
Performance Tuning and Evaluation of Iterative Algorithms in

Spark

Janani Gururam
Department of Computer Science

University of Maryland
College Park, MD 20742
janani@cs.umd.edu

Abstract. Spark is a widely used distributed, open-source framework for
machine learning, relational queries, graph analytics and stream process-
ing. This paper discusses key features of Spark that differentiate it from
other MapReduce frameworks, focusing specifically on how iterative algo-
rithms are implemented and optimized. We then analyze the impact of
Resilient Distributed Dataset (RDD) caching, Serialization, Disk I/O, and
other parameter considerations to improve performance in Spark. Finally,
we discuss benchmarking tools currently available to Spark users. While
there are several general purpose tools available, we do note that only a
few Spark-specific solutions exist, and do not fully bridge the gap between
workload characterization and performance implications.

1 Introduction

Spark is an open-source, in-memory distributed framework for big data processing. The core
engine of Spark underlays several modules for specialized analytical computation, including MLlib
for machine learning applications, GraphX for graph analytics, SparkSQL for queries on structured,
relational data, and Spark Streaming [25]. Spark provides several APIs for languages like Java,
Scala, R, and Python.

The base data structure in Spark is a Resilient Distributed Dataset(RDD), an immutable, dis-
tributed collection of records. There are two types of operations in Spark: transformations, which
perform operations on an input RDD to produce one or more new RDDs, and actions, which
launch the series of transformations to return the final result RDD. Operations in Spark are lazily
evaluated.

A logical execution plan, or lineage graph, provides the series of transformations to be performed on
an input data set once an action has been called. This plan determines the dependencies between
the RDDs in the set of transformations. The DAGScheduler then converts this logical plan into a
physical execution plan: a directed acyclic graph of stages. Each stage is a set of tasks based on
partitions of the input data which can be run in parallel. For debugging, the logical execution plan is

1



readily available to the user with the debug package (queryExecution.logical) in Spark [14]. Narrow
dependencies in the lineage graph like map allow for pipelined execution of tasks, whereas wide
dependencies like join indicate stage boundaries [32] in the graph. The DAGScheduler, in addition
to scheduling tasks on each worker node, keeps track of the RDDs that have been materialized
in order to avoid recomputing results and improve performance. At run time, parallel execution
tasks (stages) are processed in batches: all partitions of a particular stage are executed before the
downstream dependent stages are started.

Spark is used for big data applications, including analysis of mobile data usage patterns, ETL and
log processing, predictive analytics, and business intelligence [1]. Spark’s wide adoption drives the
need for the right set of tools to be able to optimize Spark’s performance in various application
domains. To this end, we will discuss in this paper some aspects of performance tuning, including:

1. Fault tolerance in Spark and how it compares to other popular data processing frameworks

2. Implementation of Iterative Algorithms

3. Performance Tuning and the impacts of RDD caching, Serialization, and Disk I/O

4. Benchmarking tools for Spark and similar frameworks

2 Fault Tolerance

Spark differentiates itself from other large-scale distributed, shared memory systems in the way
it handles fault tolerance. Instead of incurring the overhead of replica creation and management,
the Spark driver saves the lineage graph as course-grained transformations on input data. Lineage
information is tracked at the level of partitions, and RDDs can be rebuilt from lineage graph
information, on node failure [33]. We will compare fault tolerance mechanisms in Spark with five
other open-source, big data processing frameworks.

Google MapReduce For fault tolerance, Google’s MapReduce [7] implementation uses a pull
model as opposed to a push model to move data between mappers and reducers. On node failure,
the push model forces re-execution of map tasks. One disadvantage to the pull model is that
it forces the creation of multiple smaller files saved to disk. However, the impact of these are
mitigated by batching and sorting intermediate results. In contrast, Spark provides the option of
caching intermediate results in memory, reducing disk overhead costs.

Dryad [12] is a parallel data processing engine suited for coarse-grained transformations on data.
Dryad enables the developer to build efficient distributed applications by handling resource schedul-
ing and concurrency optimizations, in addition to an API for graph construction and modification.
Jobs in Dryad are directed acyclic graphs representing a logical computation to be mapped to
physical resources at run time. Spark uses a similar execution model. Dryad uses batching to
improve execution time, and classifies vertices into those that need to be run sequentially, and
those that can use a thread pool to be run in parallel, for efficient pipelined execution. Dryad has
a re-execution-based fault tolerance policy. On a read error, Dryad terminates the current process,
and re-creates the vertex causing the error. Subsequent vertices are not impacted. Vertex execution

2



failures are reported by either sending an error through a daemon before exiting, or by informing
the job manager through a heartbeat timeout.

Apache Tez [24] is a framework that provides the components to build scalable dataflow processing
engines, without loosing the customizability of specialized systems. Tez is tightly integrated with
the YARN [27] resource management layer to improve performance for dataflow processing engines.
Tez allows users to model computations as directed acyclic graphs similar to Dryad. Tez uses
a combination of checkpointing and lineage graphs for re-execution based fault tolerance. If a
task produces missing data, an InputReadError is produced as a control statement. The DAG
dependencies are used to determine recursively the stage of failure or latest checkpoint, and re-
executes only the portion impacted by the failure.

Pregel [18] is a graph database framework that inspires the underlying structure of Spark’s graph
processing module GraphX. Pregel’s data computation model is based on supersteps, where each
superstep contains vertices that can be executed in parallel. Pregel achieves fault tolerance through
checkpointing. At each superstep, each worker saves its data partition to persistent storage based on
a predefined checkpoint frequency. At node failure, the master node reallocates the partitions to the
existing set of nodes, but the missed supersteps must be recomputed before the next iterations can
continue. Logging outgoing messages, in addition to checkpointing, allows Pregel to only recover
lost partitions, improving latency and minimizing consumed resources.

Apache Flink [6] is an open-source framework primarily for data-stream processing. Flink pro-
vides an alternative to systems that use micro-batching to process data, where querying incurs high
latency and produces approximate results by design. Flink, in coordination with durable messaging
systems like Apache Kafka [28], instead processes data through a versatile windowing mechanism
and by maintaining different types of state information. For fault tolerance, Flink uses both check-
pointing and partial re-execution. Flink uses Asynchronous Barrier Checkpointing such that taking
a ”snapshot” of the execution does not interfere with execution. Flink manages this by inserting
control events, checkpointing barriers, into the input stream, which indicate snapshot boundaries.
Upon failure, all operator states are returned to the point of the last valid snapshot, and re-executed
from that point onwards. Flink is primarily a data stream processing framework, while Spark is a
batch processing framework. However, Flink can run batch-processing applications, and Spark can
handle streaming data through Spark Streaming.

3 Iterative Algorithms

The evaluation and optimization of iterative algorithms present a particularly interesting chalenge
in dataflow systems like Spark. In certain iterative applications, like PageRank, lineage graphs
can become quite large. Spark is implemented in Scala [19], which is a functional and object-
oriented programming language which runs on the Java Virtual Machine (JVM) and integrates
seamlessly with existing Java programs. Spark saves data objects and DAG information associated
with each stage to the JVM heap on the driver node. Once the heap is filled, the JVM is forced to
do full garbage collection. This event increases in frequency as lineage graphs expand with more
iterations. In addition, recomputing results from a large lineage graph in case of node failure may
extend execution time significantly. In this scenario, manual checkpointing, while not necessary
for fault tolerance, can improve performance because the DAGScheduler uses materialized RDD

3



results for computation. Zaharia et. al [32] show that persisting the intermediate result of a map
operation in logistic regression over multiple iterations can lead to 20x speedup in execution time.
A short conference paper by Zhu, Chen, et al. [34] present an algorithm for adaptive checkpointing
in Spark to reduce the overhead of garbage collection. The authors determine the need to cache
intermediate results based on the rate of utilization of the heap space. Reaching a threshold rate
indicates that the current RDD should be checkpointed.

Dataflow systems are an abstraction based on directed acyclic graphs, originally designed for in-
dexing, filtering, aggregation, and transformation tasks. This abstraction is also well-suited for
iterative tasks such as machine learning algorithms and graph analytics. Ewen et al [8] present two
types of iterative operations: Bulk Iterations, which compute a completely new result from input
data, and Incremental Iterations, where each iteration result only modifies or adds to some small
subset of the input data. Because Spark is a batch processing framework, its dataflow model works
well with bulk iterations. Spark is not well-optimized to address incremental iterations, where
a mutable state must be updated and carried to the next iteration. The immutability of RDDs
significantly impacts the computational efficiency of algorithms with incremental iterations, since
it cannot exploit the sparse dependencies of these tasks.

However, the ability to cache intermediate results in memory presents an advantage to using Spark
for iterative algorithms as opposed to MapReduce frameworks like Hadoop [7]. Iterative algorithms
in Hadoop are treated as multiple MapReduce computations, where memory is freed at the end
of each MapReduce cycle [10]. The overhead of reading input data and writing to HDFS after
each iteration is costly. In Apache Flink, iterative algorithms are dealt with by creating a unique
iteration step which contains a DAG within itself. The head and tail nodes of the graph are
connected implicitly by a feedback loop, and iteration barriers are sent as control events in the
loop to indicate the beginning and end of a superstep in the bulk synchronous parallel model of
execution. In addition, Flink’s Graph API, Gelly, handles sparse computational dependencies using
delta iterations.

We will now analyze select iterative algorithms, and their implementation and performance in
Spark.

3.1 Page Rank

PageRank is a bulk iteration algorithm that iteratively updates a rank for each node of an input
graph by summing rank contributions of adjacent nodes. This implementation of PageRank is based
on the Pregel programming model [18], which uses vertex-based partitioning to split the input graph
across the worker nodes, and exchanges updates to each rank through shuffle operations. Pregel
also uses combiners to aggregate by key on each worker node before a cogroup operation. Zaharia
et. al [31] found that RDD caching improved performance over Hadoop by 2x, and hash-based
vertex partitioning and combiners further improves the execution time.

Gu et al. [10] conduct a performance comparison between Hadoop and Spark for PageRank on
synthetic and real graph datasets. PageRank is computed on a cluster running Spark with 1 master
node and 7 worker nodes, each with 3GB memory. The paper presents a modification of the naive
PageRank algorithm, to deal with two scenarios: spider trap: groups of nodes with no edges to
other nodes outside of the group, and dangling nodes: nodes in the graph without any edges.

4



Figure 1: The code presented is an implementation of the naive PageRank algorithm in Spark. The
diagram represents the lineage graph for this code (adopted from [32]). The bold text represents
transformations on the data leading to the creation of new RDDs, and the links RDD (in red) is
cached in memory.

Each iteration in PageRank requires a shuffle for aggregating values to compute ranks, and then
another shuffle to update the ranks on the edge partitions. SparkBench [16], a benchmkaring tool
for Spark, ran PageRank on a unstructured Google web graph dataset. Because of the relatively
small size of the data, disk and network I/O overhead were non-obvious. However, the increasing
size of the intermediate results over the set of 100 iterations, suggests that PageRank is a memory-
bound workload. Each iteration of the computation creates a new RDD which stores the temporary
rank values for each node in the graph. GraphX [30] is a distributed graph processing module built
on top of Spark, which presents a series of optimizations to improve the performance of graph
queries, on par with graph processing systems like Giraph [5] and GraphLab [17]. Some of Spark
optimizations in GraphX include horizontal partitioning of the vertex and edge collections and
index reuse. Index reuse allows derived aggregated vertex and edge collections to share indices
with the original vertices collection. This technique in particular is useful in reducing the execution
time of each iteration in PageRank by over 50% on the Twitter graph dataset. In addition, GraphX
handles data skew better than the naive PageRank algorithm due to these optimizations [26].

3.2 K-means Clustering

K-means clustering is a machine learning algorithm which partitions N observations into K clus-
ters, and is representative of the bulk-iteration type of iterative algorithms. An observation, n,
belongs to the cluster k with the nearest mean. At each iteration, the algorithm uses a training
model of N elements to update parameters of each of the K centroids. Generally, since K < N ,
data to be shuffled across the network among partitions is low. Therefore, intermediate results
between iterations can more easily be cached in memory. [26] finds that K-Means in Spark is

5



CPU bound, where parsing the input text into Point objects causes significant CPU overhead, and
where RDD caching makes little impact on subsequent iterations. Logistic Regression is another
machine learning algorithm similar to K-Means clustering. Each iteration in logistic regression is
less computationally intensive than iterations of K-means, so this algorithm is more sensitive to
serialization and I/O.

3.3 Connected Components

The connected components algorithm represents the incremental iteration type of iterative algo-
rithm, unlike Page Rank and K-means. In Connected Components, each node is labeled with the
lowest vertex ID of the group of connected components; only a subset of the vertex properties are
updated. GraphX uses Incremental View Maintenance to optimize performance of graph queries
in this scenario. Only modified vertices are sent to their respective edge partition sites after a
graph operation, and unmodified mirrored vertices are reused. Results show that incremental view
maintenance has a significant impact on reducing communication data for this algorithm, as the
number of ‘active vertices’ converges rapidly [30].

4 Performance Tuning in Spark

In Spark, the DAG, or physical execution plan, is organized into stages, where stage boundaries
indicate shuffle dependencies. This execution model impacts performance in Spark because it
determines which tasks are pipelined, and how tasks are parallelized. Each stage in the DAG can
have its own unique resource consumption characteristics and complex shuffling patterns [16]. These
factors present challenges to understanding performance characteristics of workloads in Spark.

We present the impact of RDD caching, serialization and disk I/O improvements on performance
in Spark. Then, we present some general observations on the topic of performance tuning.

4.1 RDD Caching

Most machine learning and graph computation algorithms run in Spark consist of a number of
stages proportional to the number of iterations. While caching RDDs can offset the cost of Disk
I/O, the challenge lies in choosing the optimal memory cache size for RDDs, which varies for
different workloads. For example, for logistic regression, caching all RDDs within memory produces
a 5.1x factor improvement in performance. However, RDD caching is not a universal solution. For
algorithms such as Triangle Counting, SQL-based queries and RDD map reduce queries, caching
RDDs is shown to increase execution time [16]. There is a tradeoff between the amount of memory
allocated to caching RDDs and task memory, which is used to store shuffle data during shuffle
stages. If all memory is allocated to RDD caching, a specific stage that incurs a large amount
of shuffle data is forced to store it all on disk, causing a performance slowdown. Therefore, [16]
suggests dynamic RDD cache allocation, and more work on the developers side to characterize
their workloads: certain stages can be classified as RDD Caching friendly and non RDD Caching
friendly.

6



In addition, Spark provides 11 storage levels for RDD caching such as in memory, on disk, on disk
and in memory, and Tachyon [15]. Shi et al. [26] consider the impact of storage levels and memory
limits on the effectiveness of RDD caching for the K-means algorithm. Results show that storage
level only impacts the execution time of the first iteration. While the storage level has no impact
on subsequent iterations of the algorithm, the number of cached RDD partitions does impact the
performance. In Spark, the memory allocated to storing cached RDD partitions is configurable by
setting MemoryStore.

The effectiveness of RDD caching for a specific application is also dependent on whether the work-
load is CPU or disk bound. If it is disk bound, RDD caching can have significant performance
improvements. If the application is CPU bound, like in the scenario of K-means clustering, where
the main overhead was caused by converting text into Point objects, this will not have significant
impacts on performance. However, it can minimize CPU overhead because intermediate results are
now cached [26].

4.2 Serialization

Li et al. [16] tested various combinations of data compression (Snappy, LZF, LZ4) and serialization
(Kyro Serialization, Java serialization) offered in Spark. Serialization and Data compression meth-
ods present a tradeoff between I/O and computation time. Accordingly, the study found that for
applications that are CPU intensive, like Logistic Regression, using no form of data compression or
serialization is best. For the K-means algorithm, RDD caching without serialization is about 1.1x
faster than caching with serialization, as this algorithm is already CPU-bound. For PageRank, the
impact of serialization is seen more significantly: while serialization reduced the size of the RDD
by 20%, the CPU overhead for serialization and de-serialization is higher than Disk I/O overhead
without serialization in GraphX [26].

4.3 Disk I/O

Disk I/O happens at four different points in Spark: reading input data, reading and writing writing
shuffle data spilled to disk, and writing output data, not including the time spent on serialization
and de-serialization [21]. Shi et al. [26] found that the number of disks had minimal impact on Disk
I/O for intermediate results, but can have a significant impact in the case of an unbalanced cluster
(several CPU cores with minimal number of disks). If an algorithm is disk-bound, an option is to
increase JVM heap size, to avoid spilling data to disk. However, as the JVM heap size increases,
execution time may not improve, due to increased overhead for garbage collection and OS page
swapping. Finally, serialization formats, as discussed previously, incur additional computation time
costs despite the savings in Disk I/O. Analysis of Disk and network I/O had only minimal impact
on the execution time, of 19% and 2 % on average respectively [21].

4.4 Other Performance Observations

1. Queries in Spark are largely CPU bound rather than disk bound [21, 26]. One cause for this
is the decision to use Scala, which forces data read from disk to be serialized as Java objects

7



from a byte buffer. To demonstrate the impact of this decision, a sample query written in
C++ reduced the CPU time by a factor of 2 [21].

2. Another performance consideration in Spark are “data stragglers”, or tasks with execution
time much longer than average, which singularly increase the total computation time. These
stragglers are attributed to data skew, where one task is forced to compute on a larger set of
data than other tasks. Ousterhout et al. [21] provide an addition reason for data skew: Java’s
just-in-time compilation optimizes tasks repeated over a certain threshold. Task stragglers
could be tasks run for the first time.

3. Li et al. [16] make the observation that for the workloads tested by their benchmarking suite,
resource consumption is quite stable throughout execution, so dynamic cluster configuration
which could allocate necessary CPU and memory resources may not be effective.

4. Spark’s thread-based model prevents context-switching overhead caused by these process-
based models like MapReduce [26].

5 Benchmarking in Spark

Users have a need for debugging tools in Spark, because the current functional API does not provide
an understanding of the performance implications of their applications. Performance debugging is
especially important for users to understand the efficiency of certain data structures or how the
work is partitioned across nodes [4]. Current benchmarking tools evaluate performance on a variety
of different dimensions, including CPU, network, and disk usage. Here we survey some framework-
specific and framework-agnostic tools for big data processing frameworks in general and those
specific to Spark.

5.1 Framework-Specific Tools

Certain benchmarking solutions target a specific framework, running a series of realistic tests repre-
senting the full range of functionality of the framework. We will highlight some of these framework-
specific tools here.

HiBench [11] is a benchmarking tool specifically to test Hadoop on synthetic and real datasets
for a diverse set of workloads, including microbenchmarks such as sorting, machine learning algo-
rithms, and web search. These workloads are evaluated based on CPU, memory, and disk usage,
throughput, and execution time.

Spark-perf [2], developed by Databricks, is focused primarily on testing machine learning applica-
tions in Spark, but does not cover the full range of modules in Spark (currently under development).

Spark Performance Analysis Project [21] presents blocked time analysis as a simplified method
for evaluating the performance of Spark applications. Blocked time analysis analyzes the execution
time of each task subtracting blocking due to disk and network I/O. This is a solution to the
challenging task of determining task completion time, as tasks are pipelined and executed in parallel
in Spark. A simulation of the tasks are then used to determine total execution time given these

8



shorter tasks. The advantage of this tool is in its simplicity. However, this method requires
additional instrumentation to be added to Spark, and does not measure CPU usage.

5.2 Multiple Framework Tools

Multiple Framework tools are more generalized benchmarking solutions which allow users to run
applications on different frameworks to evaluate and compare performance on different workloads.

BigDataBench [29] targets different application scenarios on both real and synthetic datasets.
Application types include real time and offline analytics and online services. The workloads repre-
sent both real world and generated synthetic data in structured, semi-structured, and unstructured
format. Examples include Amazon Movie Reviews, Google Web Graph, Facebook Social Network,
ProfSearch Person Resumes, and E-Commerce Transactional Data. The workloads form typical
relational database queries such as Select, Aggregate, and Join, iterative computations such as
PageRank, Connected Components, and K-Means, and scanning and sorting jobs. In total, 19
workloads are represented, tested on several frameworks including Spark, Hadoop, Cassandra [13],
and traditional RDBMS systems.The performance is measured in both user-definable metrics such
as the number of processed requests, the number of operations, and data processed per second and
architectural metrics: MIPS and cache MPKI.

TPC-DS [23] is a Decision Support benchmark created by the Transaction Processing Performance
Council. This benchmark runs complex business intelligence queries such as data extraction, re-
porting, iterative OLAP, and Ad-Hoc DSS queries on structured data in a snowflake schema. It
differs from previous TPC benchmarks in that it incorporates both real time static decision queries,
and queries that reflect long-term planning.

BigBench [9] extends TPC-DS to include benchmarking for structured and semi-structured data,
and aims to address the volume, variety, and velocity trinity of big data systems. BigBench uses
Parallel Data Generation Framework (PGDF) to generate synthetic non-structured datasets, and
bases workloads on real world applications related to marketing and merchandising, from sentiment
analysis to inventory management. The main metric for performance comparisons is execution time.

5.3 Spark Benchmarking

Agrawal et al. [3] present a set of guidelines for comprehensive testing of Spark. These dictate
comprehensive testing of Spark requires testing the Spark core engine, library modules, and different
cluster configurations. In addition, tests must be repeatable, scalable, and determine bottlenecks
within the program. Finally, data generation must be realistic and scalable. We have previously
discussed Spark-perf, which has not been maintained since 2015 and does not provide functionality
for a majority of the algorithms in MLlib, core RDD functions, and SparkSQL. We also discussed
the Spark Performance Analysis Project, which provides a thorough analysis of Spark Performance,
but is limited by its blocked time analysis metric of performance; it requires additional hardware
configurations and does not provide an understanding of CPU usage unless profiled separately.
Finally, technology-agnostic solutions such as BigDataBench do provide a large range of workloads
on which to test Spark, but is especially hardware-focused in its performance analysis. A promising
benchmarking tool currently in development is SparkBench [16], which is built largely on the

9



Figure 2: Images above are snapshots of the web UI provided by Spark. The right image shows the
DAG visualization of Job 0 of the PageRank implementation in GraphX. The left image shows the
active and pending stages of a naive PageRank example, including the number of tasks completed
and duration of each stage.

principles set forth by [3]. It stands out from other benchmarking suites in the space due to its
ability to evaluate Spark performance in the context of the workload characterization.

5.4 Run Time Debugging Environments

One of the biggest challenges in Spark is the ability to profile and debug code, specifically to identify
inefficient data structures or skewed data partitioning. Currently, Spark provides a web UI for DAG
visualization, and information about active/completed/failed jobs, stages, and tasks for the running
application. It also provides environmental information such as available storage and metrics for
SQL queries. While this UI provides fundamental information to characterize a running application,
other big data processing systems have rich UIs with additional functionality to enable iterative
and intuitive development. One of these systems is Pig [20], an abstraction of Hadoop specifically
to bridge the gap between SQL queries and MapReduce, through a dataflow language, PigLatin.
To enable performance debugging, Pig provides Pig Pen, an interactive debugging environment.
This UI allows queries written by the user to be run on a smaller sandbox dataset, presenting
the schema and results at each step. This environment encourages the user to develop and test
programs incrementally. Another UI developed by Pimentel et al. [22] integrate IPython with
noWorkflow to enable data provenance in interactive notebooks, through graph visualization. The
advantage of this UI is that provenance information is integrated with the notebook rather than
separate to it, and is presented in a visually appealing, comprehensible manner. Spark currently
lacks similar tools to enable users to debug their applications with an interactive and intuitive GUI
environment, presenting an opportunity for future work.

6 Conclusion

Thorough workload characterization is necessary to understand the performance implications of
Spark applications. Understanding whether a workload is CPU-bound or disk-bound is essential
to understanding whether or not RDD caching, serialization, and changes to heap size will have
intended impact on performance. Zaharia et al. [32] noted that users have control over ”persistence
and partitioning” of Spark RDDs, and benchmarking is key to allow users to make those decisions

10



correctly. SparkBench [16] is one of the more recent, Spark-specific tools for benchmarking these
applications, along with several other technology-agnostic benchmarking solutions. Pig Pen has
emerged as a useful and intuitive debugging framework for Pig. We have yet to see a similar
fully-developed solution for Spark.

References

[1] Project and product names using ”spark”.

[2] Spark-perf: spark performance tests.

[3] Dakshi Agrawal, Ali Butt, Kshitij Doshi, Josep-L Larriba-Pey, Min Li, Frederick R Reiss,
Francois Raab, Berni Schiefer, Toyotaro Suzumura, and Yinglong Xia. Sparkbench–a spark
performance testing suite. In Technology Conference on Performance Evaluation and Bench-
marking, pages 26–44. Springer, 2015.

[4] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen, Ion
Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. Scaling spark in the real world:
performance and usability. Proceedings of the VLDB Endowment, 8(12):1840–1843, 2015.

[5] Ching Avery. Giraph: Large-scale graph processing infrastructure on hadoop. Proceedings of
the Hadoop Summit. Santa Clara, 11, 2011.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache flink: Stream and batch processing in a single engine. Data Engineering,
38(4), 2015.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[8] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. Spinning fast iterative
data flows. Proceedings of the VLDB Endowment, 5(11):1268–1279, 2012.

[9] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte,
and Hans-Arno Jacobsen. Bigbench: towards an industry standard benchmark for big data
analytics. In Proceedings of the 2013 ACM SIGMOD international conference on Management
of data, pages 1197–1208. ACM, 2013.

[10] Lei Gu and Huan Li. Memory or time: Performance evaluation for iterative operation on
hadoop and spark. In High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC EUC), 2013 IEEE
10th International Conference on, pages 721–727. IEEE, 2013.

[11] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench benchmark
suite: Characterization of the mapreduce-based data analysis. In Data Engineering Workshops
(ICDEW), 2010 IEEE 26th International Conference on, pages 41–51. IEEE, 2010.

[12] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In ACM SIGOPS operating systems
review, volume 41, pages 59–72. ACM, 2007.

11



[13] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[14] Jacek Laskowski. Mastering Apache Spark 2.

[15] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. Tachyon: Reliable,
memory speed storage for cluster computing frameworks. In Proceedings of the ACM Sympo-
sium on Cloud Computing, pages 1–15. ACM, 2014.

[16] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Sparkbench: a spark
benchmarking suite characterizing large-scale in-memory data analytics. Cluster Computing,
pages 1–15.

[17] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M
Hellerstein. Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[18] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages
135–146. ACM, 2010.

[19] Martin Odersky et al. The scala programming language. URL http://www. scala-lang. org,
2008.

[20] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1099–1110. ACM, 2008.

[21] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun, and V ICSI.
Making sense of performance in data analytics frameworks. In NSDI, volume 15, pages 293–
307, 2015.

[22] Joao Felipe Nicolaci Pimentel, Vanessa Braganholo, Leonardo Murta, and Juliana Freire. Col-
lecting and analyzing provenance on interactive notebooks: When ipython meets noworkflow.
In 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP 15), Edinburgh,
Scotland, 2015. USENIX Association.

[23] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. Tpc-ds, taking decision support
benchmarking to the next level. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 582–587. ACM, 2002.

[24] Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy, and Carlo
Curino. Apache tez: A unifying framework for modeling and building data processing appli-
cations. In Proceedings of the 2015 ACM SIGMOD international conference on Management
of Data, pages 1357–1369. ACM, 2015.

[25] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and Joshua Zhexue
Huang. Big data analytics on apache spark. International Journal of Data Science and Ana-
lytics, pages 1–20, 2016.

12



[26] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald,
and Fatma Özcan. Clash of the titans: Mapreduce vs. spark for large scale data analytics.
Proceedings of the VLDB Endowment, 8(13):2110–2121, 2015.

[27] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al. Apache
hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing, page 5. ACM, 2013.

[28] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh,
Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a replicated logging system with
apache kafka. Proceedings of the VLDB Endowment, 8(12):1654–1655, 2015.

[29] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling
Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al. Bigdatabench: A big data benchmark suite
from internet services. In High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, pages 488–499. IEEE, 2014.

[30] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. Graphx: A resilient
distributed graph system on spark. In First International Workshop on Graph Data Manage-
ment Experiences and Systems, page 2. ACM, 2013.

[31] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. Technical report, Technical Re-
port UCB/EECS-2011-82, EECS Department, University of California, Berkeley, 2011.

[32] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2–2. USENIX Associa-
tion, 2012.

[33] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[34] Wei Zhu, Haopeng Chen, and Fei Hu. Asc: Improving spark driver performance with automatic
spark checkpoint. In Advanced Communication Technology (ICACT), 2016 18th International
Conference on, pages 607–611. IEEE, 2016.

13


