
ConfViz: Supportive Configuration Visualization
for Guaranteed Coverage Analysis

Angela Song-Ie Noh

Department of Computer Science, University of Maryland
College Park, USA 20742

angela@cs.umd.edu

Abstract. Current software has many combinations of
configurations to maintain the flexibility in extensions,
modifications and supportive functions for software testing.
However it is hard to explore all combinations of configuration
settings followed by the increase of number of configuration
options. Otter provides a symbolic evaluation for efficiently
covering all these options by removing redundant or unnecessary
combinations of settings. However it still maintains some
limitations. It does not provide the overview of configuration
options and its possible combinations since it is just showing the
analysed results into the list view. Furthermore it is hard to glance
the relationship between a list of relevant files and a configuration
setting for a certain configuration combination setting. For certain
lines of a code, it does not show the overview of strongly related
combinations of configuration settings. All these results is possible
to be found, but still need to be searched from the text output of
Otter manually. To supplement those limitations, ConfViz provides
the overview of such relationships by easy interaction. It displays
the relevance of configuration options with files and lines of each
file. It also shows the relationship between certain configuration
settings and files. For each line, it provides the view representing
the relationship between a set of combinations of configuration
settings. This tool is tested on one configurable software system,
‘vsftpd,’ and shows well interaction of those features. Moreover it
shows the tremendous decrease in scrutinizing a number of
configuration combinations. Finally it will significantly help the
configuration interaction testing as well as the understanding of
software system behaviour.

1. INTRODUCTION

The beauty of testing is found not in the effort but in the
efficiency. Knowing what should be tested is beautiful, and

knowing what is being tested is beautiful.

 - Murali Nandigama,
Software engineer in Risk analysis, Mozilla

In software testing, knowing what to be tested in

completeness manner is the most important objective. As a
measure of testing completeness, code coverage is
considered to be the most important factor of it. While

analysing the code coverage, it can find a dead code that is
obsolete, which needs to be removed or to be added to
another test suites to increase the code coverage. When
modification of a program is done, this analysis helps
finding appropriate test cases. If there is a part that is not
exercised by a test suite this analysis helps find the
designated part and make another test suite cover that part.

Today’s software includes lots of configuration options.
Thus if we use it wisely its analysis can help increase the
code coverage. Current research on configuration analysis
has following goals; one is to help understanding of program
behaviour. Since there exist the lists of configuration
variables with different settings, we can change its values
and see how modification in a program – for example a
change in a single source code; allows the partial testing for
small part of a program. Next it helps the understanding of
a correlation between some parts of the codes in certain files
and its related configuration settings. This helps generating
proper test cases as well as tracking bugs in a right spot.

Due to tremendous increase in configuration spaces
current strategies focuses on sampling out the representative
groups of configuration settings that covers the whole
program instead of searching over the whole configuration
lists. Combinatorial testing uses a t-way covering array so
as to acquire good line coverage with the least amount of
configuration settings [1]. However it still does not have
commensurate paths and fault coverages [2, 3]. Besides it
yet does not cover all possible combinations of configuration
settings. It even omits some configuration settings that
should be necessarily covered.

Hence to supplement this weakness, Otter evaluates every
possible branch with all possible configuration settings by
marking program values as symbolic. It updates the path
condition with execution under certain assignment, and it
explorers all the paths until it is reachable. Then it creates
possible configuration variable list. Otter projects all runs
into four types of structural coverage. By this run, a partial
guaranteed setting of configuration options is defined. Since
the run covers all the lines, blocks, edge and condition, its
partial settings are specified by those components [4].

Although this was developed for better interactions
among each configuration option, it does not show the
overview of relationship between relevant file lists and
combination of configuration settings. It instead displays
the analysed results of configurations for each file, which
makes user hard to analyse and interact with different files
with various different settings of configurations.

Thus this paper presents the visualization tool supports
guaranteed coverage analysis by Otter. It not only shows the
overview of configuration option relevance but also provides
the relationship sketch between certain configuration settings
and files. For better scrutiny in detail, it also presents the
line numbers of each related code files associated with
certain combination of configuration settings.

The remainder of this paper is composed as follows.
Chapter 2 describes the process support for three kinds of
evaluators. Chapter 3 sketches the overview of ConfViz tool
using an example program and Chapter 4 describes the
experiments. Related works are discussed in Chapter 5 and I
conclude in Chapter 6.

2. PROCESS SUPPORT FOR EVALUATORS

ConfViz assumes that it is associated with Otter [5, 6].

Thus after the symbolic execution for guaranteed coverage,
there are several outputs regarding with configuration
analysis. Among those, our tool uses two of it. One is the
list of configuration variables and the other is the line-by-
line statement in a code analysis associating with
configuration settings.

Fig. 1. System overview of ConfViz system

For analysing those two outputs this system creates three

tables; a symbolic table, a condition table and a file table, as
described in Fig.1. A Symbolic_table is a list of

configuration options and possible setting values for those.
One configuration variable will have multiple possible
values as an array and the first element of an array is set to a
currently selected value. Its format will be stored in a
following format. It firstly stores the configuration option
and currently selected value. It then stores all possible
values that can be assigned to that specified configuration
variable. For the symbolic table for cond_a, it stores the
configuration itself and its currently selected value along
with all possible values, such as 0, 2048, 4029, and 65536.

Symbolic_table =

<cond_a, selected_val, 0, 2048, 4029, 65536>

A Condition_table is composed of a set of combinations

of condition settings. Each set will consist of multiple
configuration variables and different values will be assigned.
Here Condition_1 consists of (cond_a, 0) ! (cond_b, 1) !
(cond_c, 0). All conditional settings within same Condition
are connected with AND predicate logic.

Condition_1 = <(cond_a, 0), (cond_b, 1), (cond_c, 0)>
Condition_table =

{<(cond_a, 0), (cond_b, 1), (cond_c, 0>,
 <(cond_a, 0), (cond_d, 2048)>}

For Condition_table, it consists of multiple combinations

of Conditions. For the above example it has two sets of
Conditions in it and those two conditions are connected with
OR predicate logic. Thus Condition_table can be interpreted
as follows.

Condition_table =
 {(cond_a, 0) ! (cond_b, 1) ! (cond_c, 0)}
 V {(cond_a, 0) ! (cond_d, 2048)}.

A File_table is associating with these two tables,

Symbolic_table and Condition_table, and a list of files.
Thus it is constructed by a combination of those as the
following form. One file is associating with multiple line-
by-line statements and each line is connected to
Condition_table that is a combination of multiple
configuration settings.

File_table =

{ file_name,
 <line_num1, Condition_table_A>,
 <line_num2, Condition_table_B, Condition_C>,
<line_num3, Condition_table_A>, ... }

To efficiently evaluate and manage those, we put three

evaluators as described in Fig. 2 - a configuration evaluator,
a file relevance evaluator and a line statement relevance
evaluator – and their descriptions are briefly described.

2.1. Configuration Evaluator

The configuration evaluator initially loads a list of all
configuration variable and their possible values. It then
reads the actually used combination of configuration setting
that is hit by lines in multiple files. This information is
passed from Otter symbolic evaluator. By checking the
uniqueness of combinations of configuration settings, we can
observe how many configuration settings are actually used.
Instead of examining over all possible configuration spaces,
we can notice that only a small number of combinations of
configuration settings are used. Through this evaluation we
can check efficiency and completeness of code coverage.

2.2. File Relevance Evaluator

The file relevance evaluator checks whether specified
configuration settings may hit by any line in any files. To
check the relevance of a specified configuration setting, it
counts the number of lines that may hit by specified
configuration setting. Since counted number is in an
absolute value so it cannot be a comparable measurement to
the size of the file. Thus ConfViz system also provides the
view of checking the percentage of hit lines to the whole
number of lines in a file. Two different representations; that
is in absolute number of related lines in each file and relative
percentage associating with certain setting – provides the
view to users easily checking which file is strongly related to
such setting. When the users are interested in checking the
file relevance by file names, then they can click on Filename,
which lets sorting those alphabetically. If they are interested
in ranking for the file relevance in specified configuration
setting, then they can click on Count, then it will be ranked
by ascending or descending order.

Fig. 2. Overview of ConfViz tool: this consists of three evaluators. The left one is a configuration evaluator and the middle one is a file
relevance evaluator. And the right one is a line relevance evaluator.

2.3. Line Relevance Evaluator

Some lines in a file may be hit by certain configuration
combination settings. Thus one file will have multiple lines
to be hit and each line can have one or more lines to be hit.
For interactive understanding of this relationship, it directly
refers to File_table in the ConfViz system. When clicking
on one Filename with default configuration settings, it will
show the relationship between a file and different
combinations of configuration settings for designated file. If
modifying the configuration settings from configuration
evaluator and choosing the file from the file relevance
evaluator, then it will only show the related lines in that file
with defined configuration setting.

3. OVERVIEW OF CONFVIZ TOOL

3.1. Implementation
ConfViz is implemented in Java. The objective of this

tool is easy interaction and visualization of relevant
configuration setting and files. ConfViz consists of three
main components, configuration variables, files and the lines.
To represent those three components at a glance it has three
perspective views. As described in Fig. 2, the left panel
shows the configuration option list. Here the user can select
values for certain configuration variables. All the choices
are available by radio button, so user can choose only one
setting for each configuration option. Middle panel shows
the list of all files in a configurable program. If the file
contains any line that may be hit by selected configuration
settings chosen from the left panel, then the file relevance
evaluator passes the relevance factor of each file. Right
panel displays the actual source code file selected from the
middle panel. It actually shows which lines of selected file
are hit by specified configuration setting.

3.2. Interaction

ConfViz has five special features for better understanding
of configuration analysis and its detail will be described as
follows.

3.2.1. Actual usage of configuration variables

In practice there are a number of configuration variables
for each program. Assume there are n configuration
variables. Each variable can have equally two possible
values to be selected. The size of configuration space that

should be examined in this case will be 2n. However not all
configuration combinations are actually used for checking
the code coverage. Likewise developers do not need to test
on all combinations of configuration settings for software
testing. Configuration evaluator described in Ch. 2.1
evaluates the actual usage of configuration variables to find
out related configuration options and its settings. In this way
obsolete configuration settings can be removed from the
testing path branches. In Fig. 3, if multiple combinations of
actually used configuration settings include the certain
configuration option for at least once, then it will be
presented in black. Otherwise it will be presented in grey,
which means that developers do not need to check those
configuration variables for combinations, since it has not
been actually used. If one configuration option is selected,
then the other related configurations that can form a
combinations for Conditions, will turn into red. In this way
user can easily refer the possible combinations of
configuration settings.

Fig. 3. Actual usages of configuration variables are differed by
color; black, grey and red.

3.2.2. Relationship between configuration settings and files

As described in Fig. 4, there exist two relationships in
configuration analysis. Fig.4(a) show the related
combinations for each configuration variable. Since
configuration settings do not work alone, but works with
combination settings with other variables, one configuration
variable will have multiple related combinations with other
variables. This information is loaded from Condition_table
and shows all Conditions in it. Thus when right-clicking on
one configuration variable, then all possible combinations

Fig. 5. Sort the relevant file list by filenames and the number of
relevant lines in each file

related to selected configuration option will be displayed.
Each combination will be represented by different row.
Users can choose among possible combinations based on
their interest.

When selecting a file, multiple lines can be hit by one
specified setting. At the same time other possible
combinations of settings can also hit one line. To help
understanding of this relationship, when users can move the
mouse over on certain line number of a file. Then all of its
possible combinations of configuration settings will be
displayed. This function is well described in Fig.4.(b).

Fig. 6. Two types of configuration settings presented in different
color; blue and yellow

3.2.3. Relevance of configuration setting to a list of files

To help understanding of developers in relationship
between specified configuration settings and other
components, the user should be able to briefly overview its
relevance as a rank. Users may be interested in checking the
relevance of certain file with certain configuration setting.
In addition users may pay attention to the list of strongly
related files for certain configuration setting.

For satisfying the user interest, sorting of the relevant file
lists are available both by file name and by the number of
lines hit by specified configuration settings for each file as
Fig. 5 shows. For changing the order you can click either on
Filename or Count so that each of them may be sorted in
ascending or descending order. This sorting function helps
users understanding the relevance between certain
configuration settings and the files.

Fig. 4. (a) Upper: Related combinations of configuration settings for selected configuration variable.

(b) Down: Groups of configuration combination that may be hit by specified line number.

Fig. 7. Expand and Collapse the file line blocks

3.2.4. Two types of configuration settings
As described in Ch.2, File_table is composed of several

lines of a file and each line is associated with multiple
combinations of configuration settings. There exist two
types of configuration settings. The first type is executable
under a combination of several configuration settings. If
there exists any combination of configuration settings, the
line of a code will be displayed in blue. The second type
happens when there exists a line hitting regardless of any
option setting. In such case the combination is always
represented as true. The line with such configuration setting
will be shown in yellow. Fig. 6 shows the presentation of
those two types of configuration settings in one file.

3.2.5. Expanding and Collapsing the relevant file line blocks
When relevant lines are scattered in one file, it is hard to

see the overview of related code lines. For such case
ConfViz provides the expanding and collapsing of the
relevant file line blocks. If double clicking on the file name
of interest, only the first line of the relevant blocks will be
shown with the color. Fig. 7 shows the collapsed mode of
the file line blocks. If double clicking on the file name, user
can see the whole part of the file.

4. APPLYING THE TOOL TO THE DATA SET

The subject program for this study is vsftpd, which is one

of the widely used secure FTP daemons and all files are
written in C. It has multiple configuration options that can
be set in system configuration files or command line
parameters. Table 1 shows the subject program statistics.

TABLE I
SUBJECT PROGRAM STATISTICS

 vsftpd
Version 2.0.7
Files 77
Lines (sloccount) 4,112
Analysed Configuration Variables 49
Analysed Configuration Options
 Binary
 Integer

48

1
Possible Combinations of Conditions 248* 4 =

250
Analysed Combinations of Conditions 2,691
Distinct Combinations of Conditions 44

The total number of files, lines and analysed results are

extracted from [4]. From this table, we know that vsftpd has
77 distinct files and 250 possible combinations of conditions
to be examined. However after running Otter, it showed that
there only exist 2,691 different conditions. Since there are
redundancies in configuration combination sets, our
configuration evaluator only counts the distinct
combinations of conditions and it is only 44.

Two CS graduate students were selected as tester for this
tool. I explain the goal of this tool for 15 minutes and
received feedback on the usability and interaction design. I
found out that this tool is superior for seeing the overview of
the relevant files and individual lines in it for chosen
configuration settings. In addition showing actual
combinations of configuration settings as a tooltip was
useful for choosing configuration options. However the total
number of unique configuration options and possible
combinations of configuration settings are not available, so
this information should be displayed in a certain way.
Expanding and collapsing the file line blocks is useful for
seeing the overview, but after double clicking on the file
name, whole parts of the source code is displayed instead of
only showing that selected file line blocks. Thus this part
should be modified. Sorting by the count is good for
checking the relevant files, but there should also exist the

sorting by relevant percentages. Sometimes this feature can
help user more in debugging.

5. RELATED WORK

Symbolic Evaluation. Configuration options affecting
software runtime behavior is hard to be distinguished easily.
One simple way to test configuration’s effect is searching
through code for each configuration options but it is not
efficient. A symbolic evaluator, Otter [5, 6], takes unknown
values, which may take on any values and tracks these
values through the program. When these values determine
the path condition, the program forks the execution and
marks them as symbolic values. By repeating this process
Otter can create all possible paths through the whole
program based on these symbolic values. This path
condition result can be represented in a tree structure, which
is called as an execution tree.

These symbolic values are useful for executing a set of
test cases. Single predicate with other arbitrary choices of
values can even cover one test case in a branch. Thus
showing the relationship between configuration options and
its value in an interactive view can strongly help analyzing
the runtime behavior.

The output from Otter is only represented as a list. It
only has the list of each file name, line numbers and its
corresponding configuration option settings, which forbids
the easy interaction of changes between configuration
options and related files in a program.

This study emphasizes the interaction of configuration
settings, specified values and related files. By representing
those different components in different panels, user can
easily interact with desired settings and study its effect when
the setting has been changed.

Software Visualization Tools. Software visualization is a
method for graphically representing software’s behavior,
structure, execution and its evolution [7]. Before visualizing
the task, it initially should decide the purpose of
visualization task; in detail we should clarify whether this
software is for showing the results of program analysis,
software architecture, dynamic data acquisition, and
inspection on program states or debugging. After clarifying
the purpose of visualization, it can then work out how to
present those.

Source Navigator [8] shows the related list of files with
selection followed by wildcards. It also highlights different
variables by different colors. It displays referenced
functions by tree structure so that users can easily

understand the overall structure. Even though the tree
structure shows the overview of its components in hierarchy
it is not applicable for showing the overview when changing
the relationship of configurations and source code itself. For
example if there exist different combinations of
configuration settings and lines in a code, it is hard to track it
down.

Goose [9] extracts the entities and relationship of meta-
model from source code in C/C++ and Java. Since it shows
the close interaction and relationship among configurations
in a graph-based view, the lines representing their
relationship can be tangled when their relationship becomes
more complex. Their connected edges can be overlapped in
such case, so it may be hard to distinguish between them.

In general graph structure distracts the user interpretation,
thus this study does not take this representation. Instead this
paper takes the idea of showing the list with tree structure.
When showing the relevant configuration combinations, the
configuration’s value interacts with the selected file
intimately. When the configuration is set, related files list is
showed up. When mouse over each line of the source code,
its related configuration combination is shown up as a tool
tip. Since each component, such as a configuration list, a
file list and an actual selected source code, are represented in
a different panel in the window, their relevance is
represented clearly.

6. CONCLUSION AND FUTURE WORKS

This study arises from configuration analysis for

improving the code coverage in software testing. As the size
of configuration spaces grows it is hard to cover all spaces
because of its combinatorial problem. To minimize the
combination of configurations with improved code coverage,
current study uses a t-way covering array [10, 11]. However
it still does not cover all cases and even misses some cases
that should be covered.

To overcome this current issue, symbolic execution
checks all possible reachable program paths with arbitrary
assignments. Otter is one of the systems analyzing the
system runtime behavior as configuration setting changes. It
yet does not tell the overview picture of relationship among
configuration settings, files and lines of the code.

As a supportive tool, ConfViz visualizes these tasks. It
provides the overview of relevance and relationship between
certain configuration settings, files, and lines. Moreover this
tool removes the obsolete combinations of configuration
settings and omits the redundant combination sets. I expect

this will help developers’ effort to scrutinizing all
combinations of configuration settings.

All relevancies are represented in three different panels,
but detail information is not shown, such as the total number
of unique combinations of configuration settings and distinct
configuration options are not shown. Tooltip is currently
used to show the possible combinations for one setting, or to
show the setting for one line in the file, but when it becomes
long, it shows the inferior readability. Thus given the ability
to continue developing this tool, the status panel that shows
the detail information can be added at the bottom. In that
way user need not to worry about the long lines of the tooltip.

Current sorting of the files are only based on filenames in
alphabetical order and counts in ascending or descending
order. However to diagnose the relevance correctly the
sorting of percentage should be added.

Expanding and collapsing the related code blocks are
good feature to see the overview in one file, but this feature
should be applicable not only to the whole file, but also to
the code line blocks. In that way user can easily interact
between code lines blocks and the whole code with checking
the relevancy.

For user interaction perspective, the user usually starts
everything from the left panel to the right one. It initially
selects the configuration settings, selects the relevant file and
then sees the detail view inside the file. However user’s
workflow can start from the right panel to the left one or
from the middle panel to the left one. Our tool is based on
the common workflow, but still not fully supportive for the
other workflow. If I can continue the research on this, the
feature that allows user to select one file and checks all
possible sets of combinations for configuration options and
all related lines should be added. In such case, it is hard to
remain the left panel as the current view, effective
presentation of all possible combinations should be added
further.

Moreover this system is now only tested on vsftpd. Later
on, if it is possible, this can be tested on other configurable
system and proves its efficiency with some usability testing.

ACKNOWLEDGMENT
I wish to thank Charles Song for helping me to get output

files of Otter, a symbolic evaluator.

REFERENCES

[1] M. B. Cohen, J. Snyder and G. Rothermel. Testing across
configurations: implications for combinatorial testing, Workshop on
advances in model-based software tesing(A-MOST), Raleigh, North
Carolina, pp. 1-9, 2006

[2] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.Patton. The
AETG system: an approach to testingbased on combinatorial design.
TSE, 23(7):437, 44, 1997

[3] V. Ganesh and D. L. Dill. A decision procedure forbit-vectors and

arrays. In CAV, July 2007

[4] ElnatanReisner, Charles Song, Kin-Keung Ma, Jeffrey S. Foster,
Adam Porter. ‘Using Symbolic Evaluation to Understand Behavior
in Configurable Software Systems’, ICSE 2010

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
EXE: automatically generating inputs of death, CCS, pp. 322-335,
2006

[6] P. Godefroid, N. Klarlund, and K.Sn. DART: directed automated
random testing, PLDI, pp 213-223, 2005

[7] Stephan Diehl, Software visualization; visualizing the structure,
behavior and evolution of software, Springer, 2007

[8] Source Navigator Documentation,
http://sourcenav.sourceforge.net/online-docs/index.html

[9] Oliver Ciupke. Automatic detection of design problems in object-

oriented reengineering. In technology of object-oriented languages
and systems - TOOLS 30, pages 18-32, Santa Barbara, CA, August
1999

[10] C. Yilmaz, M. B. Cohen and A. Porter. Covering arrays for efficient

fault characterization in complex configuration spaces, IEEE
Transaction on Software Engineering, 31(1), pp. 20-34, 2006

[11] S. Fouche, M. B. Cohen and A. Porter. Incremental covering array

failure characterization in large configuration spaces, international
symposium on software testing and analysis (ISSTA), pp. 177-187,
2009

