
Swoop: Design and Architecture of a Web Ontology Browser (/Editor)

(Scholarly Paper for Master's Degree in Computer Science
with Non-Thesis Option, Fall 2004)

Primary Author
Aditya Kalyanpur

Dept of Computer Science
University of Maryland,

College Park 20742
aditya@cs.umd.edu

Advisor
Prof. James Hendler

Dept of Computer Science
University of Maryland,

College Park 20742
hendler@cs.umd.edu

Abstract: In this paper, we present the design and architecture of a hypermedia inspired ontology
engineering environment, Swoop. With its web-metaphor, adherence to OWL recommendations, fluid
ontology manipulation interface, and easy extensibility it acts as a useful and efficient web ontology
development tool. Additionally, in building Swoop, we deal with several hard research problems
related to ontology engineering, some of which are elaborated upon in this paper by presenting
preliminary solutions (implemented in Swoop) and discussing subsequent next steps.

1. Introduction
The Web Ontology Language, OWL [WebOnt, 2004] was approved in February of 2004
as a World Wide Web Consortium (W3C) Recommendation for the publication of
ontologies on the World Wide Web -- creating a standard language for the publication
and exchange of ontological models on the Web. OWL reflects almost ten years of
research, experimentation, and small scale deployment of Web ontologies and a number
of certain features in its design were made explicitly to help realize the ideal of Web
based ontologies, that is, of integrating knowledge representation with the open, global,
and distributed hypermedia system of the Web, compatible with the principles of Web
architecture design.

Web browsers are the ubiquitous way that people use URIs, and, even in authoring tools,
the primary mental model people have of URIs is derived from their use in browsers. We
take inspiration from this web-browser UI in building Swoop, an ontology browser and
editor, designed specifically for use with OWL and directly supporting the use of Web-
based “cultural metaphors” -- that is, based on the way people are used to interacting with
documents and data in current Web applications.

2. Related Work
Most existing ontology development toolkits such as Protégé [Stanford, 2000], Oiled
[Bechhofer et al, 2001], OntoEdit [Sure et al, 2001], provide an integrated environment to
build and edit ontologies, check for errors and inconsistencies (using a reasoner), browse
multiple ontologies, and share and reuse existing data by establishing mappings among
different ontological entities. However, their UI design (look & feel) and usage style are
inspired by traditional KR-based paradigms, whose constrained and methodical
framework have steep-learning curves, making it cumbersome to use for the average web
user. On the other hand, consider a hypermedia inspired ontology editor that employs a
web-based metaphor for its design and usage. As argued in [Kalyanpur et al, 2004], such

a tool would be more effective (in terms of acceptance and use) for the average web user
by presenting a simpler, consistent and familiar framework for dealing with entities on
the Semantic Web. Based on this hypothesis, we present our ontology editor – Swoop,
meant for rapid and easy browsing and development of web ontologies.

Alternately, we note that the entire Swoop interface and functionality could have been
provided as a Website, or on top of a more full fledged Web browser such as Mozilla.
There are several examples of current website-based ontology tools (e.g. Ontosaurus
[Farquhar et al, 1996], WebODE [Arpírez et al, 2001]), and new ones are being
developed (e.g. pOWL - http://powl.sourceforge.net). However, we have found that using
a standard web-based server-client architecture for ontology engineering suffers from
being slow (esp. for large ontologies, and depending on network traffic), and cumbersome
for maintaining consistency while editing (e.g. trapping input errors, changing/deleting
objects but reloading from browser cache etc). In addition, such tools can be difficult to
extend to new functionalities via plug-in architectures (such as the one used in Swoop).
In addition, most website based ontology editors use distinct HTML pages (perhaps
dynamically generated) not just for each entity, but for each view of those entities. This
indirection puts an uncomfortable distance between the user and the ontology itself.

3. Design Rationale & Goals
Swoop takes the standard Web browser as the UI paradigm, believing that URIs are
central to the understanding and construction of Semantic Web Ontologies. The familiar
look and feel of a browser emphasized by the address bar and history buttons, navigation
side bar, bookmarks, hypertextual navigation etc are all supported for web ontologies,
corresponding with the mental model people have of URI-based web tools based on their
current Web browsers.

All design decisions are in keeping with the OWL nature and specifications. Thus,
multiple ontologies are supported easily, various OWL presentation syntaxes are used to
render ontologies, and an OWL reasoner can be integrated for consistency checking. A
key point in our work is that the hypermedia basis of the UI is exposed in virtually every
aspect of ontology engineering --- easy navigation of OWL entities, comparing and
editing related entities, search and cross referencing, multimedia support for annotation,
etc. --- thus allowing the Swoop user to take advantage of the Web-based features of
OWL significantly more easily than the user of other ontology-editing tools.

A diverse array of ontology related tasks can be performed in Swoop ranging from
collaborative annotation and data markup to ontology refactoring and debugging. This
makes Swoop accessible to both, novice users interested in casual ontology building and
use [Kalyanpur et al, 2004], and expert users interested in robust ontology modeling and
analysis.

4. Swoop Architecture
Swoop is based on the Model-View-Controller (MVC) paradigm. The SwoopModel
component stores all ontology-centric information pertaining to the Swoop Workspace
(currently loaded ontologies, change-logs, checkpoints) and defines key parameters used
by the Swoop UI objects (such as selected OWL entity, view settings for imports,

QNames etc). Additionally, a SwoopModelListener class is used to reflect changes in the
UI based on changes in the SwoopModel (using a suitably defined event-notification
scheme). Control is handled through a plugin based system, which loads new Renderers
and Reasoners dynamically. The obvious advantage of a plugin framework is to ensure
modularity of the code, and encourage external developers to contribute to the Swoop
project easily. Finally, we note that the entire Swoop code is written in Java, maintained
in a subversion repository and makes use of numerous third party libraries, the most
prominent being the WonderWeb OWL API [Bechhofer et al, 2003] for parsing OWL
ontologies.

Figure 1: Swoop Architecture (Plugin-based)

5. Swoop Features
Swoop functionality is characterized by the following basic features (for an elaborate
discussion of the features see [Kalyanpur et al, 2005]):

Figure 2: Web Browser Look&Feel of Swoop

• Multiple Ontology Browsing and Editing: Swoop has a variety of mechanisms for
pulling in different Web ontologies into its model -- using bookmarks; loading via the
address bar; during navigation across ontologies etc. Additionally, ontology browsing

and editing are done in a single pane, which helps to maintain context. Different
rendering styles, formats, and icons are used to highlight key ontological information
(entity types, imported axioms, inferred axioms, changes etc) in this common pane.

• Renderer Plugins for OWL Presentation Syntaxes: Swoop bundles in six renderers;
two Ontology Renderers ----Information and Species Validation; and four Entity
Renderers --- Concise Format, OWL Abstract Syntax, Turtle and RDF/XML. By
supporting different presentation syntaxes, accessibility is enhanced given the wide
range of user preferences and/or third party tool constraints.

• Semantic Search: Swoop takes inspiration from the hyperlink based search and cross-
referencing utility present in a programming IDE such as Eclipse
(http://www.eclipse.org/). All named entities in the code are identified and one can
easily obtain (and jump directly to) useful related information such as all its references
in a specific project or working set. We plan to extend this feature to support ad hoc
queries (class expressions, see concept search in [Kalyanpur et al, 2004]).

• Collaborative Annotation: Swoop uses the Annotea [Kahan et al, 2001] framework
as the basis of collaborative ontology development. Annotea support in Swoop is
provided via a simple plug in whose implementation is based on the standard W3C
Annotea protocols [Swick, 01] and uses the default Annotea RDF schema to specify
annotations. Any public Annotea Server can then be used to publish and distribute the
annotations created in Swoop. The default annotation types (comment, advice,
example, etc) seem an adequate base for human oriented ontology annotations. One
extension we have begun experimenting with is "PrototypicalIllustration", that is, a
photo or drawing that represents a typical or canonical instance of the class.

• Multimedia Markup Extension: Swoop itself can be directly plugged in to third
party semantic annotation tools such as SMORE [Kalyanpur et al, 2001], which make
use of its fluid hypermedia-based UI to support rich-text, image and video markup.

6. Primary Research Focus
In this section, we list three critical ontology engineering problems that are currently
being dealt with in Swoop.

6.1 Ontology Versioning Problem: Since OWL ontologies can evolve over time, an
ontology versioning mechanism is highly essential to maintain accuracy of the knowledge
encapsulated by the ontology and ensure interoperability with any linked ontologies. Our
ultimate goal is to build a sophisticated ontology version control system along the lines of
CVS or Subversion. We have taken the first big step towards realizing this by capturing
atomic ontology changes (i.e. at a very fine granularity level) in Swoop and providing a
mechanism to annotate and exchange these changes among disparate users.

Current solution: annotated change sets
We have extended the Annotea Schema with the addition of an OWL ontology for a new
class of annotations --- ontology changes (similar to [Klein et al, 2003]). The “Change”
annotation defined by the Annotea projected was designed to indicate a proposed change

to the annotated document, with the proposal described in HTML-marked-up natural
language. In our extended ontology, change individuals correspond to specific, undoable
changes made in Swoop during editing.

Swoop uses the OWL API to model ontologies and their associated entities, benefiting
from its extensive and clean support for changes. The OWL API separates the
representation of changes from the application of changes. Each possible change type has
a corresponding Java class in the API, which are subsequently applied to the ontology
(essentially, the Command design pattern). These classes allow for the rich representation
changes, including metadata about the changes.

The Swoop change annotations can be published and retrieved by Annotea servers, or any
other annotation distribution mechanism. The retrieved annotations can then be browsed,
filtered, endorsed, recommended, and selectively accepted. It is thus possible to define
“virtual versions” of an ontology, by specifying a base ontology and a set of changes to
apply to it. This is a fairly new addition to Swoop, and we are just beginning to explore
the implications of change tracking couple with annotations for the development of large,
curated ontologies by collaborative groups of scientists or other ontology definers.

Figure 3: Create and Share Change Sets using Annotea

6.2 Ontology Debugging Problem: As an increasingly large number of OWL ontologies
become available on the Semantic Web and the descriptions in the ontologies become
more complicated, finding the cause of errors becomes an extremely hard task even for
experts. Existing ontology development environments provide some limited support, in
conjunction with a reasoner, for detecting and diagnosing errors in OWL ontologies, but
typically these are restricted to the mere detection of, for example, unsatisfiable concepts.

We have integrated a number of simple debugging cues generated from our description
logic reasoner, Pellet, in Swoop in order to provide a higher level of ontology debugging
support.

Current solution: integration with an OWL DL reasoner
Swoop has a debug mode wherein the basic rendering of entities is augmented with
information obtained from a reasoner (Pellet). Different rendering styles, formats, and
icons are used to highlight key entities and relationships that that are likely to be helpful
to debugging process. For example, all unsatisfiable named classes, and even class
expressions, are marked with red icons whenever rendered --- a useful pointer for
identifying dependencies between inconsistencies. Additionally, all inferred relationships
(axioms) in a specific entity definition are italicized and are obviously not editable
directly. Simply highlighting them separately is useful to the ontology modeler as they
can (potentially) point to unintended assertions. Finally, various types of clashes are
identified in the ontology and quasi natural language explanations (reasons) are given for
clash occurrences. For more details on debugging OWL ontologies in Swoop, see [Parsia
et al, 2005].

Figure 4: Ontology Debug Mode in Swoop (uses Pellet)

6.3 Ontology Refactoring Problem
The problem of refactoring large, complex ontologies into smaller, more manageable
units is a hard research problem. In [Cuenca-Grau et al, 2004], the authors outline a
semantically robust methodology for refactoring and mapping ontologies (overcoming the
limitations of owl:imports), known as e-connections. Swoop has preliminary support to
parse and display e-connected ontologies independently. As a next step, we plan to
investigate techniques to suggest refactoring options to ontology modelers, and
accordingly provide wizards to semi-automate the refactoring process.

7. Conclusion and Future Work
This paper outlines our contribution in building a hypermedia inspired ontology editing
tool – Swoop. However, it still represents work in progress. Some of the solutions
proposed in the paper need to be elaborated upon, implemented and optimized. Moreover,
a formal evaluation of the features needs to be done by performing usability studies and
comparing it against existing ontology engineering tools.

8. Acknowledgments
The authors wish to thank Bijan Parsia and Evren Sirin for their invaluable contribution
in the design and implementation of Swoop.

9. References

[Arpirez et al, 2001] Arpirez, J., Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A.
WebODE: A Scalable Ontological Engineering Workbench. First International
Conference on Knowledge Capture (K-CAP) (2001)

[Bechhofer et al, 2001] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OilEd: a
reasonable ontology editor for the Semantic Web. Proceedings of KI2001, Joint
German/Austrian conference on Artificial Intelligence (2001)

[Bechhofer et al, 2003] Bechhofer, S., Lord, P., Volz, R. Cooking the Semantic Web with
the OWL API. Proceedings of the International Semantic Web Conference (2003)

[Cuenca-Grau et al, 2004] Cuenca-Grau, B., Parsia, B., Sirin, E.: Working with Multiple
Ontologies on the Semantic Web. Proceedings of the Third International Semantic Web
Conference (ISWC) (2004)

[Farquhar et al, 1996] Farquhar, A., Fickas, R., Rice, J. The Ontolingua server: A Tool
for Collaborative Ontology Construction. Proceedings of the 10th Ban# Knowledge
Acquisition for Knowledge Based System Workshop (KAW95) (1996)

[Kahan et al, 2001] Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.:
Annotea: An Open RDF Infrastructure for Shared Web Annotations. Proc. of the
WWW10 International Conference (2001)

[Kalyanpur et al, 2001] Aditya Kalyanpur, Bijan Parsia, James Hendler and Jennifer
Golbeck, "SMORE - Semantic Markup, Ontology and RDF Editor". Technical Report
http://www.mindswap.org/~aditkal/SMORE.pdf

[Kalyanpur et al, 2004] Aditya Kalyanpur, Nada Hashmi, Jennifer Golbeck, Bijan Parsia
Lifecycle of a Casual Web Ontology Development Process. Proceedings of the
WWW2004 Workshop on Application Design, Development and Implementation Issues
in the Semantic Web, May 18, 2004 , NYC, USA.

[Kalyanpur et al, 2005] Aditya Kalyanpur, Bijan Parsia, James Hendler. A Tool for

Working with Web Ontologies, To Appear in the International Journal on Semantic Web
and Information Systems, 2005

[Klein et al, 2003] Klein, M., Noy, N.: A Component-based Framework for Ontology
Evolution. Workshop on Ontologies and Distributed Systems at IJCAI (2003)

[Parsia et al, 2005] Bijan Parsia, Evren Sirin, Aditya Kalyanpur. Debugging OWL
Ontologies, Submitted to WWW 2005

[Stanford, 2000] Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R., Musen, M.
Creating semantic web contents with Protege-2000. IEEE Intelligent Systems (2001)

[Sure et al, 2002] Sure, Y., Erdmann, M., Angele, J., Sta#, S., Studer, R., Wenke, D.:
OntoEdit: Collaborative ontology development for the Semantic Web. Proceedings of the
International Semantic Web Conference (ISWC) (2002)

[WebOnt, 2004] Dean, M. and Schreiber, G. OWL Web Ontology Language Reference
W3C Recommendation. http://www.w3.org/TR/owl-ref/, February, 2004.

