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Abstract

Computational techniques have been successful at predicting protein function from relational
data (functional or physical interactions). These prediction techniques have been used to gen-
erate hypotheses and to direct experimental validation. With few exceptions, these predictive
tasks are modeled as multi-label classification problems where the labels (functions) are treated
independently or semi-independently. However, databases such as the Gene Ontology provide
more information about the similarities between functions. It is a largely open question how
much the use of relationships between functions can improve the quality of function prediction
techniques. In this paper, we explore the use of the Metric Labeling combinatorial optimiza-
tion problem to make use of heuristically computed distances between functions to make more
accurate predictions of protein function in networks derived from both physical interactions and
a combination of other data types. To do this, we give a new technique (based on convex opti-
mization) for converting heuristic semimetric distances (from, e.g. Gene Ontology) into a metric
that finds an embedding of the semimetric into a metric with minimum least-squares distortion
(LSD). The Metric Labeling approach is shown to outperform 5 existing techniques for in-
ferring function from networks. These results suggest Metric Labeling is useful for protein
function prediction, and that our LSD minimization approach can help solve the problem of
converting heuristic distances to a metric.

1. Introduction

Networks encoding pairwise relationships between proteins have been widely used for protein
function prediction and for data aggregation, display, and visualization. Sometimes these networks
are derived from a single data source such as protein-protein interactions [19, 25, 37, 41, 47]. In
other instances, they are constructed from the integration a large collection of experiments involving
different data types, such as gene expression [e.g. 17], protein localization [e.g. 24], protein complex
dataset [e.g. 18, 23] etc. The precise meaning of an edge in these can differ, but their common feature
is that two proteins connected by an edge often have similar functions. By extension, these networks
globally generally have the property that two proteins that are “close” in the network are more
likely to have closely related functions. This correlation has given rise to a number of computational
approaches to extract hypotheses for protein function from relational data [13, 22, 26, 40, 44, 45].

Nearly all of these computational methods treat the function prediction problem as a labeling
problem, where the labels are drawn from a hand-curated vocabulary of biological functions or
processes. Further, they typically ignore any relationships between the functions, treating them
as independent labels. However, there are usually relationships among functions that ought to be
useful to make more accurate predictions of protein function. For example, the Gene Ontology
(GO) [1] is a manually curated database of biological functions and processes that represents the
hierarchical relationships among different functions as a DAG. However, most prediction methods
have ignored such a structure.

In the few cases it has been done, integrating Gene Ontology knowledge into protein function
prediction methods [4, 13] and clustering [11] has resulted in improved predictions. For example,
Barutcuoglu et al. [4] developed a Bayesian framework for combining multiple SVM classifiers
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based on the GO constraints to obtain the most probable, consistent set of predictions. Their
approach used a hierarchy of support vector machine (SVM) classifiers trained on multiple data
types. By GO constraints, this method also exploits the relationship between functions in GO but
does not exploit distances between functions directly. Taking another approach, Deng et al. [13]
uses the correlations between which proteins are labeled with each functions but they estimate
these correlations from training data and don’t consider GO structure.

1.1 Metric Labeling for Function Prediction

Here, we propose to integrate Gene Ontology relationships with relational data by modeling the
protein function prediction problem as an instance of Metric Labeling [29] which is a special
case of MRF in which the distance function among labels X is a metric. The Metric Labeling
problem seeks to assign labels (here, protein functions) to nodes in a graph (here, proteins or
genes) to minimize the distance (in the metric) between labels assigned to adjacent nodes. The
advantage of this formulation is that rather than treating function labels as independent, unrelated
entities, their similarities can be directly incorporated into the objective function. A more detailed
description of the Metric Labeling problem is given in Section 2.1.

The Metric Labeling formulation can be seen as an generalization of minimum multiway cut.
For example, the minimum multiway cut formulation [48] implicitly assigns distance 0 between two
identical functions and distance 1 between any pair of distinct functions. Metric Labeling softens
this to account for varied levels of similarities between the functions. Metric Labeling can also
be seen as special case of Markov Random Field approach. Markov Random Fields encode the same
combinatorial problem, but the distance function is not restricted to metrics or semimetrics [30].
However, MRF optimization with such arbitrary distance functions is NP-Hard [12, 30], and there
is no approximation algorithm that can approximate the global optimum within a non-trivial bound
when the distance is arbitrary. In that case, only local optimum can be computed [30]. However, in
practice, the distance function is either a metric or close to a metric most of the time, and Metric
Labeling becomes a reasonable approach because there are practical approximation algorithms for
Metric Labeling with logarithmic approximation guarantees [9, 10, 29]. In this paper, we will use
the integer programming formulation by Chekuri et al. [9] which yields an O(log k) approximation
algorithm for Metric Labeling where k is number of labels.

1.2 Constructing a Metric Distance Between GO Functions

Metric Labeling (and MRF models) have been typically been used in applications related
to computer vision [5, 6, 30, 36, 49] where often the distance between the labels naturally can be
expressed by metrics or a special metrics which can be approximated better. However, in the case
of function prediction from relational data, while heuristic relationships between functions can be
readily computed from the structure of the Gene Ontology graph, it is more difficult to make these
distances obey the requirements of a metric. Recall that a metric d(·, ·) over items X satisfies the
following 4 properties for all x, y, z in X:

d(x, y) ≥ 0 (Nonnegativity) (1)

d(x, y) = 0 if and only if x = y (2)

d(x, y) = d(y, x) (Symmetry) (3)

d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality) (4)

Typically, properties (1)–(3) can be easily satisfied, but often natural distance measures do not
satisfy the triangle inequality (4). When d satisfies all of them except triangle inequality (4), it
becomes a semimetric.
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To apply Metric Labeling when the distance function on the labels is merely a semimetric,
we will first convert the semimetric into a metric that is as similar to the semimetric as possible.
Approximating a semimetric by a close metric and MRF optimization when the distances are
semimetric are topics of recent interest and Kumar and Koller [34] have recently suggested an
algorithm based on minimizing the distortion. If S is a semimetric, andM is a metric approximating
S, contraction of this mapping is the maximum factor by which distances are shrunk and expansion
or stretch of this mapping is the maximum factor by which distances are stretched. Distortion
of this approximation is the product of the contraction and the expansion. Although distortion
minimization has traditionally been used in metric embeddings, distortion by its definition tells us
about the maximum expansion and contraction and doesn’t tell us about the distribution of the
error over all the distances. In other words, in low-distortion approaches, only the error introduced
in the largest outlier is considered. However, this doesn’t take the distribution of errors into account.
For noisy, imperfect data that is far from a metric, intuition indicates that minimizing the error
introduced in the other distances would yield a better metric.

To design metric approximations to semimetrics that better preserve all distances, we propose
a least-squared minimization algorithm that tries to minimize the total squared error among all
distances. To contrast it with traditional distortion, we call this approach least squared distortion
(LSD). This problem can easily be solved in polynomial time [28, 32] because it is a convex case
of quadratic programming. Thus, to apply Metric Labeling in cases when the distances among
the labels are not metric, we first map the semimetric to a close metric using the LSD algorithm
and then run Metric Labeling on the new metric. Experiments on protein function prediction
suggest this is a good metric approximation method. The issue of converting a set of heuristically
estimated distances arises in many practical contexts and the LSD approach may also be useful for
other applications.

1.3 Improvement in Function Prediction

We test the LSD algorithm and the Metric Labeling approach for function prediction on
relational data for 7 species: S. cerevisae, A. thaliana, D. melanogaster, M. musculus, C. elegans,
S. pombe and Human. For S. cerevisae, we apply the algorithms to an integrated data set that
derives pairwise relationships between proteins from several lines of evidence such as gene expres-
sion, protein localization data, and known protein complexes. For all 7 species, we also test the
approaches on networks derived from high-throughput protein-protein interaction experiments.

The algorithms are tested in a variety of settings. The set of functional labels are drawn from
the Gene Ontology. The number of considered GO terms is varied between 90 and 300 in order
to evaluate the effect of the size and specificity of the label set on performance. The specific
GO terms are selected to match sets of terms used in previous publications. Various metrics and
semimetrics relating the GO terms are also tested. A simple shortest-path metric is compared
with two other semimetrics derived from lowest common ancestor in the Gene Ontology DAG,
semimetrics computed from a training set of labels and semimetrics computed from both training
set and GO. See Section 2.4 for more details.

1.4 Our Contributions

We introduce the use of Metric Labeling for protein function prediction from relational data
and show that under many reasonable metrics it outperforms the approaches based on Markov
Random Fields [35], Functional Flow [40], minimum multiwaycut [27, 48], neighborhood enrich-
ment [22], and simple majority rule [44]. We extensively test on 7 species in both protein-protein
and integrated networks using several different collections of GO terms. The results indicate that
the clean, simple Metric Labeling formulation is useful for automated function prediction.
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In addition, we introduce the LSD objective function for finding a metric that approximates a
semimetric with the goal of preserving many distances rather than just limiting the maximum dis-
tortion. The convex optimization approach for this problem may be useful in other contexts where
reasonable heuristic distances do not satisfy the triangle inequality. We compare the performance of
running first our LSD metric approximation algorithm and then running Metric Labeling on the
LSD’s output metrics with a recent algorithm by Kumar and Koller [34] and Metric Labeling
with LSD metric approximation seems to result in better predictions.

2. Methods

2.1 The Metric Labeling Problem

The Metric Labeling problem has been extensively investigated from a theoretical point of
view Chekuri et al. [9, 10], Kleinberg and Tardos [29]. Formally, we have a graph G = (P,E) over
a set P of n nodes (here, proteins) and a set L of k possible labels (here, functions) that we want
to assign to objects. We have a metric d(·, ·) satisfying properties (1)–(4) defined between any
labels in L. We are also given a function c(p, `) that provides the cost of assigning label ` ∈ L to
p ∈ P . Metric Labeling seeks an assignment f : P → L of labels to proteins that minimizes the
objective function:

Q(f) =
∑
p∈P

c(p, f(p)) +
∑

(p,q)∈E

wpqd(f(p), f(q)) (5)

where wpq = wqp is the weight of the edge between proteins p and q in the graph. The first
summation is called the assignment costs and depends only on individual choice of label we make
for each protein and second summation is called the separation costs and is based on the pair of
choices we make for two interacting proteins.

The intuition is that pairs of proteins that are highly related (wpq is high) ought to be assigned
labels that are highly similar (d(f(p), f(q)) is low). The assignment costs prevent the problem from
becoming trivial by forbidding the assignment of the same label to every protein. For a protein p
with a known function b, typically c(p, b) will be 0 and c(p, `) =∞ for all ` ∈ L except b.

2.2 Integer Programming Formulation of Metric Labeling

The Metric Labeling problem defined above can be written as an ILP as in Chekuri et al.
[9]. In this formulation, x(u, i) is binary variable indicating that vertex u is labeled with i and
x(u, i, v, j) is binary variable indicating that vertex u is labeled with i and vertex v is labeled with
j for edge (u, v) ∈ E. The objective is then to

minimize
∑
v∈V

∑
i∈L

c(u, i)x(u, i) +
∑

(u,v)∈E

∑
i∈L

∑
i∈L

w(u, v)d(i, j)x(u, i, v, j) (6)

The variables are subject to the following constraints:∑
i∈L x(u, i) = 1 ∀u ∈ V (7)∑

j∈L x(u, i, v, j) = x(u, i) ∀u ∈ V, v ∈ N(u), i ∈ L (8)

x(u, i, v, j) = x(v, j, u, i) ∀u, v ∈ V, i, j ∈ L (9)

x(u, i) ∈ {0, 1} ∀u ∈ V, i ∈ L (10)

x(u, i, v, j) ∈ {0, 1} ∀(u, v) ∈ E, i, j ∈ L (11)

Constraints (7) mean each vertex must receive some label. Constraints (8) force consistency in the
edge variables: if x(u, i) = 1 and x(v, j) = 1, they force x(u, i, v, j) to be 1. Constraints (9) express
the fact that (u, i, v, j) and (v, j, u, i) refer to the same edge.
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Solving this integer programming instance optimally is NP-Complete. Since we are dealing with
large networks, we use the O(log k) approximation algorithm given by Chekuri et al. [9] that is based
on rounding the linear programming relaxation to identify a deterministic HST metric [2] approx-
imation of the given metric such that the cost of solution of this HST metric is at most O(log k)
times LP cost on original metric. We implemented and ran the LP formulation in GLPK [20].

We used the rounding scheme described in GenMultiCut algorithm in Section 2.6 to convert
fractional assignment costs returned by the LP relaxation of the above ILP. We use the fraction
of times that rounding scheme chose a given function for a protein a the probability of annotating
this protein with that function.

2.3 Metric Approximation Via Least Square Distortion Minimization

The algorithms suggested above have guaranteed performance bounds when the distance d is
a metric. However, finding metric distance in practical contexts can be quite difficult. Ideally,
the distance encodes and summarizes a large amount of existing knowledge about the relationship
between protein functions. It is likely that such as distance will not satisfy the triangle inequality
(and several of the distances we consider below do not).

We define a novel metric approximation algorithm, called LSD, based on minimizing the total
least square error between a given semimetric set of distances and the computed metric distances.
Least square error approximation is intuitive because the error of every distance contributes to the
total error of the metric approximation instead of only the maximum expansion and contraction as
in distortion case.

The LSD algorithm is defined as a quadratic program below, where S = {s1, . . . , s(n2)} is the

given set of semimetric distances between each pair of n items, and M = {m1, . . . ,m(n2)
} is corre-

sponding set of metric distances, where for all i, si and di represent distances between the same
pair of proteins. Let I = {1, . . . ,

(
n
2

)
} be the set of indices of distances.

To find a good approximation to the distances in S we seek values for the {mi} variables to

minimize
∑
i∈I

(si −mi)
2.

We require that the mi values satisfy the following constraints for all i, j, k ∈ I that should be
related by the triangle inequality:

mi +mj −mk ≥ 0 (12)

mi +mk −mj ≥ 0 (13)

mk +mj −mi ≥ 0 (14)

The objective function can be written as 1/2xTQx+ cTx where n× n matrix Q is symmetric, and
c is any n×1 vector. In our case, the matrix Q is positive definite and if the problem has a feasible
solution then the global minimizer is unique. In this case, the problem can be solved by interior
point methods in polynomial time [28] and the problem is not NP-hard as in the general case [32].
This is important since it turns the problem into a practical one. We implemented and ran the
problem in CGAL [8].

2.4 Metrics and Semimetrics

We test 4 different distance measures between protein functions:

1. dSP(x, y) = the shortest path distance in the GO DAG between x and y divided by diameter
of GO. This is a metric and intuitively simple.
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2. dLCA(x, y) = (b+ c)/(2a+ b+ c), where a is shortest path distance from the root of Ontology
to the lowest common ancestor u of x and y and b is the shortest distance from x to the u and
c is the shortest distance from y to u. The LCA distance measure does not satisfy triangle
inequality and is only a semimetric.

3. dLin(x, y) = (log Pr(x) + log Pr(y))/(2 log Pr(lca(x, y))), where Pr(x) is the empirical proba-
bility that a protein is annotated with x, and lca(x,y) is the LCA of x and y. This is defined
in Lin [38] as a similarity measure and we take its reciprocal as a distance. It is similar to
the LCA distance above but uses the probabilities in each annotation instead of distances.
It has mostly been used in NLP applications Budanitsky and Hirst [7], Lin [39]. However, it
has recently been used in other applications of Gene Ontology distances [14, 43] and became
useful. It is a semimetric.

4. dKB(x, y) =
∑

p1∈Px

∑
p2inPy

sp(x, y)/(diameter · |Px| · |Py|), where Px and Py are sets of

proteins in the training set annotated with x and y respectively, sp(x, y) is the shortest path
distance between x and y, diameter is the diameter of network.

We also consider the combination of the structure-based dSP, dLCA, and dLin with the knowledge-
based dKB using the formula:

dcomb(x, y) = (1− α)d(x, y) + αdKB(x, y) , (15)

where α is a weight of contribution of training set estimations. For α < 1, none of the combined
distances are metric (but are semimetric).

When the distance is not a metric (and in almost none of the tested cases is it a metric), we first
run the LSD metric approximation algorithm (Section 2.3) to obtain a closer metric and then run
Metric Labeling on those metric distances. When it is a metric, we just run Metric Labeling.

In addition, the assignment costs c(u, i) of assigning label i to node u is chosen either to be
uniformly 1 or according to the density of a label in a particular region of the graph as follows:
We estimated for each protein p and label i cost c(p, i) = np/npinp = 1/npi where np and npi are
number of neighbors of p and number of neighbors of p in the training set that have function i
respectively. In the case where p has no neighbors with function i, c(p, i) = 2.

2.5 Network Data

We tested our algorithm on the protein-protein interaction (PPI) networks of 7 species obtained
from BIOGRID [46]: S. cerevisiae, C. elegans, D. melanogaster, A. thaliana,M. musculus, H. sapi-
ens, and S. pombe. We used all physical interactions in BIOGRID. Duplicate edges were counted as
single edges. We consider only the largest connected component. We used GO annotations down-
loaded from the Gene Ontology as our true annotations. For S. cerevisiae there were 5757 proteins
total and 5748 proteins in the largest connected component, of which 5512 had some annotation.
There were 54717 interactions in the largest connected component.

For S. cerevisiae, we also considered an integrated network derived from several data sources,
including gene expression [17], protein localization [24], protein complexes [18, 23], and protein
interaction [46]. We used protein complex dataset by assigning binary interactions between any
two proteins participating in the same complex, yielding 49313 interactions. For gene expression
data, we assigned binary interactions between genes whose correlation in Gasch et al. [17] is greater
than 0.8 or smaller than −0.8. We assigned binary interactions between any proteins that are
annotated to the same location in Huh et al. [24].

We combined these data sources into one network by using Noisy-Or with their reliability
scores, where the interaction score between A and B is taken to be Score(A,B) =

∏
i∈E(1 − ri).
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The reliability ri of each source i was estimated by ri = log Pr(L|i)/(1−Pr(L|i))
Pr(L)/(1−Pr(L)) , where Pr(L | i) is the

probability that the annotation set links the proteins, given they are linked by experiment i and
Pr(L) is the probability of edges being linked in the annotation set.

2.6 Comparison to Other Methods

We run algorithms on Mac which has 2 GHz Intel Core 2 Duo processor and 2 Gb memory.
The Metric Labeling algorithm took approximately 15 minutes to run. We compared Metric
Labeling predictions with several well-known direct function prediction methods such as:

Majority: Each protein is annotated with the function that occurs most often among its neighbors
as described in Schwikowski et al. [44]. The main disadvantage of this method is that full
topology of network is not considered. This runs in < 5 seconds on yeast network.

Neighborhood: For each protein, we consider all other proteins within a radius r = 2 as described
in Hishigaki et al. [22] and a χ2-test is used determine if each function is overrepresented. We
implemented this in Python, and it runs less than 5 seconds on yeast network.

GenMultiCut: This algorithm is described in Vazquez et al. [48] and Karaoz et al. [27]. It tries to
cluster the network by minimizing the number of edges between clusters. This algorithm is a
simpler version of our algorithm in which distance between two functions are either 1 (if they
are not same) or 0 (if they are equal). Hence, it cannot take the relations among functions
into account. We followed the same approach by [40] and run the ILP formulation 50 times
each time perturbing the weights by a very small offset drawing from uniform distribution
on (−wmax10−5, wmax10−5) where wmax is the maximum edge weight in the graph. Then
probability of assigning a function to a protein will be the fraction of number of annotations
of this protein with that function. We implemented this by using MathProg and GLPK,
taking less than 1 minute on yeast.

FunctionalFlow: Each function is independently flowed through the whole network according to
an update rule and each node is assigned to functions depending on the amount of flow it
gets [40]. We re-implemented this method, and it runs less than 2 minutes on yeast network.

MRF: This method is from Lee et al. [35]. It is based on kernel logistic regression which is
the improvement over previous MRF models [13, 33]. This method also tries to exploit the
relation between different functions by identifying a set of functions that are correlated with
the function of interest. However, it doesn’t use the structure of GO when estimating the
correlation. This approach takes less than 5 minutes to run on yeast network. We modified
code provided by the authors to work on our data sets.

We also compare LSD with a recent approach for MAP Estimation under a semimetric:

Semimetric MAP Estimation Algorithm: This algorithm from Kumar and Koller [34] tries
to approximate a given semimetric distance function using a mixture of r-hierarchically well-
separated tree (r-HST) metrics [3, 15]. Then, it solves each resulting r-HST metric labeling
problem. We followed the same approach as in GenMultiCut, run the formulation 50 times
by perturbing the edges and assign the fraction of number of annotations of this protein with
that function as probability of annotating this protein with that function. We modified code
provided by the authors to work on our data sets. It ran in less than a 1 minute on yeast.

2.7 Evaluating Performance

We use fivefold cross-validation to compare the predictive performance of the algorithms. We
divided the set of annotations into 5 equal parts and then tried to predict functions for one part
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by using GO and remaining 80% of the total annotations as our training set. The dKB distance
is computed using only the remaining 80% of annotated proteins each time. All performance
measurements are the average of the 5 runs. Each method described in Section 2.6 yields a score,
and we assess performance at different false positive rates by varying the score thresholds from 0
to 1 by 0.05 increments.

We varied the number of considered functions from 90 to 300. We used the functions in Kourm-
petis et al. [31] as our 90 functions. We extended this set to 150 and 300 elements by randomly
choosing from among the functions seen in the network annotations. For each of these collec-
tions of functions, we report standard performance measures for classification problems: sensitivity
(#TP/(#TP + #FP)) and false-positive rate (#FP/(#FP + #TN)), counting each annotation
separately as a prediction. We show the prediction results by ROC Curve Analysis [21].

3. Results

3.1 Function Prediction in Yeast Using a PPI Network

Predictive performance on the yeast PPI network is shown in Figure 1. The curves show that
Metric Labeling combined with our LSD metric approximation algorithm performs better than
the other tested algorithms with various number of elements in ontology. Metric Labeling is
more accurate than GenMultiCut in every case since GenMultiCut ignores the effect of distances
between functions. FunctionalFlow also does not perform as well as Metric Labeling, which
again may be due to its independence assumption between functions. When the number of terms
of considered in the ontology increases (Figures 1(b) and (c)) and the functions become more
detailed, and the performance of all algorithms decreases but other algorithms are affected more
than the Metric Labeling-based approaches.

Metric Labeling also outperforms the MRF-based algorithm [13]. This may be because
the correlation estimations between functions using in that approach depend solely on training
data whereas our distances are estimated from both the training set and the structure of the GO
DAG. This indicates that, while the Gene Ontology is an imperfect, incomplete, manually edited
resource, the distances between annotations in the ontology do contain useful information that can
be exploited to make more accurate predictions.

Among various distance heuristics we used, the LCA and Lin distances are better in general since
they take the lowest common ancestor into account. Typically, dLin performs slightly better than
the dLCA distance but they both perform better than the dSP metric. This further indicates that
lowest common ancestor is a good distance estimator when there are hierarchical relations among
points as shown previously in WordNet [16]. This also echos results in several other papers [7, 39, 42]
in terms of showing effectiveness of lowest common ancestor as a measure between ontology terms.
In addition, in almost all cases the nonuniform assignment costs performs slightly better than
uniform assignment costs, although the effect is not large, and if nonuniform assignment costs are
not available, uniform assignment costs can be nearly as effective.

Running the LSD minimization for semimetrics and then running Metric Labeling performs
better than Semimetric MAP Estimation algorithm [34] on most of the cases which shows optimizing
least square error, rather than the classical distortion, for metric approximation is effective in the
protein function prediction application.

3.2 Tradeoff Between GO-distances and Network Distances

We also investigate how performance varies as the tradeoff between a distance computed from
the GO structure (dSP, dLCA, dLin) and a distance computed from proximity in the network (dKB) is
varied. Figure 1(d) shows the performance of Metric Labeling with LSD metric approximation
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Figure 1: Performance of various algorithms on yeast considering (a) 90 (b) 150, or (c) 300 ontology terms. SemiMap
indicates the semimetric-to-metric conversation algorithm by Kumar and Koller [34] is run; LSD means we first run
our LSD minimization algorithm and then Metric Labeling. Uni indicates the assignment costs of Metric
Labeling are uniformly 1 except for known annotations and Nonuni means assignment costs are nonuniform as
described in Section 2.4. Shortest, LCA, Lin indicate the different distances functions in Section 2.4. The trade-
off α between the GO-based distance and the training distance (Equation (15)) is either 0.1 or 0.3 as indicated.
(d) Performance of the dLCA distance combined with the dKB distance with various α using the LSD algorithm.

and the LCA distance for different tradeoffs α between the GO-based structural distance (dLCA)
and the trained distances dKB as described in Equation (15). In almost all cases, distances based
solely on GO performs better than using only dKB but using estimations both from training set
and Gene Ontology structure performs better than using either one alone.

Combining the Gene Ontology knowledge with training set estimations using low values of α
(α = 0.1 or α = 0.3) achieves the best performance by a slight margin. After the initial benefit of
using some of the dKB distances, the performance starts to decrease as the weight α is increased.
This may mean that dKB is most effective when it operates as a tie-breaker between terms that have
the same GO distances. (The dependence on α of the performance of the other GO-based distances
dSP, dLin is similar.) Hence, we show only the results for α = 0.1 and α = 0.3 in Figures 1(a-c).
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3.3 Robustness on the Yeast PPI Network

Metric Labeling combined with LSD metric approximation is more robust to noise in both
misannotations and edge removal. We tested for robustness of the predicted results in two ways.
First, we removed various percentages of edges randomly from the PPI network and re-run our
algorithm. Performance clearly decreased but even when 50% and 40% of the PPI edges are
removed on 90 and 150 element ontologies respectively a Metric Labeling approach performs as
well as other algorithms run on the true PPI network. The fewer elements the ontology has, the more
robust it is in terms of edge removal. The Lin and LCA distance measures again outperform shortest
path distance and running LSD minimization for semimetrics and then Metric Labeling does
better than using the Semi-Metric MAP Estimation algorithm [34]. We believe LSD minimization
algorithm may handle the noise in the data better than other methods during its error minimization.

Secondly, we also tested robustness by misannotating various percentages of protein annotations
and then running our algorithm. Performance even when 30% of the proteins are misannotated on
both 90 and 150 element ontologies is still comparable with its performance with the true labels,
and it is not worse than other algorithms on the true labels. However, in the case of misannotations,
combining GO knowledge with slight training set estimations (α = 0.1 or α = 0.3) does not perform
the best anymore. Rather, the GO structure-based distances in isolation perform the best.

3.4 Performance on Other Networks

When we created an integrated networks from multiple sources as described in Section 2.5, the
performance increases (last curve in Figure 1). This shows that the Metric Labeling approach
is also useful on relational data other than PPI networks. We also tested our algorithm on several
species. Among those species, performance strongly depends on how complete PPI network is, with
sparser networks generally exhibiting worse performance. Again, the Metric Labeling approach
performs competitively with existing methods. Due to space limitations, the complete results for
the 7 considered species are available at http://www.cs.umd.edu/~esefer/metriclabeling.

4. Conclusions

We show that GO structural information can be exploited to achieve better protein function
prediction. We also show that the clean, combinatorial problem of Metric Labeling can exploit
these distances and produce accurate predictions in a reasonable amount of computational time.

Our novel LSD metric approximation algorithm combined with Metric Labeling performs
better than the semimetric MAP estimation algorithm in most cases. This is interesting since
distortion defined as in Section 1 has nearly always been used as the performance measure for
metric embeddings. However, as mentioned, distortion doesn’t consider the distribution of the
error on all points. Its minimization considers just the minimization of the boundary cases (of
maximum contraction and expansion). LSD minimization instead tries to minimize the total least
square error which makes sense both intuitively and experimentally as we have seen on protein
function prediction. Its effectiveness on different application domains is an open question, but the
LSD approach is likely to be useful for the common problem of converting a set of heuristic distances
into a metric for subsequent processing with an algorithm (such as that for Metric Labeling)
that assume a metric.

In addition, the LSD metric approximation is completely independent of Metric Labeling.
Either of these algorithms can be changed without affecting the other. However, this is not the
case for Semimetric MAP Estimation algorithm, for which the two phases of metric estimation and
prediction are not independent and not easy to modify.
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