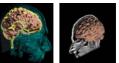
Particle Growing Method in Medical Image **Segmentation**

Youngmin Kim Hyunyoung Song

University of Maryland CMSC828V Spring 2005

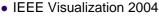

Segmentation Issue

- Several Free Parameters
 - Control the quality of the results
- Needs for the tools that
 - Evaluates the algorithm very fast
 - · Visualizes the results very fast when we change the parameters

Medical Image Processing

Data

- Sampled representation (Image)
- Acquired from medical instrumentation as CT or MRI scanners
- Registration
 - Aligns or develops correspondences between data
 - CT scan may be aligned with MRI scan to combine
- Segmentation
 - Identifies and classifies the sampled data



Previous Works

- ITK(Insight Toolkit)
 - NLM, NIH open source project
- Leading-edge segmentation and registration algorithm
- GLUI
 - GLUT-based C++ user interface library which provides controls such as buttons, checkboxes, radio buttons, and spinners to OpenGL applications
- VTK- 3D visualization toolkit (Kitware)
- Utah
 - SCI-RUN Problem Solving Environment for simulation, modeling, and visualization of scientific problems
 - Bio-PSE superset of SCIRun, adding capabilities for investigating bioelectric field problems

Latest Papers in Segmentation

- Siggraph papers
 - Ex:Thermo-key-Image Segmentation using Thermal Methods, 2003

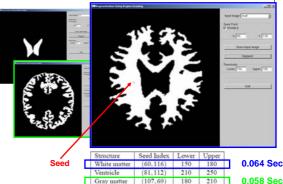
- Medical Visualization
- Implicit Surfaces, Level Sets
 - Ex:Interactive Deformation and Visualization of Level Set Surfaces Using Graphics Hardware

ITK Applications for Segmentation

Region GrowingConnected Threshold

- Otsu Segmentation Neghborhood Connected
- Confidence Connected
- Isolated Connected Confidence Connected in Vector Image
- Level Sets

 - Fast Marching Segmentation Shape Detection Segmentation Geodesic Active Contours Segment Threshold Level Set Segmentation
 - Canny-Edge Level Set Segmentation Laplacian Level Set Segmentation
- Hybrid
 - Fuzzy Connectedness and Confidence Connectedness Fuzzy Connectedness and Voronoi Classification


1. Region Growing

- Basic segmentation filter in ITK
- Starting from boundary preserving smoothing
 - Removes noise
- Seed Selection
- Region Growing based on two thresholds
 - Upper threshold
 - Lower threshold
- · Fast, but we should provide two thresholds

2-(1) Fast Marching Method

- The simplest level set approach
- · Usually used as the initial step for other level set methods
- · Propagates a contour from a set of user-selected seed
- · Maintains the internal pixel(or voxel) lists
- Contour advances with a speed image
 - Computed from the intensity of input image gradient magnitude
- · Very fast in all the level methods, but sometimes it cannot detect the complete segmentation

2-(1) Fast Marching Preprocess

Noise Minimization

• itk::CurvatureAnisotropicDiffusionImageFilter

- Gradient of the Image
 - itk::GradientMagnitudeRecursiveGaussianImageFilter

Fig1 : Calculate Gradient Magnitude

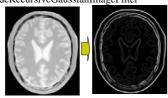


Fig2 : Original to gradient magnitude image

- 2-(1) Fast Marching Preprocess
- Speed Image

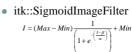
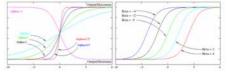
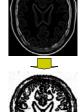
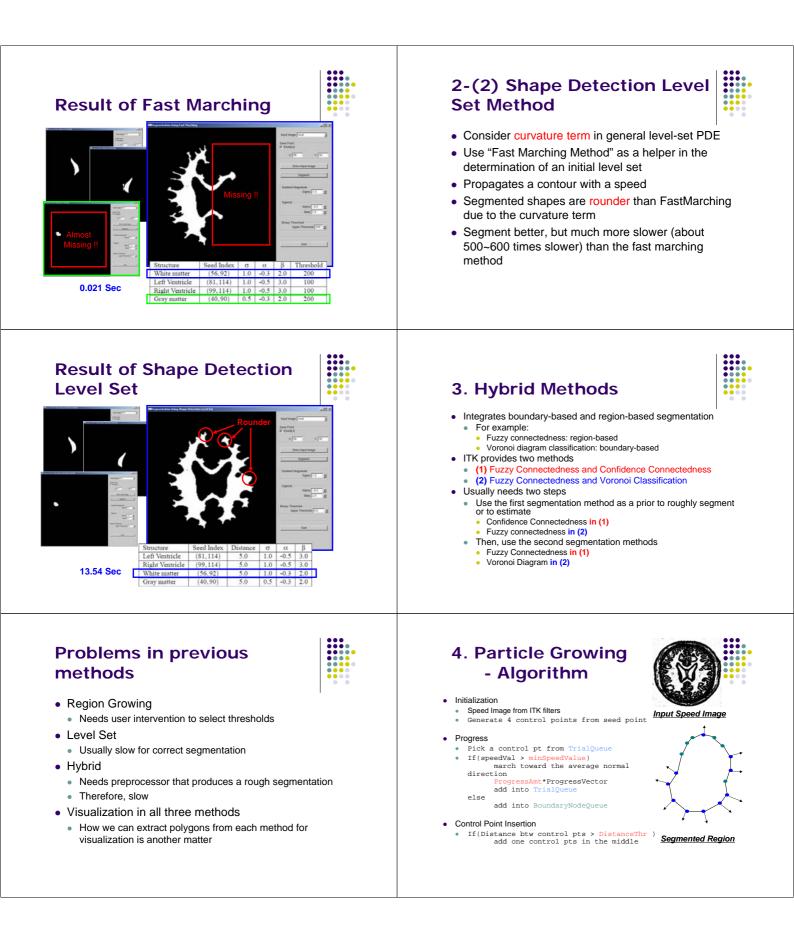
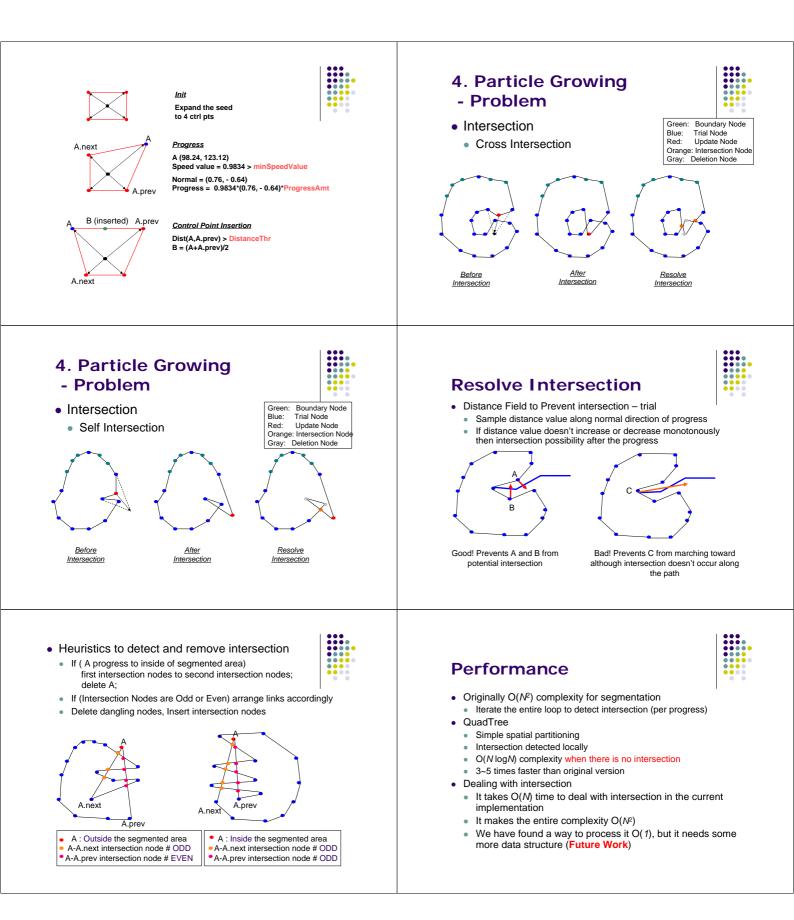




Fig: Effects of various parameters:alpha (width) beta (center)


- Generic level-set equation $\frac{d}{dt} \psi = -\alpha \underline{\mathbf{A}}(\underline{\mathbf{x}}) \cdot \nabla \psi - \beta \underline{P}(\underline{\mathbf{x}}) \mid \nabla \psi \mid + \underline{\gamma} \underline{Z}(\underline{\mathbf{x}}) \kappa \mid \nabla \psi \mid \\ \underline{\mathbf{Advection}} \quad \begin{array}{l} \operatorname{Propagation} & \\ \end{array} \\ \begin{array}{l} \overline{\mathbf{y}} \\ \overline{\mathbf{y$ Spatial modifier for curvature K
 - · Track the evolution of contours and surfaces • By Computing the update to the solution Ψ of the PDE
 - Can omit one or more terms depending on the algorithm
 - Typical Way in Practice
 - · Contour is initialized by a user


2. Level Set Methods

• Level Set Function: $\Psi(\mathbf{X}, \mathbf{t})$

· Evolve until it fits the form of the segment in the image

Result Comparisons

Execution	Left	Right	White	Gray	Quality
Time	Ventricle	Ventricle	Matter	Matter	Description
Region Growing	0.031	0.031	0.064	0.058	-
Fast Marching	0.024	0.023	0.021 for half	-	White matter Malfunction
Shape Detection	1.611	1.574	13.541	-	-
Particle Growing	0.005	0.004	0.088	-	-

System: Intel Pentium 4 CPU 1.5 GHz, 2GB RAM

Conclusion

- Present a new segmentation method using particle growing
- Use speed input image for propagating particles
- Very fast for segmenting convex regions
- Very easy to visualize the segmented parts
- Draw the lines in 2D
- Draw triangles in 3D (Future work)

Evaluation of Particle Growing

- Quality of Segmentation
 - Hard to evaluate the quality
 - Dependent on Speed Input Image
 - Dependent on the other parameters
 - Min-Speed, Distance Threshold, Progress Amount

Computation Time

- Very fast in segmenting convex region
- Slow in very complex region
 - Currently, 2 times slower than Fast Marching
 - Self-intersections happen a lot
 - Not inherent in the algorithm, but due to the implementation

- Fix some bugs in processing intersections
 - The program breaks sometimes
- Apply efficient data structure to help process self-intersection
 - Makes the entire algorithm work in O(MogN) time
- 2D to 3D extension
- Parameter adjustment and test variety of 2D and 3D images