
Particle Growing Method
in Medical Image

Segmentation

Youngmin Kim
Hyunyoung Song

University of Maryland

CMSC828V Spring 2005

Medical Image Processing

Data
Sampled representation (Image)
Acquired from medical instrumentation as CT or MRI
scanners

Registration
Aligns or develops correspondences between data
CT scan may be aligned with MRI scan to combine

Segmentation
Identifies and classifies
the sampled data

Segmentation Issue

Several Free Parameters
Control the quality of the results

Needs for the tools that
Evaluates the algorithm very fast
Visualizes the results very fast when we change
the parameters

Previous Works

ITK(Insight Toolkit)
NLM, NIH open source project
Leading-edge segmentation and registration algorithm

GLUI
GLUT-based C++ user interface library which provides
controls such as buttons, checkboxes, radio buttons, and
spinners to OpenGL applications

VTK- 3D visualization toolkit (Kitware)
Utah

SCI-RUN – Problem Solving Environment for simulation,
modeling, and visualization of scientific problems
Bio-PSE – superset of SCIRun, adding capabilities for
investigating bioelectric field problems

Latest Papers in Segmentation

Siggraph papers
Ex:Thermo-key-Image Segmentation
using Thermal Methods, 2003

IEEE Visualization 2004
Medical Visualization
Implicit Surfaces, Level Sets

Ex:Interactive Deformation and Visualization of Level
Set Surfaces Using Graphics Hardware

ITK Applications for
Segmentation

Region Growing
Connected Threshold
Otsu Segmentation
Neghborhood Connected
Confidence Connected
Isolated Connected
Confidence Connected in Vector Images

Level Sets
Fast Marching Segmentation
Shape Detection Segmentation
Geodesic Active Contours Segmentation
Threshold Level Set Segmentation
Canny-Edge Level Set Segmentation
Laplacian Level Set Segmentation

Hybrid
Fuzzy Connectedness and Confidence Connectedness
Fuzzy Connectedness and Voronoi Classification

1. Region Growing

Basic segmentation filter in ITK
Starting from boundary preserving smoothing

Removes noise
Seed Selection
Region Growing based on two thresholds

Upper threshold
Lower threshold

Fast, but we should provide two thresholds

Result of Region Growing

Seed 0.064 Sec

0.058 Sec

2. Level Set Methods

Level Set Function:
Generic level-set equation

Track the evolution of contours and surfaces
By Computing the update to the solution of the PDE

Can omit one or more terms depending on the algorithm
Typical Way in Practice

Contour is initialized by a user
Evolve until it fits the form of the segment in the image

Advection Propagation Spatial modifier for curvature K

2-(1) Fast Marching Method

The simplest level set approach
Usually used as the initial step for other level set
methods
Propagates a contour from a set of user-selected
seed
Maintains the internal pixel(or voxel) lists
Contour advances with a speed image

Computed from the intensity of input image gradient
magnitude

Very fast in all the level methods, but sometimes it
cannot detect the complete segmentation

2-(1) Fast Marching
Preprocess

Noise Minimization
itk::CurvatureAnisotropicDiffusionImageFilter

Gradient of the Image
itk::GradientMagnitudeRecursiveGaussianImageFilter

Fig1 : Calculate Gradient Magnitude

Fig2 : Original to gradient magnitude image

2-(1) Fast Marching
Preprocess

Speed Image
itk::SigmoidImageFilter

Min
e

MinMaxI
I

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−=
⎟
⎠
⎞

⎜
⎝
⎛ −

−
α
β

1

1)(

Fig: Effects of various parameters:alpha (width) beta (center)

Result of Fast Marching

0.021 Sec

Missing !!

Almost
Missing !!

2-(2) Shape Detection Level
Set Method

Consider curvature term in general level-set PDE
Use “Fast Marching Method” as a helper in the
determination of an initial level set
Propagates a contour with a speed
Segmented shapes are rounder than FastMarching
due to the curvature term
Segment better, but much more slower (about
500~600 times slower) than the fast marching
method

Result of Shape Detection
Level Set

13.54 Sec

Rounder

3. Hybrid Methods

Integrates boundary-based and region-based segmentation
For example:

Fuzzy connectedness: region-based
Voronoi diagram classification: boundary-based

ITK provides two methods
(1) Fuzzy Connectedness and Confidence Connectedness
(2) Fuzzy Connectedness and Voronoi Classification

Usually needs two steps
Use the first segmentation method as a prior to roughly segment
or to estimate

Confidence Connectedness in (1)
Fuzzy connectedness in (2)

Then, use the second segmentation methods
Fuzzy Connectedness in (1)
Voronoi Diagram in (2)

Problems in previous
methods

Region Growing
Needs user intervention to select thresholds

Level Set
Usually slow for correct segmentation

Hybrid
Needs preprocessor that produces a rough segmentation
Therefore, slow

Visualization in all three methods
How we can extract polygons from each method for
visualization is another matter

4. Particle Growing
- Algorithm

Initialization
Speed Image from ITK filters
Generate 4 control points from seed point

Progress
Pick a control pt from TrialQueue
If(speedVal > minSpeedValue)

march toward the average normal
direction

ProgressAmt*ProgressVector
add into TrialQueue

else
add into BoundaryNodeQueue

Control Point Insertion
If(Distance btw control pts > DistanceThr)

add one control pts in the middle Segmented Region

Input Speed Image

Init

Expand the seed
to 4 ctrl pts

Progress

A (98.24, 123.12)
Speed value = 0.9834 > minSpeedValue

Normal = (0.76, - 0.64)
Progress = 0.9834*(0.76, - 0.64)*ProgressAmt

Control Point Insertion

Dist(A,A.prev) > DistanceThr
B = (A+A.prev)/2

A

A.prev

A.next

A A.prev

A.next

B (inserted)

4. Particle Growing
- Problem
Intersection

Cross Intersection

After
Intersection

Before
Intersection

Resolve
Intersection

Green: Boundary Node
Blue: Trial Node
Red: Update Node
Orange: Intersection Node
Gray: Deletion Node

4. Particle Growing
- Problem
Intersection

Self Intersection

After
Intersection

Before
Intersection

Resolve
Intersection

Green: Boundary Node
Blue: Trial Node
Red: Update Node
Orange: Intersection Node
Gray: Deletion Node

Resolve Intersection
Distance Field to Prevent intersection – trial

Sample distance value along normal direction of progress
If distance value doesn’t increase or decrease monotonously
then intersection possibility after the progress

A

B

C

Good! Prevents A and B from
potential intersection

Bad! Prevents C from marching toward
although intersection doesn’t occur along

the path

Heuristics to detect and remove intersection
If (A progress to inside of segmented area)

first intersection nodes to second intersection nodes;
delete A;

If (Intersection Nodes are Odd or Even) arrange links accordingly
Delete dangling nodes, Insert intersection nodes

A : Inside the segmented area
A-A.next intersection node # ODD
A-A.prev intersection node # ODD

A : Outside the segmented area
A-A.next intersection node # ODD

A-A.prev intersection node # EVEN

A
A

A.next
A.next

A.prev

A.prev

Performance

Originally O(N2) complexity for segmentation
Iterate the entire loop to detect intersection (per progress)

QuadTree
Simple spatial partitioning
Intersection detected locally
O(N logN) complexity when there is no intersection
3~5 times faster than original version

Dealing with intersection
It takes O(N) time to deal with intersection in the current
implementation
It makes the entire complexity O(N2)
We have found a way to process it O(1), but it needs some
more data structure (Future Work)

Result Comparisons

-
-0.0880.0040.005Particle

Growing

--13.5411.5741.611Shape
Detection

White matter
Malfunction

-
0.021
for half

0.0230.024
Fast
Marching

-0.0580.0640.0310.031Region
Growing

Quality
Description

Gray
Matter

White
Matter

Right
Ventricle

Left
Ventricle

Execution
Time

System: Intel Pentium 4 CPU 1.5 GHz, 2GB RAM

Evaluation of Particle Growing

Quality of Segmentation
Hard to evaluate the quality
Dependent on Speed Input Image
Dependent on the other parameters

Min-Speed, Distance Threshold, Progress Amount
Computation Time

Very fast in segmenting convex region
Slow in very complex region

Currently, 2 times slower than Fast Marching
Self-intersections happen a lot
Not inherent in the algorithm, but due to the implementation

Conclusion

Present a new segmentation method using
particle growing
Use speed input image for propagating
particles
Very fast for segmenting convex regions
Very easy to visualize the segmented parts

Draw the lines in 2D
Draw triangles in 3D (Future work)

Future Works

Fix some bugs in processing intersections
The program breaks sometimes

Apply efficient data structure to help process
self-intersection

Makes the entire algorithm work in O(NlogN) time
2D to 3D extension
Parameter adjustment and test variety of 2D
and 3D images

