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Overview

dypgen is a parser generator for Objective Caml. To use it you need to learn the BNF syntax for
grammars which is briefly explained in section 2. Its main differences with other solutions are:

• This is a GLR parser. This means it can handle ambiguous grammars and output the list
of all possible parse trees. Even for non ambiguous grammars, GLR parsing allows to define
the grammar in a more natural way. It is possible to extract a definition suitable for the
documentation directly from the dypgen source file.

• Ambiguities can be removed by introducing priorities and relations between them. This gives
a very natural way to express a grammar (the example in this documentation illustrates this).

• Grammars are self-extensible, i.e. an action can modify the current grammar. Moreover, the
modifications can be local. The new grammar is valid only for a well delimited section of the
parsed input.

• dypgen provides management of local and global data that the user can access and modify.
These mechanisms adress the problem posed by side effects with GLR parsing (see section
6).

Modifications of local data are preserved when traveling from right to left in a rule or when
going down in the parse tree. Modifications of global data are preserved across the complete
traversal of the parse tree.

This data may be used for instance to do type-checking at parsing time in an elegant and
acceptable way. The local data may contain the environment that associates a type to
each variable while the global data would contain the substitution over types that is usually
produced by unification.

• Pattern matching for symbols in right-hand sides of rules is possible. In particular this allows
guarded reductions and to bind names to the arguments of actions.

• dypgen allows partial actions, that are semantic actions performed before the end of a rule.
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1 The calculator example

It is traditional to start the documentation of a parser generator with the calculator exemple. Here
we only give the grammar file: dypgen takes a file ending with .dyp as input and generates a .ml

file and a .mli file.
For the program to be complete, one also need to generate a lexical analyser, which can be

done with ocamllex. The complete source for this example lies in the directory demos/calc of
the distribution.

Here is the file defining the calculator grammar:

%token LPAREN RPAREN <int> INT PLUS MINUS TIMES DIV EOL

%relation pi<pt<pp /* same as pi<pt pt<pp pi<pp */

%start <int> main

%%

main : expr EOL { $1 }

expr :

| INT { $1 } pi

| MINUS expr(=pi) { -$2 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pp) MINUS expr(<pp) { $1 - $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

| expr(<=pt) DIV expr(<pt) { $1 / $3 } pt

Let us comment it briefly. More details are available later in this documentation.

• The first two lines starting with %token define the tokens also called terminal symbols of
the grammar. The lexical analyser is supposed to transform a character stream into a token
stream.

For instance, the token PLUS will probably (this is defined by the lexical analyser) correspond
to the character + in the input stream.

On the second line, we also indicate that the INT tokens comes with a value of type int.
They correspond to integer values in the input stream.

• The third line starting with %relation defines three priority levels, which intuitively will
correspond to atomic expressions (pi), products (pt) and sums (pp).
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• The line starting with %start gives the entry point of the grammar . This means that one
can parse an input stream using the function Calc_parser.main which is the function you
need to call to actually parse something.

• All the other line define the grammar. The next section will explain how to write grammar.
Briefly we remark a BNF grammar (explained below) decorated with the new concept of
priority and with semantical action between curly braces.

2 BNF grammars

A BNF grammar is a concise way of defining a language, that is set of sequence of characters.
However, it is traditional and may be more efficient to define language in to steps: lexical analysis
and grammatical analysis.

We will not describe lexical analysis here. We will assume an already defined lexer (for instance
using ocamllex) which defines some sets of words denoted using capital letters. For instance, in
that calculator example above, PLUS denotes one word “+” while INT denoted the set of all words
representing an integer.

These set of words defined by the lexer are usually called tokens or terminal symbols.
Then a BNF grammar, describe the language as set of sequence of terminal symbols (they have

sometime to be separated by spaces).
The calculator grammar in this context is

expr : INT | MINUS expr | LEFTPAR expr RIGHTPAR

| expr PLUS expr | expr MINUS expr

| expr TIMES expr | expr DIV expr

This in fact just defines the language expr as the smallest language containing INT and closed
by the following construction rules:

• If w ∈ expr then −w ∈ expr (we assume here that MINUS contains only the word -, and
similar assumptions for the other tokens).

• If w ∈ expr then (w) ∈ expr

• If w,w′ ∈ expr then w+w′ ∈ expr

• If w,w′ ∈ expr then w−w′ ∈ expr

• If w,w′ ∈ expr then w∗w′ ∈ expr

• If w,w′ ∈ expr then w/w′ ∈ expr

In general, a grammar is define by a finite number of non-terminal symbols (the calculator
grammar has only one non-terminal : expr) and a set of rules describing the elements of each non-
terminal symbols. A rule associates to one non-terminal symbol a sequence of symbols (terminal
or non-terminal).

Then the languages corresponding to each non-terminals are defined simultaneously as the
smallest language satisfying every rules.

Let us consider another example:
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a : INT | a MINUS b

b : INT | b PLUS a

This means that a and b are the smallest languages containing the integers and such that:

• If w ∈ a and w′ ∈ b then w−w′ ∈ a

• If w ∈ b and w′ ∈ a then w+w′ ∈ b

Then, it is easy to see that 0-0+0-0 is in the language a, because 0 is both in a and b which
implies that 0-0 is in a, from which we deduce that 0+0-0 is in b and then, it is easy to conclude.
However, 0-0+0-0 is not in b (an easy exercise).

3 Priorities

The problem with our calculator grammar as written in the previous section is that it is ambiguous
and wrong because for instance, there are to way to parse 3-2+1, one way equivalent to (3-2)+1

and the other way leading to 3-(2+1).
The second way is not the usual way to read this expression and will give a wrong answer when

we will compute the value of the expression in the semantical action.
We forget to say that our operator should be associated to the left and also that product and

division have priority over addition and subtraction.
To say so, dypgen provides priority constant and relation over them. In the case of the cal-

culator, we define three priorities constants : pi, pt and pp. We define the relation < by pi<pt,
pi<pp and pt<pp.

For each rule, we say to which priority it belongs and for each non terminal in a rule, we give
the priority it accepts.

The calculator grammar in this context is

expr : INT pi

| MINUS expr(<=pi) pi

| LEFTPAR expr RIGHTPAR pi

| expr(<=pp) PLUS expr(<pp) pp

| expr(<=pp) MINUS expr(<pp) pp

| expr(<=pt) TIMES expr(<pt) pt

| expr(<=pt) DIV expr(<pt) pt

Let us comment some rules: in the rule E : expr(<=pp) PLUS expr(<pp) pp, we say that an
expression produced by this rule will be associated to the priority constant pp. We also say that
on the left of the PLUS token, only an expression of priority less or equal than pp can appear while
on the right, we are more restrictive since we only accept a priority stricly less that pp.

For the rule E : LEFTPAR expr RIGHTPAR pi, we associate the smallest priority to the result-
ing expression and we give no constraint for the expression between parenthesis.

More details about priorities will be given in the section 5.1.
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4 Semantical actions

Now, parsing is not just defining acceptable sequence. One as to produce something from the
parsed sequence. This is performed using semantical actions, given after each rule.

An action is a piece of ocaml code returning data associated to the parsed sequence, it can
be used to build a parse-tree or, as with the calculator, to compute a value. Actions can access
the semantics (that is the data associated to) each non-terminal. Terminal symbols also can have
semantics associated to them by the lexical analyser.

In the code of an action, we access the semantical data of each symbol in the rule using notation
$1, $2, $3... ($3 is the semantics of the third symbol in the rule).

Action must be placed after each rule between curly braces and before the priority of the rule.
Let us look again at the calculator grammar, but with the semantical action added:

expr :

| INT { $1 } pi

| MINUS expr(<=pi) { -$2 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pp) MINUS expr(<pp) { $1 - $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

| expr(<=pt) DIV expr(<pt) { $1 / $3 } pt

Here, the actions compute the value of the numerical expression and the example is self ex-
plaining.

Remark: a non terminal can accept the empty sequence, by writing no symbol before the
opening curly brace of the action.

5 Managing ambiguities

There are two main mechanisms to handle ambiguities in dypgen : a system of priorities with
relations between them and the merge functions which can decide which parse-tree to keep when
a given part of the input is reduced to the same non terminal by two different ways. Two other
secondary mechanisms make possible to decide to give up a reduction with a rule (by raising the
exception Dyp.Giveup) or to prevent a shift (i.e. the parser is prevented from reading more input
without performing a reduction).

5.1 Priorities with relations

Each time a reduction by a rule happens, the corresponding parse-tree is yielded with a value
which is called a priority. Priorities are named and declared along with relations between them
which hold true with the keyword %relation. The symbol for the relation is < (but this does not
mean that it has to be an order). A declaration of priorities can be for instance :

%relation pi<pt pt<pp pi<pp

It is possible to declare a relation which is transitive on a subset of the priorities with a more
compact syntax.
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%relation p1<p2<...<pn

means that the following relations hold : p1<p2, ... , p1<pn, p2<p3, ... , p2<pn, ... , p(n-1)<pn.
Thus the first example of relations declaration can also be written:

%relation pi<pt<pp

The declarations can use several lines, the following declaration is valid :

%relation pi<pt

pt<pp

%relation pi<pp

Each rule in the grammar returns a priority value when it is used to reduce. This priority is
stated by the user after the action code. For instance :

expr: INT { $1 } pi

If the parser reduces with this rule then it returns the value associated to the token INT and the
priority pi. The user can state no priority, then the default priority default priority is returned
each time a reduction with this rule happens. The value default_priority is part of the module
Dyp_priority_data available in the parser code.

Each non terminal in the right-hand side of a rule is associated to a set of priorities that it
accepts to perform a reduction. This set of priorities is denoted using the following symbols <, >
and = and a priority p.

(<p) denotes the set of all priorities q such that q<p holds. (<=p) denotes the previous set to
which the priority p is added. (>p) is the set of all priorities q such that p<q holds. Obviously
(>=p) denotes the previous set to which the priority p is added and (=p) is the set of just p. Note
that when declaring relations between priorities, the symbols > and = cannot be used.

If no set of priorities is stated after a non terminal in a right-hand side of a rule, then it means
that it accepts any priority. Thus to not state any set of priority is equivalent to state the set of
all priorities.

A basic example, you have the following rules :

expr: INT { $1 } pi

expr: MINUS expr(<=pi) { -$2 }

You parse the string : ‘-1’. First 1 is reduced to expr with the first rule. 1 is the returned value
and pi is the returned priority. Then the reduction with the second rule can happen because the
non terminal expr in its right-hand side accepts the priority pi. This reduction is performed, the
returned value is -1 and the returned priority is default priority. Now if we want to parse the
string ‘--1’ a syntax error will happen, because when -1 is reduced, the priority default priority

is yielded, which is not accepted by the second rule and therefore a reduction by this rule cannot
happen a second time.

Another example, we have the relations pi<pt<pp and the following grammar :
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expr :

| INT { $1 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

and we parse the following input : 1 + 2 * 3

1 and 2 are reduced to expr, each returning the priority pi, then the parser explores the shift
and the reduction. The parser can reduce with the third rule because pi<pp holds, the priority
pp is returned. After 3 is reduced to expr, the parser cannot reduce with rule 4 after the reduc-
tion by rule 3 because pp<pt does not hold. But the exploration of the possibility of a shift of
* after reducing 2 to expr leads to a successful parsing (which respects the precedence of * over +).

The user can declare a priority without stating any relation with it by adding it in the section
after %relation. You should declare any prorities which has no relation. If you use a priority that
is not declared and has no relation, in a rule, then dypgen will emit a warning.

When a priority is declared a corresponding Caml value of type priority is introduced with
the same name. You should beware of identifier collision and not name other variables with the
names of your priorities or default priority. This value can be used in action codes. All the
information about relations are stored in a structure of type priority data. This structure is
accessible from the action code with the mutable record field dyp.priority data. The following
function allows to know whether the relation holds between two priorities:

val is_relation : priority_data -> priority -> priority -> bool

is relation dyp.priority data p q returns true if p<q holds and false otherwise. The type of
the record dyp is defined in the module Dyp of the library dyp.cm[x]a, see the section 10 for more
information about it.
Other functions pertaining to priorities are available, see section 9 about changing the priorities
at runtime.

5.2 Merge functions

When a part of the input is reduced by several different ways to a same non terminal nt then the
parser must decide whether to keep all the parse trees yielded or to choose just one or a few of
them, or to make a new tree from them. By default only one parse tree is kept: the oldest, and
the other ones are discarded but the user can make it otherwise. It is possible to define a function
dyp_merge_nt of type :

val dyp_merge_nt : ’a list -> ’a -> ’a list

Where ’a is the type of the value returned when one reduces to the non terminal nt. The first
argument is the list of parse trees which are the different interpretations which were yielded and
kept for the non terminal nt for a given part of the input. The second argument is the parse
tree which has been just yielded. The result is a list of parse trees which are kept as the different
interpretations for the non terminal nt for the considered part of the input. The user can define
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such a function for each non terminal in the header of the parser.

For instance if one wants to keep all the parse trees for the non terminal nt then we can use:

let dyp_merge_nt ol o = o::ol

If one wants to keep the newest parse tree:

let dyp_merge_nt _ o = [o]

A merge function is only called on parse-trees which were yielded with same priorities. If a part
of the input is reduced to the same non terminal by two different ways but yielding two distinct
priorities, then each parse-tree is kept and used independantly for the parsing, but they are not
merged.

Here is an example of using a merge function to enforce the precedence of the multiplication
over the addition. Suppose we have the following grammar:

expr:

| INT { Int $1 }

| expr PLUS expr { Plus ($1,$2) }

| expr TIMES expr { Times ($1,$2) }

And the following string : 3+10*7 should be parsed Plus (3,Times (10,7)), more generally the
parse result of any string should respect the precedence of * over +. Then we can do this by
defining the following merge function:

let dyp_merge_expr l o2 = match l with [o1] ->

begin match o1 with

| Times (Plus(_,_),_) -> [o2]

| Times (_,Plus(_,_)) -> [o2]

| _ -> [o1]

end | _ -> assert false

You can find this example implemented in the directory demos/merge times plus.

In addition to these merge functions which are specific to one non terminal, the user can also
define one global merge function called dyp_merge, and several generic merge functions. A generic
merge function can be the merge function of several different non terminals. The type of a generic
merge function as well as the type of the global merge function is the following:

type merge_function : priority_data -> ((obj * priority) list) -> (obj * priority)

-> ((obj * priority) list)

The type obj should be considered as an abstract type which cannot be destructured. If you want
to define a merge function which can destructure a parse tree and to assign this merge function to
several non terminals (which must return the same type) then you have to use the specific merge
functions discussed above.

The global merge function can be defined in the header of the parser definition, for instance to
define a global merge function which keeps all the parse trees:
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let dyp_merge ol o = o::ol

Then it will be the merge function of any non terminal nt which has not its own function
dyp_merge_nt and has no generic merge function assigned to it.

Generic merge functions are defined in the header. Then to assign a merge function to one or
several non terminal one uses the keyword %merge in the following way:

%merge my_merge_function nt1 nt2 nt3 nt4 nt5

where my merge function is the name of the generic merge function which has been defined in the
header and nt1 ... nt5 are the names of the non terminal which are assigned this generic merge
function.

There are three predefined generic merge functions available to the user:

val keep_all : merge_function

val keep_oldest : merge_function

val keep_newest : merge_function

They keep respectively all the parse trees, the oldest and the newest. If no global merge function
is defined then by default it is keep oldest.

Note that you can use the predefined merge functions as generic functions and as the global
merge function as well. If you want to keep all the parse trees for all the non terminals, just define
the following in the header:

let dyp_merge = keep_all

You can find a very simple example using merge in the directory demos/forest where a parse
forest is yielded.

To know whether a merge happens you can use the command line option --merge-warning

with dypgen. Then the generated parser will emit a warning on the standard output each time a
merge happens.

Warning : when there is an error of type with the arguments or the result of a merge function,
Caml reports it and points to the .ml file generated by dypgen, not to the .dyp input file, which
may be puzzling.

5.3 Giving up a reduction

When a reduction occurs this reduction is given up if the exception Dyp.Giveup is raised in the
corresponding action code.

expr :

| INT { $1 }

| expr DIV expr { if $3=0 then raise Dyp.Giveup else ($1 / $3) }
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This is an example where a division by zero is not syntaxically correct, the parser refuses to reduce
a division by zero. We can also imagine a language with input files being parsed and typed at the
same time and an action would give up a reduction if it detected an incompatibility of type. Let
us assume we have the following input for such a language:

exception Exception

let head l = match l with

| x::_ -> x

| _ -> raise Exception

let a = head 1::[2]

Then the parser try to reduce head 1 to an expression, but the typing concludes to an incom-
patibility of type. Hence an exception Giveup is raised which tells the parser not to explore this
possibility further. Then the parser reduces 1::[2] to an expression and thereafter head 1::[2]

is reduced to an expression without type error.

5.4 Preventing a shift

When a reduction occurs it is possible to prevent the shift with the action code. You just have to
use the following line in your action code:

dyp.will_shift <- false;

Here is an example, we have the following rules in a grammar:

expr:

| INT { Int $1 }

| expr COMMA expr { action_comma $1 $3 }

Assuming we have the following input : 1,2,3, there are two ways to reduce it to expr. First
one: 1,2 is reduced to expr then expr,3 is reduced to expr. Second one: 2,3 is reduced to expr

then 1,expr is reduced to expr. Now if we have the input 1,2,...,n there are as many ways to
reduce it to expr as there are binary trees with n leaves. But we can use the following action code
instead:

expr:

| INT { Int $1 }

| expr COMMA expr { dyp.will_shift <- false; action_comma $1 $3 }

Then there is only one way to reduce 1,2,3 to expr : the first one, because when the record field
dyp.will shift is false the parser will not shift the comma without reducing. And there is only
one way to reduce 1,...,n to expr.

6 Auxiliary data

With GLR, the parsing can follow different interpretations independantly and simultaneously if
there are local ambiguities. As a consequence if there are accesses and changes to data through
side-effects for each of these parsings, there can be unwanted interactions between them. For this
reason, using side effects for the purpose of storing data should be avoided during the parsing. If
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you want to build and store data while parsing and access this data from within the action code
then you should use the mutable record fields dyp.global data or dyp.local data. If they are
used, then the user must define their initial values in the header with the following references:

let global_data = ref some_initial_data

let local_data = ref some_other_data

The record dyp is available in the action code and you can change the content of the fields
global_data and local_data (the type of the record dyp is defined in the module Dyp see section
10 for more information). The initial values can also be accessed from outside the parser definition
if you declare them with their type in the .mli file (by using %mli, see section 13.2). If you change
them before calling the parser, then these changes will be taken into account as new initial values
for global_data and local_data.

The data accessible with dyp.global_data follows the parsing during the reductions and the
shifts. If at one point the parser follows different alternatives then it evolves independantly for
each alternative.

The same is true for dyp.local data except that when a reduction happens, it is ‘forgotten’
and returned to its previous value. More precisely: when you update dyp.local data in an action
which yields a non terminal nt, then this dyp.local data is not forgotten (unless you do it) in any
action which follows until this non terminal nt is used in another reduction. When this happens,
dyp.local data is forgotten and returns to its previous value just before the execution of the
action code of this reduction.

Here is an example:

a: TOK_1 b TOK_2 c TOK_3 d EOF { action_8 }

b: e f { action_3 }

e: A1 { action_1 }

f: A2 { action_2 }

c: g h { action_6 }

g: B1 { action_4 }

h: B2 { action_5 }

d: C { action_7 }

We parse the string :

TOK_1 A1 A2 TOK_2 B1 B2 TOK_3 C EOF}

• Assume that at the beginning of the parsing dyp.local data has some initial value local data 0.

• The first action to be performed is action 1, it has access to local data 0 which it modifies
to local data 1,

• then the next action is action 2, it has access to local data 1 and can modify it to
local data 2, although this is useless in this case because it is about to be forgotten.

• Then the reduction of e f to b happens. dyp.local data comes back to its value be-
fore action 1 was performed, that is local data 0. action 3 is performed and changes
dyp.local data to the value local data 3.
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• The next action to be performed is action 4, it changes local data 3 to local data 4,

• then action 5 has access to this new value and can change it but it is useless in this case.

• The reduction of g h to c happens and the value of dyp.local data is again local data 3,
the value it had just after action 3 was applied. It is changed to local data 6 by action 6.

• The next action is action 7 which has access to local data 6. It is useless to change it
since it is about to be forgotten.

• The reduction with the first rule is performed, the value of dyp.local data comes back to
local data 0 and the last action action 8 is performed.

dyp.local data is useful, for instance, to build a symbol table, and makes possible to use it
to disambiguate. Assume the following grammar and action code:

main : expr EOL { $1 }

expr: INT { Int $1 }

| IDENT { if is_bound dyp.Dyp.local_data $1 then Ident $1

else raise Dyp.Giveup }

| LPAREN expr RPAREN { $2 }

| expr PLUS expr { Plus ($1,$3) }

| LET binding IN expr { Let ($2,$4) }

binding: IDENT EQUAL expr

{ dyp.Dyp.local_data <- insert_binding dyp.Dyp.local_data $1 $3;

Binding ($1,$3) }

If we keep all the parse trees (see merge functions section 5.2), then the following input string:

let x = 1 in x+1

yields the two following parse trees :

(let x = 1 in (x+1))

((let x = 1 in x)+1)

But this input string :

let x = 1 in 1+x

yields only one parse-tree :

(let x = 1 in (1+x))

Moreover some input are detected as invalid because of unbound identifiers before the whole string
has been parsed, like:

(let x = 1 in y+2) + ...
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This example is available in the directory demos/local data.

A function of equality between two global data global data equal can be defined otherwise
it is by default the physical equality (==), same thing for local data but the function is called
local data equal. These equality functions are used by the parser in order to not merge two in-
terpretations of a given part of the input if they have different global data or different local data

Here is a very simple example of use of dyp.global_data, it counts the number of reductions.

{ open Dyp

let global_data = ref 0

let global_data_equal = (=) }

%token <int> INT PLUS TIMES EOL

%relation pi<pt<pp

%start <int> main

%%

main: expr EOL { Printf.printf "The parser made %d reductions for this

interpretation.\n" dyp.global_data; $1 }

expr:

| INT { dyp.global_data <- dyp.global_data+1; $1 } pi

| expr(<=pp) PLUS expr(<pp) { dyp.global_data <- dyp.global_data+1; $1 + $3 } pp

| expr(<=pt) TIMES expr(<pt) { dyp.global_data <- dyp.global_data+1; $1 * $3 } pt

For instance we parse 5*7+3*4, when 4 is reduced, dyp.global_data is incremented from 4 to 5
(note that it will actually not count the real total number of reductions, but only the number of
reductions made for the first interpretation of the input). This example is available in the directory
demos/global_data.

Here is a less basic example and where dyp.global_data can be useful, suppose we have the
following grammar:

expr:

| LIDENT

| INT

| FLOAT

| LPAREN expr COMMA expr RPAREN

| expr PLUS expr

| LPAREN expr RPAREN

| expr PLUSDOT expr

We parse an input and the following string is a part of this input:

(x+.3.14,(x+1,(x+5, ... )))

Where ... stands for something long. Suppose we are typing the expressions in parallel with their
parsing and we want to reject the previous string as early as possible. We do not want to wait for re-
ducing the whole string to detect the type incompatibility of x. Then we can use dyp.global_data
for that purpose and when reducing x+.3.14 we store in dyp.global_data that x is of type float
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and then when we reduce x+1 we have this information still stored in dyp.global_data which is
accessible from the action code. And we can detect the type incompatibility whithout having to
parse more input.

7 More about actions and rules

7.1 Several actions for a rule

It is possible to bind several actions to the same rule, but only one will be completely performed.
When there are several actions for the same rule, the parser tries them one after the other until
the first one that does not raise Giveup. To bind several actions to a rule, write the rule as many
times as you need actions and state a different action after the rule each time. The actions are
tried by the parser in the same order as they appear in the definition file .dyp. For instance with
the following actions:

expr:

| INT { if $1 = 0 then raise Dyp.Giveup else $1 }

| INT { 100 }

an integer returns its value except for 0 which returns 100.

When a rule is dynamically added to the grammar, if it was already in the grammar, then the
action it was bound to is still in the grammar but when a reduction by the rule occurs the old
action will be applied only if the new one raises Giveup. This is useful when one wants to add a
rule at runtime with a keyword which is not recognized specifically as a keyword by the lexer but
as an identifier.

7.2 Partial actions

It is possible to insert action code in the right-hand side of a rule before the end (the last symbol)
of this right-hand side. This is a partial action. For instance you may have:

expr: LET IDENT EQUAL expr { binding dyp $2 $4 } IN expr { Let ($5,$7) }

The value returned by the partial action is accessible to the final action as if the partial action
were a symbol in the right-hand side. In the rule above it is accessible with $5. The record dyp is
passed to binding to have access to dyp.local_data.

For the parser the rule :

expr: LET IDENT EQUAL expr IN expr

does not exist. dypgen splits this rule in the two following:

expr: dypgen__nt_0 IN expr

dypgen__nt_0: LET IDENT EQUAL expr

As a consequence if you modify local data in the partial action, then this new value of local data

is accessible to any action which is performed before the final action is applied (the final action
not included). For instance if we have:

15



expr: LET IDENT EQUAL expr { binding dyp $2 $4 } IN expr { Let ($5,$7) }

with

let binding dyp name exp =

dyp.local_data <- insert_binding dyp.local_data name exp;

Binding (name,exp)

Then during the recognition of the last non terminal expr of the righ-hand side of the rule, any
action has access to the value of dyp.local data assigned by binding called by the partial action.

It is possible to insert several partial action in a rule, but not at the same position in the
right-hand side.

nt1: TOK1 nt2 { pa_1 } nt2 nt3 { pa_2 } nt4 TOK2 { pa_3 } TOK3 { final_action }

creates the following rules:

nt1: dypgen__nt_1 TOK3

dypgen__nt_1: dypgen__nt_2 nt4 TOK2

dypgen__nt_2: dypgen__nt_3 nt2 nt3

dypgen__nt_3: TOK1 nt2

As a consequence of these new rules, if local data is changed by pa 1, these changes stay acces-
sible until pa 2 is performed (pa 2 not included). Note that the names of the generated new non
terminals are unique, the ones stated here may be inaccurate.

Another consequence is that if a rule exists two times in the parser definition, one time with
partial actions and another time whithout partial action, or both times with partial actions, then
each of them may be tried by the parser to reduce regardless of whether the other raised Giveup

or not. This differs from the case where both of them do not have partial action.

7.3 Pattern matching on symbols

It is possible to match the value returned by any symbol in a right-hand side against a pattern.
The syntax is just to add the pattern inside brackets after the symbol name and the possible
priority constraint. For instance we may have the following:

expr: INT[x] { x }

which is identical to:

expr: INT { $1 }

One can use pattern matching to have a guarded reduction. Assuming the lexer return OP("+")

on ‘+’ and OP("*") on ‘*’, we can have the following rules:

expr:

| expr OP["+"] expr { $1 + $2 }

| expr OP["*"] expr { $1 * $2 }
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The patterns can be any Caml patterns (but without the keyword when). For instance this is
possible:

expr: expr[(Function([arg1;arg2],f_body)) as f] expr { ... }

The value returned by a partial action can also be matched. You can write:

nt0: TOK1 nt1 { partial_action }[pattern] nt2 TOK2 nt3 { action }

The directory calc pattern contains a version of the calculator which uses patterns (in a basic
way).

7.4 Nested rules

A non terminal in a right-hand side can be replaced by a list of right-hand sides in parentheses,
like:

nt1:

| symb1 ( symb2 symb3 { action1 } prio1

| symb4 symb5 { action2 } prio2

| symb6 symb7 { action3 } prio3 )[pattern] symb8 symb9 { action4 } prio4

| ...

The pattern in brackets after the list of nested rules is optionnal.

8 Dynamic changes to the grammar

8.1 Adding and removing rules

Dynamic changes to the grammar are performed by action code. To add rules one uses the mutable
record field dyp.add rules and to remove rules the mutable record field dyp.remove rules.

mutable add_rules : (rule * (dypgen_toolbox -> obj list -> obj)) list;

mutable remove_rules : rule list

Where dypgen_toolbox is the type of the record dyp (see section 10), and the type obj is explained
a bit further. To add several rules and their respective actions to the grammar, the user assigns
the list of the corresponding couples (rule, action) to dyp.add rules.

The type rule is defined as follows :

type token_name

type non_ter

type ’a pliteral =

| Ter of token_name

| Non_ter of ’a * non_terminal_priority

type lit = (non_ter * non_terminal_priority) pliteral

type rule = non_ter * (lit list) * priority
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In the type rule, non_ter is the non terminal of the left-hand side of the rule, lit list is the
list of symbols in the right-hand side of the rule. These types are part of the module Dyp which is
not open by default.

For each token Token there is one token_name value which is bound to the variable t_Token.
Non terminals are accessible with their names which are variable names. All these values (tokens
names and non terminals names) are encapsulated in a module named Dyp_symbols. For instance
if you have a non terminal expr and you want to use it to build a new rule, then you would use
Dyp_symbols.expr. It is a value of type non_ter.

The type non terminal priority is :

type non_terminal_priority =

| No_priority

| Eq_priority of priority

| Less_priority of priority

| Lesseq_priority of priority

| Greater_priority of priority

| Greatereq_priority of priority

Which is also part of the module Dyp.

The type obj is a sum of constructors with each constructor corresponding to a terminal or
non terminal. For each symbol of name symbol in the grammar, the corresponding constructor of
the type obj is Obj symbol. Obj symbol has an argument if symbol is a non terminal or a token
with argument. The type of this argument is the type of the argument of the corresponding token
or the type of the value returned by the corresponding non terminal.

When you write the function that builds the action associated to a rule added dynamically
to the grammar, you have to use one of these constructors for the result of the action. If the
constructor is not the good one, i.e. the one that is associated to the non terminal in the left-hand
side of the rule, then an exception will be raised when reducing by this rule. This exception is:

exception Bad_constructor of (string * string * string)

where the first string represents the rule, the second string represents the constructor that was
waiting for this left-hand side non terminal and the third string is the name of the constructor
that has been used.

If you want several non terminals to have the same constructor then you can use the directive:

%constructor Cons %for nt1 nt2 ...

where Cons is the name of the common constructor you want to assign for all these non terminals.
Of course all these non terminals need to return values of the same type. And even if you decide
to use polymorphic variants (see below) you should not write ‘Cons here but just Cons. You can
also use the keyword %constructor to declare constructors that are not used by any non terminal
in the initial grammar but that may be used for new non terminals when new rules are added
dynamically (see section 8.4). For instance:
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%constructor Cons1 Cons2 Cons3

Note that obj is actually a type constructor rather than a type. The types of values returned
by the tokens and the non terminals are its type parameters. But these type parameters are not
explicitly written in this manual to avoid clutter. See the next subsection for an example of type
constructor obj. Note that if your grammar has a lot of symbols, the maximal number of non-
constant constructors (246) may be reached. Then use the option --pv-obj with dypgen. With
this option, dypgen uses polymorphic variants instead of constructors.

8.2 Example

{ open Dyp

open Dyp_priority_data

let rule_plus = (Dyp_symbols.expr, [

Non_ter (Dyp_symbols.expr,No_priority);

Ter Dyp_symbols.t_PLUS;

Non_ter (Dyp_symbols.expr,No_priority)

], default_priority)

(* define the rule : E -> E + E *)

let action_plus = (fun dyp l ->

let x1,x2 = match l with

| [Obj_expr x1;_;Obj_expr x2] -> x1,x2

| _ -> failwith "action_plus"

in

dyp.will_shift <- false;

Obj_expr (x1+x2)

)

}

%token <int> INT PLUS AMPERSAND EOF

%start <int> main

%%

main : expr EOF { $1 }

expr :

| INT { $1 }

| a expr { $2 }

a : AMPERSAND { dyp.add_rules <- [(rule_plus, action_plus)] }

Now if we parse the following input

& 1 + 2 + 3 + 4

the parser reduces & to a, the action code of this reduction adds the rule expr: expr PLUS expr

to the initial grammar which does not contain it. And the action code associated to this rule is
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action plus which is the addition. Then the rest of the input is parsed with this new rule and
the whole string is reduced to the integer 10.

The type constructor obj discussed in the previous subsection is:

type ( ’a, ’expr) obj =

| Obj_AMPERSAND

| Obj_EOF

| Obj_INT of (int)

| Obj_PLUS

| Obj_a of ’a

| Obj_expr of ’expr

| Obj_main of int

Note that with a partial action we can use alternatively the following grammar:

main : expr EOF { $1 }

expr :

| INT { $1 }

| AMPERSAND { dyp.add_rules <- [(rule_plus, action_plus)] } expr { $3 }

Now the type constructor obj becomes:

type ( ’dypgen__nt_0, ’expr) obj =

| Obj_AMPERSAND

| Obj_EOF

| Obj_INT of (int)

| Obj_PLUS

| Obj_dypgen__nt_0 of ’dypgen__nt_0

| Obj_expr of ’expr

| Obj_main of int

8.3 Scope of the changes

The changes to the grammar introduced by an action do not apply anywhere in the input. When
an action code changes the grammar a reduction occurs and yield a non terminal (the non terminal
a in the previous example). Once this non terminal is itself reduced, the changes to the grammar
are forgotten and the grammar which was used before the changes is used again. The scope of the
changes to the grammar is the same as the scope of local_data.

We add parentheses to the previous example :

{

(* same as previous example *)

}

%token <int> INT PLUS AMPERSAND LPAREN RPAREN EOF

%start <int> main

%%

20



main : expr EOF { $1 }

expr :

| INT { $1 }

| a expr { $2 }

| LPAREN expr RPAREN { $2 }

a : AMPERSAND { add_rules <- [(rule_plus, action_plus)] }

The input

(& 1 + 2 + 3 + 4)

is correct, but

(& 1 + 2) + 3 + 4

is not and raises Dyp.Syntax_error. In order to reduce (& 1 + 2) the parser reduces & 1 + 2

to a expr and then to expr. At this moment the old grammar applies again and the rule expr:

expr PLUS expr does not apply any more. This is why the parser cannot shift + after (& 1 + 2).
In the directory demos/sharp there is an example which is close to this one.

8.4 Adding new non terminals

To add a new non terminal to the grammar from the action code, one uses the following functions:

dyp.add_nt : string -> string -> Dyp.non_ter

dyp.find_nt : string -> Dyp.non_ter * string

When new rules with new non terminals are added, each new non terminal must be added to the
grammar as a string, paired with another string representing the constructor of the values returned
by this non terminal.

dyp.add_nt nt cons

is used to insert a new non terminal which key string is nt and which associated constructor has
the key string cons. The function returns a fresh value of type non_ter that can be used to build
rules. The string nt can be any string, the string cons must be either:

• A valid constructor of the form Obj_nt where nt is a non terminal which has not been
assigned a different constructor than its default.

• Or a constructor that has been declared with the keyword %constructor and without using
the backquote even if the option --pv-obj is used.

Any non terminal of the initial grammar is bound with its corresponding string. If the string nt is
already bound to a non terminal (from the initial grammar or that has been added subsequently)
then there are two possible outcomes:

• The string cons is the same as the one that is already bound to this non terminal, then
dyp.add_nt returns the value of type non_ter that was already bound nt.
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• The string cons is different from the one that is already bound to this non terminal, then
dyp.add_nt raises:

exception Constructor_mismatch of (string * string)

where the first string is the one representing the constructor that was previously bound to
the non terminal and the second string is cons.

dyp.find_nt nt_key returns a couple (nt,cons) where nt is the value of type non_ter asso-
ciated to the string nt_key and cons is the string of the associated constructor, if it is bound and
it raises Not_found otherwise.

Note that you can also include non terminals in the initial grammar without being part of any
rule. To do this use the keyword %non_terminal followed by the names of the non terminals you
want to include, like:

%non_terminal nt1 nt2 nt3

This directive is put in the section after the header, before the grammar.

For a complete example of grammar extension, see appendix B. It describes a small language
that is somewhat extensible.

9 Changing dynamically priority data

The following functions are part of the module Dyp and makes possible to change the priorities
and their relations.

val insert_priority : priority_data -> string -> (priority_data * priority)

val find_priority : priority_data -> string -> priority

insert_priority creates a new priority and inserts it in the priority data structure. The user
gives a key which is a string and the original priority data structure. The function returns the
priority data structure with the new priority added and the value of type priority corresponding
to the new priority. For instance, to insert a new priority with key "new prio", write the following
inside your action code:

let newprio_data, new_prio = insert_priority dyp.priority_data "new_prio" in

dyp.priority_data <- newprio_data;

val find_priority : priority_data -> string -> priority

find priority priodata key returns the priority associated to the string key in the priority data
structure priodata.

val set_relation : priority_data -> bool -> priority -> priority ->

priority_data
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set relation priodata b p q returns a priority data structure which is priodata with the fol-
lowing change: if b is true then p<q holds, if it is false p<q does not hold.

val update_priority : priority_data -> (priority * priority * bool) list -> priority_data

update priority priodata ppl returns the priority data structure priodata with the following
changes: for each triple (p,q,true) in ppl, the relation p<q holds and for each triple (p,q,false)
the relation p<q does not hold.

val add_list_relations : priority_data -> (priority list) -> priority_data

add list relations priodata pl returns the priority data structure priodata with the follow-
ing change: if pl is [p1;...;pn] then p1<...<pn holds in the sense defined in section 5.1.

10 The record dyp and the type dypgen toolbox

The record dyp is accessible in any action code, its type is dypgen_toolbox, it is defined in the
module Dyp:

type (’obj,’data,’local_data) dypgen_toolbox = {

mutable global_data : ’data;

mutable local_data : ’local_data;

mutable priority_data : Dyp.priority_data;

mutable add_rules : (Dyp.rule * (

(’obj,’data,’local_data) dypgen_toolbox -> ’obj list -> ’obj)) list;

mutable remove_rules : Dyp.rule list;

mutable will_shift : bool;

mutable next_state : out_channel option;

mutable next_grammar : out_channel option;

symbol_start : unit -> int;

symbol_start_pos : unit -> Lexing.position;

symbol_end : unit -> int;

symbol_end_pos : unit -> Lexing.position;

rhs_start : int -> int;

rhs_start_pos : int -> Lexing.position;

rhs_end : int -> int;

rhs_end_pos : int -> Lexing.position;

add_nt : string -> string -> Dyp.non_ter;

find_nt : string -> (Dyp.non_ter * string);

print_state : out_channel -> unit;

print_grammar : out_channel -> unit;

}

Where ’gd and ’ld are replaced by the type for global data and local data chosen by the user
(and infered by Caml), and ’obj is replaced by the type obj discussed in section 8.1.
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11 Names conflicts

To avoid names conflicts you should not use identifier beginning with __dypgen_ and take into
account the names that are listed in this section.

This is the list of the names available in the code of the parser:

type token

type (’nt1,’nt2,...) obj =

| Obj_TOKEN_1 of t1

| Obj_TOKEN_2 of t2

...

| Obj_non_ter_1 of ’nt1

| Obj_non_ter_2 of ’nt2

...

type (’obj,’gd,’ld) dypgen_toolbox

val global_data : int ref (* by default, can be defined by the user *)

val local_data : int ref (* by default, can be defined by the user *)

val global_data_equal : ’a -> ’a -> bool (* is (==) by default *)

val local_data_equal : ’a -> ’a -> bool (* is (==) by default *)

val dyp_merge : ’a list -> ’a -> ’a list

val dyp_merge_nt1 : ’a list -> ’a -> ’a list

val dyp_merge_nt2 : ’a list -> ’a -> ’a list

...

module Dyp_symbols :

sig

val nt1 : int

val nt2 : int

...

val t_TOKEN_1 : int

val t_TOKEN_2 : int

...

val get_token_name : token -> int

val str_token : token -> string

end

module Dyp_priority_data :

stig

val priority_data : Dyp.priority_data

val default_priority : Dyp.priority

val prio_1 : Dyp.priority

val prio_1 : Dyp.priority

...
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end

In addition the following module names are used:

module Dyp_symbols_array

module Dyp_parameters

module Dyp_runtime

module Dyp_engine

module Dyp_aux_functions

Names defined in the module Dyp are listed here:

val dypgen_verbose : int ref

type token_name = int

type non_ter = int

type ’a pliteral =

| Ter of token_name

| Non_ter of ’a

type priority

type non_terminal_priority =

| No_priority

| Eq_priority of priority

| Less_priority of priority

| Lesseq_priority of priority

| Greater_priority of priority

| Greatereq_priority of priority

type priority_data

val empty_priority_data : priority_data

val is_relation : priority_data -> priority -> priority -> bool

val insert_priority : priority_data -> string -> (priority_data * priority)

val find_priority : priority_data -> string -> priority

val set_relation : priority_data -> bool -> priority -> priority ->

priority_data

val update_priority : priority_data -> (priority * priority * bool) list ->

priority_data

val add_list_relations : priority_data -> (priority list) -> priority_data

type lit = (int * non_terminal_priority) pliteral

type rule = non_ter * (lit list) * priority

type (’obj,’data,’local_data) dypgen_toolbox = {

mutable global_data : ’data;

mutable local_data : ’local_data;

mutable priority_data : priority_data;

mutable add_rules : (rule * (

(’obj,’data,’local_data) dypgen_toolbox -> ’obj list -> ’obj)) list;

mutable remove_rules : rule list;
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mutable will_shift : bool;

mutable next_state : out_channel option;

mutable next_grammar : out_channel option;

symbol_start : unit -> int;

symbol_start_pos : unit -> Lexing.position;

symbol_end : unit -> int;

symbol_end_pos : unit -> Lexing.position;

rhs_start : int -> int;

rhs_start_pos : int -> Lexing.position;

rhs_end : int -> int;

rhs_end_pos : int -> Lexing.position;

add_nt : string -> string -> non_ter;

find_nt : string -> non_ter * string;

print_state : out_channel -> unit;

print_grammar : out_channel -> unit;

}

exception Giveup

exception Undefined_nt of string

exception Bad_constructor of (string * string)

exception Constructor_mismatch of (string * string)

exception Syntax_error

type ’obj merge_function = ’obj list -> ’obj -> (’obj list)

type ’obj merge_map

val keep_all : ’a list -> ’a -> ’a list

val keep_oldest : ’a list -> ’a -> ’a list

val keep_newest : ’a list -> ’a -> ’a list

module type Dyp_parameters_type

module Dyp_special_types

module Make_dyp

12 Generated documentation of the grammar

A quick and ugly perl script to generate a BNF documentation for your grammar is provided with
dypgen. This script is not guaranteed to generate anything of interest but it works as a proof of
concept. The grammar generated in this way is more readable than the original dypgen file, and
since a lot of conflict resolving can be done inside the actions, the grammar is usually much more
concise than a corresponding Ocamlyacc grammar. The generated file can thus be used as such in
the documentation.

You invoke this script by the following command:

dyp2gram.pl path_to/parser.dyp path_to/parser.txt
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The file parser.txt does not contain the OCaml parts of the file parser.dyp (action, preamble,
etc). Everything else is included without changes except for the following rules:

• The comments starting with /*-- are removed. Other dypgen comments are kept. Remark:
the OCaml comments are removed together with all OCaml code.

• If a %token line is annotated with a comment like /* -> ’xxxxx’ */ then, in every action,
the terminal is replaced by the provided string xxxxx and the %token line is removed. This
allows to replace PLUS by +, removing the need for a separate documentation for the lexer.

• If a %token line is annotated with a comment like /* := ’xxxxx’ -> ’yyyyy’ */ then the
same as above applies, but the %token line is not removed and the comment is just replaced
by the given definition “:= xxxxxx”. This allows to put the definition of terminal like IDENT,
INT, . . . inside the generated file.

• If a %token line is annotated with a comment like /* := ’xxxxx’ */, the %token line is
kept, but no substitution is performed.

• All other %token lines are kept unchanged

When a rule can parse the empty stream, it disappears because the action disappears. It is
thus a good idea to put a comment like in

/*

* telescopes: lists of (typed) identifiers

*/

telescope :

/* possibly empty */

{ [] }

| argument telescope

{ $1::$2 }

As an example, look at the grammar text file generated from the dypgen parser for tinyML (in
the demo directory). . .

13 Other features

13.1 Information about the parsing

The user can assign the following reference that is part of the module Dyp:

val dypgen_verbose : int ref

in the header of the parser definition. The value 1 makes the parser print information about
dynamically built automata on the standard output. The value 2 adds the following information:
number of reductions performed while parsing and the size of the graph-structured stack of the
parser. Any value >2 makes the parser logs information in a file about the parsing which are useful
for debugging dypgen but unlikely to be useful for the user. Setting a value >2 currently breaks
re-entrancy.

The following functions may be useful for debugging purpose:
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dyp.print_state out_channel;

prints the current state of the automaton on out_channel.

dyp.print_grammar out_channel;

prints the current grammar on out_channel.

dyp.next_state <- Some out_channel;

will print the next state of the automaton (the one where the parser goes after the current reduc-
tion)

dyp.next_grammar <- Some out_channel;

will print the grammar after the current reduction (and possible changes).

If the option --merge-warning is used then a warning is issued on the standard output each
time a merge happens. If the lexbuf structure is updated then the beginning and the end of the
part of the input is given.

13.2 Adding code to the interface of the parser

The keyword %mli { } makes possible to add code to the interface file of the parser. The code
inside the braces is appended at the end of the .mli file.

13.3 Error

When the parser is stuck in a situation where it cannot reduce and cannot shift but had not re-
duced to the start symbol, it raises the exception Dyp.Syntax_error.

When there is in the grammar a non terminal that is in a right-hand side but never in a
left-hand side (i.e. it is never defined) then the following exception is raised by the parser:

exception Undefined_nt of string

where the string is the name of this non terminal.

13.4 Using another lexer than ocamllex

To use another lexer than ocamllex use the option --lexer other with dypgen. The interface of
the entry functions are then changed to:

val entry : (’a -> token) -> ’a -> (int * Dyp.priority) list

Whereas by default it is:

val entry : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> (int * Dyp.priority) list

Note that the functions returning the positions of the lexer in the action code do not return
relevant information with lexers other than ocamllex.
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13.5 Position of the lexer

When ocamllex is used the following functions are available:

val symbol_start : unit -> int

val symbol_start_pos : unit -> Lexing.position

val symbol_end : unit -> int

val symbol_end_pos : unit -> Lexing.position

val rhs_start : int -> int

val rhs_start_pos : int -> Lexing.position

val rhs_end : int -> int

val rhs_end_pos : int -> Lexing.position

These functions tell what is the part of the input that is reduced to a given non terminal. They
should behave the same way as the functions of the same names of the module Parsing do in
ocamlyacc. These functions are part of the record dyp. When you use them you must use the
record dyp, like:

dyp.symbol_start ()

The demo program position illustrates the use of these functions.

13.6 Maximum number of constructors and using polymorphic vari-
ants

If you have a lot of tokens or non terminals then you may reach the maximum number of non-
constant constructors. Then you use the options --pv-token and --pv-obj. With --pv-token,
the token type is a sum of polymorphic variants, and with --pv-obj the type constructor obj

uses polymorphic variants.

13.7 Automaton options

By default the enforcement of the priorities is embedded into the automaton. This makes the
parsing faster than if they were enforced at parsing time but the automaton is bigger and longer to
generate. You can not embed the priorities in the automaton and make them enforced at parsing
time with the option --prio-pt.

14 Demonstration programs

The directory demos contains a few small programs that illustrate the use of dypgen.

calc is a simple calculator that uses priorities. It does not use dynamic change of the grammar.
calc pattern is the same calculator but the parser definition uses pattern matching of symbols
(see section 7.3), and calc_nested uses nested rules.

sharp is a very basic demonstration of adding a rule and replacing it by another. When en-
tering &+ the user adds a rule which makes the character # like a + and entering &* makes the
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character # like a *.

merge times plus is an example of using a merge function to enforce the precedence of the
multiplication over the addition.

forest is an example of how to use the function dyp_merge to yield a parse forest.

global_data and local data are example of using global_data and local data. local data partial action

is the same as local data except that it uses a partial action.

position is a small example using the functions dyp.symbol start, . . . which returns the po-
sition of a part of the input which is reduced to a given non terminal.

demo is the example of appendix B.

tinyML is a very limited interpreted language which includes integers, tuples, constructors à la
Caml, some basic pattern matching and recursive functions with one argument. It also includes
a construct define ... in which makes possible to extend somewhat the syntax of the language
by defining macros using the following characters as tokens [, ], |, ::, ;, <, >, @ and the non
terminal corresponding to expressions. This construct allows to add several rules at the same
time as opposed to the construct define ... in of demo which can only add one rule at a time.
A few input examples are included in the directory tinyML. To interpret them with tinyML do :
./tinyML test *.tiny where * is append, add at end, reverse or comb.

tinyML-ulex is an example of how to use ulex as a lexer before parsing with dypgen. The
makefile requires findlib. Note that this example does not use the possibilities of UTF, it is just
an example of how to use ulex with dypgen.

A Comparison with ocamlyacc

dypgen takes a file ending with .dyp as input and generates a .ml file and a .mli file. The frame
of an input file for dypgen is somewhat similar to an input file for ocamlyacc. The syntax differs
in the following points :

• The header and trailer codes are placed between braces {} (instead of %{%} for the header
in ocamlyacc).

• The keywords %right, %left and %nonassoc do not exist, precedence and associativity
assigned to symbol is not implemented yet. Ambiguities are managed by other means.

• The entry points are declared with their type like : %start <int> main, with one keyword
%start for each entry point.

• When tokens are declared the type statement only applies to the following token and a type
statement can be stated anywhere on a line beginning with %token, provided it is followed
by a token name. For instance :
%token BAR <string> UIDENT COMMA <string> LIDENT COLON
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is the declaration of BAR, COMMA and COLON as tokens with 0 argument and UIDENT and
LIDENT as tokens with a string as argument.

• There is no special symbol error for rules.

• There is no ‘;’ between rules.

• To avoid identifier collision identifiers beginning with dypgen should not be used.

• dypgen does not handle cyclic grammars (i.e. when a non terminal can derive itself). When
the parser is generated, there is no warning if the grammar is cyclic. But the parser fails
with an error when used.

• The parser must be linked against the library dyp.cma (or dyp.cmxa) which is found in the
directory dyplib.

B A complete example of grammar extension

This example is a small language with integers, pairs, constructors and variable names. The
program parses the input and then prints it. If one enters the input List(1,List(2,Nil)) the
program outputs = List(1,List(2,Nil)). The language is somewhat extensible, with the fol-
lowing construction : define lhs := rhs = expression in where lhs is the left-hand side non
terminal of the rule the user wants to add, rhs is the right hand side of this new rule, expression
is the expression which will be yielded when a reduction by this new rule occurs. Here is an
example of introduction of a specific syntax for lists :

define list_contents := expr(x) = List(x,Nil) in

define list_contents := expr(x);list_contents(y) = List(x,y) in

define expr := [] = Nil in

define expr := [list_contents(x)] = x in

define expr := expr(x)::expr(y) = List(x,y) in

[1;2;3]

The output is

= List(1,List(2,List(3,Nil)))

A distinction is made between a token inside the right-hand side of the construct define ... in

and the same token outside of this right-hand. This distinction is made by the lexer. For instance,
for the character ‘[’ it returns Token "[" if it is between := and =, and it returns LBRACK otherwise.

The example is made of 4 files : parse tree.ml, parser.dyp, lexer.mll and demo.ml.

(* parse_tree.ml *)

type expr =

| Lident of string

| Int of int

| Pair of (expr * expr)
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| Cons of string * (int * (expr list))

type rhs = Token of string | Nt of (string * string)

let rec str_expr exp = match exp with

| Int i -> string_of_int i

| Pair (a,b) -> "("^(str_expr a)^","^(str_expr b)^")"

| Cons (cons,(0,_)) -> cons

| Cons (cons,(1,[o])) ->

cons^"("^(str_expr o)^")"

| Cons (cons,(2,[o1;o2])) ->

cons^"("^(str_expr o1)^","^(str_expr o2)^")"

| Lident x -> x

| _ -> failwith "str_expr"

module Ordered_string =

struct

type t = string

let compare = Pervasives.compare

end

module String_map = Map.Make(Ordered_string)

let rec substitute env expr = match expr with

| Int i -> Int i

| Lident s ->

begin try String_map.find s env

with Not_found -> Lident s end

| Pair (a,b) -> Pair (substitute env a,substitute env b)

| Cons (c,(n,l)) ->

Cons (c,(n,(List.map (substitute env) l)))

This file declares the two types associated to the two non terminals expr and rhs. str expr prints
expressions and substitute env expr substitutes in expr the variables names by the expressions
which they are bound to in env if they are present in env. This is used in the parser to define the
action associated to new a rule.

/* parser.dyp */

{ open Parse_tree

open Dyp_symbols

open Dyp_priority_data

open Dyp

let () = dypgen_verbose := 1

let get_token_name s = match s with
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| "[" -> t_LBRACK

| "]" -> t_RBRACK

| "::" -> t_COLONCOLON

| ";" -> t_SEMICOLON

| _ -> failwith "get_token_name"

let a_define_in dyp (s,ol,e) =

let lhs,_ = dyp.find_nt s in

let f o =

match o with

| Nt (s,_) -> Non_ter (fst (dyp.find_nt s),No_priority)

| Token s -> Ter (get_token_name s)

in

let rule = lhs,(List.map f ol),default_priority in

let action = (fun _ avl ->

let f2 env o av = match o with

| Nt (_,var_name) -> String_map.add var_name av env

| _ -> env

in

let f3 av = match av with

| Obj_expr exp -> exp

| _ -> Int 0

in

let avl = List.map f3 avl in

let env = List.fold_left2 f2 String_map.empty ol avl in

Obj_expr (substitute env e))

in rule,action

}

%token LPAREN RPAREN COMMA <string> UIDENT <string> LIDENT <int> INT DEFINE IN EQUAL COLONEQUAL LBRACK RBRACK COLONCOLON SEMICOLON <string> TOKEN EOF

%start <Parse_tree.expr> main

%%

main : expr EOF { $1 }

expr :

| INT { Int $1 }

| LPAREN expr COMMA expr RPAREN { Pair ($2,$4) }

| UIDENT expr

{ match $2 with

| Pair (a,b) -> Cons ($1,(2,[a;b]))

| exp -> Cons ($1,(1,[exp])) }

| UIDENT { Cons ($1,(0,[])) }

| LIDENT { Lident $1 }

| define_in expr { $2 }
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define_in :

| DEFINE LIDENT COLONEQUAL rhs EQUAL expr IN

{ let _ = dyp.add_nt $2 "Obj_expr" in

dyp.add_rules <- [a_define_in dyp ($2,$4,$6)] }

rhs :

| LIDENT LPAREN LIDENT RPAREN { [Nt ($1,$3)] }

| TOKEN { [Token $1] }

| LIDENT LPAREN LIDENT RPAREN rhs { (Nt ($1,$3))::$5 }

| TOKEN rhs { (Token $1)::$2 }

The reduction by the rule :

define_in : DEFINE LIDENT COLONEQUAL rhs EQUAL expr IN

introduces a new rule. The string returned by LIDENT (i.e. $2) is the name of the non terminal of
the left-hand side. It is added as a new non terminal with the line :

let _ = dyp.add_nt $2 in

Then the function a define in is called. It returns a rule, an action and a priority. To con-
struct the new rule, dyp.find nt and get token name are used. Non terminals are refered to by
a string s, dyp.find nt s returns the corresponding value of type non ter. get token name s

returns the value of type token name corresponding to the string s.

For each non terminal in the right-hand side rhs, a variable name follows in parentheses. The
action code of the new rule is defined as returning the expression which follows the second = in
which some variable names are substituted by some expressions. The variable names which appear
in the right-hand side of the rule are substituted by the results yielded by the corresponding non
terminals.

For information about dypgen verbose, which is stated at the beginning of the parser defini-
tion, see section 13.1.

{ (* lexer.mll *)

open Parser

let lex_define = ref false }

let newline = (’\010’ | ’\013’ | "\013\010")

let blank = [’ ’ ’\009’ ’\012’]

let lowercase = [’a’-’z’ ’\223’-’\246’ ’\248’-’\255’ ’_’]

let uppercase = [’A’-’Z’ ’\192’-’\214’ ’\216’-’\222’]

let identchar =

[’A’-’Z’ ’a’-’z’ ’_’ ’\192’-’\214’ ’\216’-’\246’ ’\248’-’\255’ ’\’’ ’0’-’9’]

rule token = parse
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| newline

{ token lexbuf }

| blank +

{ token lexbuf }

| "define" { DEFINE }

| "in" { IN }

| lowercase identchar *

{ LIDENT(Lexing.lexeme lexbuf) }

| uppercase identchar *

{ UIDENT(Lexing.lexeme lexbuf) }

| "(" { LPAREN }

| ")" { RPAREN }

| "=" { lex_define := false; EQUAL }

| ":=" { lex_define := true; COLONEQUAL }

| "[" { if !lex_define then TOKEN "[" else LBRACK }

| "]" { if !lex_define then TOKEN "]" else RBRACK }

| "::" { if !lex_define then TOKEN "::" else COLONCOLON }

| ";" { if !lex_define then TOKEN ";" else SEMICOLON }

| [’0’-’9’]+ as lxm { INT(int_of_string lxm) }

| "," { COMMA }

| eof { EOF }

This is the lexer. Some strings are special, they do not always yield the same token, they are the
ones the user can use in the define ... in construct. The ref lex define is a flag which tells
the lexer whether it is between := and = or not. In the first case, any special string s would yield
TOKEN s, in the second case it would yield its corresponding regular token (like SEMICOLON for ‘;’).

(* demo.ml *)

open Parse_tree

let string_ref = ref ""

let process_argument s =

if s = "" then raise (Arg.Bad "missing input file name")

else string_ref := s

let _ = Arg.parse [] process_argument "usage: demo file_name"

let _ = if !string_ref = "" then

(print_string "usage: demo file_name\n";

exit 0)

let input_file = !string_ref

let lexbuf = Lexing.from_channel (Pervasives.open_in input_file)

let prog = fst (List.hd (Parser.main Lexer.token lexbuf))

let s = str_expr prog

let () = Printf.printf "= %s\n" s

35



This is the main implementation file, it opens the file given as argument, parses it and prints
the corresponding expression.

All the files of this example are available in the directory demos/demo. To test it with a test
input do :

./demo test1.tiny
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