercial off-the-shelf. COTS software is obtained from a third party 

and used for development of a new software system as a part of it. 

- Development environment – environment (platform) used for the system’s 

development. It includes compilers, linkers, debuggers and other tools; the 

hardware required for successful development can be relevant. 

- Environment – software and hardware that interact with the system but are not 

part of it. Environment can be development (e.g. compilers, linkers) or target 

(e.g. operating system and shared libraries of the deployment platform). 

- Evaluation – the part of the reuse process whose goal is to evaluate and select the 

best candidates among the COTS products according to the system’s 

requirements and other criteria. In this work, evaluation is done primarily from 

the perspective of the cost (effort) estimation of integration. 

- Glueware – software whose purpose is to facilitate integration of other software, 

especially COTS. Glueware can be “put around” a software component to handle 

all accesses to it (wrappers) from any other components, or it can be “put 

between” several software components to manage their interactions (glue). 

Glueware integration strategy uses glueware to overcome interface 

incompatibilities. 

- Incompatibility – a failure of a software component to interact with the system or 

its environment. A classification of the incompatibilities is given in this work. 
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- In-house software – software developed by the organization building the project, 

opposite to COTS software obtained from a third party. 

- Integration – the part of the reuse process whose goal is to integrate the reused 

software into the system overcoming the incompatibilities between them, often 

by using glueware. In this work, integration usually means a particular activity 

(COTS integration) of the COTS reuse process but sometimes it is used as a 

synonym for the whole reuse process. 

- Integration problem – a problem the developers face because of an 

incompatibility between a software component and other parts of a system or its 

environment. Integration problems can be considered as a higher- level 

perspective of low-level incompatibilities. The present work introduces five 

groups of integration problems: functional, non-functional, architectural style, 

architectural, and interface. 

- Integration strategy – a set of related techniques intended to overcome a specific 

type of integration problems. In this study we use the following integration 

strategies: tailoring, modification, re-implementation, architectural style 

changes, architectural changes and glueware. 

- Non-functional requirements – requirements other than functional, such as 

maintainability, usability, portability, etc. However, in this work we treat 

separately the requirements for the software environment (e.g., portability), 

therefore the non-functional requirements are related only to the user. The 

examples of these requirements include usability, performance, reliability, 

maintainability, etc. 
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- Objective metric – a metric whose values are obtained using an explicit and 

replicable procedure and do not depend on the judgment of the person who 

assigned the value to the measurement. 

- Re-implementation – an integration strategy in which some functionality 

(missing or wrong functionality of COTS products) is re- implemented by the 

project developers. 

- Subjective metric – a metric whose values involve some human judgment. 

- System’s hardware – external hardware directly controlled by the system, for 

example on-board devices. It does not include the hardware owned by the target 

environment and controlled via system drivers, such as printers, disk drivers, etc. 

We shall refer it to as simply hardware. 

- Target environment – environment (platform) where the system is supposed to 

work. It includes the operating system, other software required for running the 

system, the driver-controlled hardware (e.g., disk drivers), and internal computer 

hardware (e.g., CPU, memory, etc.). 

- White-box reuse – reuse of software components that allows for their 

modification. 
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