
Comparing the Efficiency of Two Clustering Techniques
A Case-Study Using Tweets

Submitted as part of Masters of Science program requirement

At University of Maryland
 By

Srividya Ramaswamy

Introduction:

Clustering is the method of analyzing and organizing data such that data which share similar
characteristics are grouped together. Clustering is used in various fields including Data Mining [19], [20],
[21] and Machine Learning [28], [29], [30]. Much research has been done in the past to efficiently cluster
data. Various algorithms and methods have been devised for the same. Hierarchical clustering [22], [23],
partitional clustering [24], nearest neighbor clustering [26], [27], fuzzy clustering [25] are some popular
techniques used for clustering [6]. This paper conducts a survey of two different methods of clustering.
While both the algorithms are basically hierarchical in nature, the difference comes in their
implementation. The first algorithm incorporates techniques from association rule problems [16]. On
the other hand, the second one incorporates techniques from partitional clustering methods [31], [32].
This paper provides a summary of the implementation of both the algorithms and does a comparison of
their behavior.

Clustering:

Clustering is a multi-step process [6]. Given two elements, we have to first define what we mean when
we say “they are similar”. This would enable us to decide if these elements should belong to the same
cluster or not. Next, we have to define a “distance” function which helps us identify how close any two
elements are to each other. Thus two elements whose distance from each other is very small (say less
than some alpha > 0) would be put in the same cluster. A common distance function used for numeric
data is the Euclidean distance [34]. For example, in a 1-dimensional space, the Euclidean distance
between two points x and y is |x-y|. One of the common distance measures for text is Levelshtein
distance [35]. The main difference between the algorithms discussed in this paper is the choice of
distance function. We will discuss this in detail in later sections.

The final step is to perform the actual clustering process by using any of the various existing algorithms.
Numerous techniques have been devised to efficiently cluster data. The algorithms discussed in this
paper are Hierarchical in nature. Hierarchical clustering algorithms fall into one of the following two
categories - We could start with classifying everything as a single large cluster and then systematically
break it down into smaller clusters based on the distance [23], [33]. Alternatively we could start with
having many clusters and then progressively merge them based on their distances [23], [33]. The
method used varies on the application and the type of data. Both the algorithms used here are of the
second kind. We start with clusters having one element each and then progressively build larger
clusters.

Twitter:

Twitter is an information network that lets you know “what is happening now”. In other words, Twitter
is a micro-blogging service which allows its users to read and write messages which are called Tweets.
Every minute thousands of people write about what’s new in their lives in the form of tweets. Twitter
recently changed its motto from "What are you doing?" to "What's happening?” and this certainly
increased its application in various other fields ranging from traffic updates to emergency alerts [3], [2].
Obviously since the volume of data flowing into Twitter is huge it could be used put to use in various
interesting and important research projects including sentiment analysis [7]. Data Wrangling uses
Twitter data for their ‘R-project’ *40+. Jennifer Golbeck et al have done some research on the usage of
Twitter by the U.S. Congress [42]. The Enterprise Data World Conference; Business Intelligence, Data
Mining & Machine Learning; The Database Journal are some of the data miners of Twitter [39]. Realizing
the value of information stored in Twitter in the form of Tweets, the Library of Congress is archiving now
all the Tweets [36]. However the problem with Twitter is that the tweets are neither categorized nor
prioritized based on user preference. Whenever a search is run a whole chunk of data is thrown at us
with no classification which makes it difficult for us to derive anything useful from it. This is where
clustering fits in. The algorithms presented here help group the tweets into clusters which help the user
parse the results better. When a search keyword is entered, only clusters containing that keyword need
to be returned.

Related Work:

One common complaint that users of Twitter clients have is its lack of clustering [8]. A few attempts
have been made in the recent past to extract data from Twitter and use it for data mining purposes [9].
Some have tried to organize the tweets in a more readable format [10]. One such interesting site is
www.TopicScoop.com which extracts all the relevant tweets based on a search keyword and separates
them into different categories. It also indicates which topics are popular amongst other users. In
addition we are provided with the option of filtering data based on topics of interest [10].

Various studies have been conducted using Twitter data. Earlier in June 2009, Heil and Piskorsi [11] tried
to analyze the usage of Twitter and came up an estimate of the number of tweets an average user
makes every day. They also tried to analyze the number of male and female followers for men and
women.

There are various Twitter research tools which are available including TweetStats, Trendrr, Tweetmeme,
Twitturly, WeFollow, Twellow, and Xefer [12]. TweetStats gives an account of your usage of Twitter.
Trendrr is a very interesting tool which gives a popularity trend chart based on a keyword search. As the
name stands, WeFollow and Twellow keep track of Twitter users and categorize them based on various
categories.

One notable project on Twitter is that by Kalafatis [9] who recently tried to analyze the thoughts of
thousands of Twitter users. He conducted an interesting experiment where he extracted all the
posts/tweets which contained the phrase “I don’t want to” and after some processing came up with a
list of activities that Twitter users didn’t want to engage in. Obviously the activity that topped the list
was going to school/work the next day! Of course, Kalafatis had to do a lot of processing before he could
come up this information. He first had to analyze the data, discarded useless information, group

relevant information them into clusters and then finally assess the output. However, he gave a new
dimension to the usage of Twitter data. Without any doubt more research work in this area can be
expected to be performed in the future considering the importance Twitter data is gaining. The amount
of useful information hidden beneath those cluttered tweets is innumerous and invaluable.

Goal of this paper:

The goal of this paper is to see how the choice of distance function affects the behavior of hierarchical
clustering algorithms. The original algorithm is from a paper by Ward [22]. The algorithm by Ward aims
at grouping a set into mutually exclusive subsets such that the elements in a subset are very similar to
each other. Johnson [23] performed further research about Hierarchical Clustering Schemes and
describes the above algorithm as follows:

Step 1: We are initially given k elements and consider each of them to be in k different clusters.
Step 2: Consider all the (k choose 2) different pairs of clusters and merge the two clusters

whose distance from each other is the least.
Step 3: Repeat the above step until we get one large cluster.

The above algorithm is certainly the starting point for the algorithm used in this study. However it
cannot be used in its entirety as we are not trying to form mutually exclusive subsets here. The purpose
of clustering tweets is to form clusters of words such that words that appear in a cluster appear in as
many same tweets as possible. For example, the words “Spain”, “Barcelona”, “Picasso” might be
common words that appear in tweets related to Spain tourism. Similarly, “Spain”, “Soccer” could be
common words that appear in tweets regarding soccer world cup. Thus, we would like to have a cluster
containing the words “Spain”, “Barcelona”, and “Picasso” and another cluster containing the words
“Spain” and “Soccer”. Even though “Spain” is a common word between the two clusters, they cannot be
combined. Also, the fact that “Spain” and “Soccer” appear in the same cluster doesn’t necessarily mean
that every cluster that contains “Spain” contains “Soccer” as well. It just means that a reasonable
amount of tweets containing “Spain” contain “Soccer”. Thus in the context of Twitter, we consider two
words to be closer if they appear in more tweets together. We do not want clusters of large size,
especially considering that each tweet itself has only 140 characters. We are looking for meaningful
clusters which are not too big in size. Thus we fix the maximum size (MAX_LENGTH) of clusters we are
allowed to form. For our purposes we modify Ward’s algorithm as follows:

Step 1: We are initially given k elements and consider each of them to be in k different clusters.
Step 2: For each element ‘e’ (among the k given elements) repeat Steps 3 and 4
Step 3: For each cluster ‘c’ repeat Step 4
Step 4: Determine if the element ‘e’ is close enough to the cluster ‘c’. If so, add ‘e’ to ‘c’
Step 5: Repeat Steps 2, 3, and 4 until we have reached the maximum size of the clusters desired

or until no more new clusters can be formed

As mentioned earlier, two words are “close” when they appear in more tweets together. In Step 4 above
we have to determine how close an element is to a cluster. For this we have to define the notion of the
distance of an element (word) from a cluster. Algorithm 1 uses concepts from association rule problems
[41], [16] – Support and Confidence. We look at the proportion of tweets containing the cluster ‘c’ that
contain the element ‘e’ as well. If the amount is reasonable, then we conclude that they are close

enough and combine them. We talk more about this in later sections.

Algorithm 2 is a slight modification of Algorithm 1. In Step 4 above, Algorithm 2 looks at the average
distance of the element ‘e’ from each element of the cluster ‘c’. If the average distance is small enough,
then we add the word/element ‘e’ to the cluster ‘c’ to form a larger cluster.

Finally, we compare the effect of each of these distance functions on the clustering algorithm. We

calculate the percentage of 1-Clusters, 2-Clusters,…, 5-Clusters formed and see if they vary for both the

algorithms for different values of Confidence level and Support level.

Preprocessing:

Thousands of tweets are added every day to Twitter and not all the information is useful. Thus it might
be helpful to come up with heuristics to efficiently and quickly cluster data.

(a) Certain words do not contribute much in forming clusters. These include some of the most

frequently occurring terms in Literature. Such words are called “Stop words” [43]. These words
include: the, to, an, a, and, for, if, then, and many more. For purposes of this study these words are
called “insignificant words”. Insignificant words are removed from the tweets before forming
clusters.

(b) Twitter has a restriction of 140 characters. Considering that the average length of an English word is

five letters [14], the maximum number of words in a tweet is expected to be 28. However, a recent
survey indicated that the average number of words in a tweet is around 15 [15]. Ignoring the
insignificant words, we could assume that the number of non-insignificant words would be around
10. Thus when 7 or more words match in two tweets (after removing the insignificant words), then
we assume that they are retweets and merge them together.

Definitions:

Before proceeding any further let us define a few terms and clarify some notations:

Insignificant Word – Stop words that do not contribute much to clusters (example: ‘of’, ‘in’, etc.)

Token – Any word that appears in a tweet and is not insignificant

Cluster – A group of tokens

K-Cluster – A cluster of size K

*t1, t2, …, tk+ – A cluster of size k containing the tokens t1, t2, …, tk. In other words, it is a K-

Cluster of the tokens t1, t2, …, tk

We say that a K-Cluster *t1, t2, …, tk+ appears/occurs in a tweet iff each of t1, t2,
…, tk appears in it.

a([t]) – total number of tweets that the cluster [t] appears in. Equivalently, total

number of tweets that the token t appears in

a(*t1, t2, …, tk+) – total number of tweets that the cluster *t1, t2, …, tk+ appears in

C(*t1, t2, …, tk+, t) – a(*t1, t2, …, tk, t])
 a(*t1, t2, …, tk+)

 Thus, 0 <= C(*t1, t2, …, tk+, t) <= 1

C(*t1, t2, …, tk+, t) determines how close t is to the cluster *t1, t2, …, tk+ by
looking at the proportion of the number of tweets that t appears in amongst the
tweets that *t1, t2, …, tk+ appears in. The higher the value of C(*t1, t2, …, tk+, t),
the closer t is to *t1, t2, …, tk+.

C’(*t1, t2, …, tk+, t) – C([t1], t) + C([t2], t) + … + C(*tk+, t)
 K

Thus, 0 <= C’(*t1, t2, …, tk+, t) <= 1

C’(*t1, t2, …, tk+, t) determines how close t is to cluster *t1, t2, …, tk+ by looking
at the average distance of t from each of the clusters [t1], [t2], …, [tk]. The
higher the value of C’(*t1, t2, …, tk+, t), the closer t is to *t1, t2, …, tk+.

C_Table_K – A table which is created to store the values of C(*t1, t2, … tk+, t),
where *t1, t2, …, tk+ is a k-Cluster and t is a token.

The following table denotes a general C_Table_K:

 token-1 token-2 … … token-n

k-Cluster-1 C(k-Cluster-1, token-1) C(k-Cluster-1, token-2) C(k-Cluster-1, token-n)

k-Cluster-2 C(k-Cluster-2, token-1) C(k-Cluster-2, token-2) C(k-Cluster-2, token-n)

.

.

.

k-Cluster-
m

C(k-Cluster-m, token-
1)

C(k-Cluster-m, token-
2)

… … C(k-Cluster-m, token-
n)

In the above table,

 token-1, token-2, …, token-n are ‘n’ different tokens

 k-Cluster-1, k-Cluster-2, …, k-Cluster-m are ‘m’ different k-Clusters. Thus each k-Cluster-j is of the
form [tj1, tj2, …, tjk].

C’_Table_K – A table which is created to store the values of C’(*t1, t2, … tk+, t),

where *t1, t2, …, tk+ is a k-Cluster and t is a token.

Parameters:

There are a few parameters that we define in this section. The values for these parameters are found
after performing several experiments. The support and confidence values are as defined in the book by
Hellerstein and Stonebraker [18].

Support level - Some tokens appear in very few tweets, while others appear in many tweets. For
example, considering a token which appears in only one tweet will not significantly affect the clustering.
Support level defines the minimum number of tweets that a cluster should occur in before it can be
considered to form bigger clusters.

Confidence level – This is the minimum value that C(*t1, t2, …, tk+, t) should have before t1, t2, … tk, t
can be clustered together.

Max Cluster – This is the maximum number of words that a cluster can have. In our case, since we treat
tweets containing 7 or more similar words to be retweets, we certainly cannot have Max Cluster to be
greater than 7. We set this value to be 5.

Recap of our two algorithms:

Algorithm-I performs clustering based on C value, i.e., a cluster *t1, t2, …, tk+ and token t are clustered if
the value of C(*t1, t2, …, tk], t) is higher than the confidence level and the cluster *t1, t2, …, tk, t] appears
in atleast support level number of tweets. C(*t1, t2, …, tk+, t) looks for the ratio of tweets that the
cluster *t1, t2, …, tk, t+ appears in amongst the tweets that [t1, t2, …, tk+ appears in.

Algorithm-II performs clustering based on C’ value, i.e., a cluster *t1, t2, …, tk+ and token t are clustered
if the value of C’(*t1, t2, …, tk+, t) is higher than the confidence level and the cluster *t1, t2, …, tk, t]
appears in atleast support level number of tweets. C’(*t1, t2, …, tk+, t) looks for the average distance of
the token t from each of the clusters [t1], [t2], …, [tk].

Example trace of the clustering algorithms:

Given a set of tweets, this section traces an example of the algorithms being used to form clusters of
tweets. The example below is used through the rest of this section to analyze each step of the
algorithms.

For illustration purposes we set Support level = 1 and Confidence level = 0.5 in our example. We will see
later why a support level of 1 makes no sense. We will reset this value to a better value at a later stage.

Tweet ID Tweet Tokens

1 I love the rain love, rain

2 Is it going to rain tomorrow? going, rain, tomorrow

3 I am going to LA tomorrow going, LA, tomorrow

4 Looks like it might rain looks, like, might, rain

Figure1: Example

Here are a few preliminary steps we perform before getting to the core of the clustering algorithm.

(a) Each tweet is given a unique id.
(b) The insignificant words are removed from the tweets and a list containing the tokens is formed.
(c) For each token a mapping between the tokens and the list of id of the tweets that the token

appears in is maintained.

The following figure shows how a token is mapped to the list of id of the tweets that it appears in:

Token Id

love 1

rain 1, 2, 4

going 2, 3

tomorrow 2, 3

LA 3

looks 4

like 4

might 4

Figure 2: Mapping between the tokens and the list of id of the tweets

Clustering is performed iteratively. We start with 1-Clusters and iteratively build clusters of larger size in
each step. More specifically, in the kth step of the iteration process, we compare the k-Clusters created
in the previous step with each of the existing tokens to see if any of them could be clustered together to
form a (k+1)-Cluster.

Note that,

C(*t1+, t2) = C’(*t1+, t2).

Thus the tables C_Table_1 and C’_Table_1 are the same.

 love rain going tomorrow LA looks Like might

[love] 1 1 0 0 0 0 0 0

[rain] 1/3 1 1/3 1/3 0 1/3 1/3 1/3

[going] 0 1/2 1 1 1/2 0 0 0

[tomorrow] 0 1/2 1 1 1/2 0 0 0

[LA] 0 0 1 1 1 0 0 0

[looks] 0 1 0 0 0 1 1 1

[like] 0 1 0 0 0 1 1 1

[might] 0 1 0 0 0 1 1 1

 The corresponding cluster and token can be clustered, i.e., C value >= Confidence level

 The corresponding token is already part of the cluster

Figure 3: C_Table_1 / C’_Table_1

Every step of Algorithm-I could be viewed as creating C_Table_K in Step k using the k-Clusters created in
the previous step. Figure 3 gives a snapshot of C_Table_1. The above table gives an idea about the
tokens which can be combined to form 2-Clusters. When the C value is greater than or equal to the
Confidence level, the corresponding cluster and token are clustered to form a new cluster. Some cells
are marked in grey. The corresponding cluster and token of such a cell is ignored as the token is already
a part of the cluster. After the first iteration, we have the following list of 2-Clusters:

[love, rain]

[going, rain]

[going, tomorrow]

[going, LA]

[tomorrow, rain]

[tomorrow, LA]

[looks, rain]

[looks, like]

[looks, might]

[like, rain]

[like, might]

[might, rain]

Figure 4: 2-Clusters formed after the first iteration

Notice that since we set the Support level to be just one, we end up with several clusters which occur in
just one tweet. When we have only one tweet in which the cluster occurs, the corresponding cells of
that cluster have only 1 or 0 as the C value in the C_Table. For example, consider the cluster [looks,
might]. In the C_Table_2 we see that all the columns are either 1 or 0 for this cluster, i.e., given any
token t, we find that C([looks,might], t) = 1 or 0. This shows that Support level has to be greater than 1.

We now reset our Support level to be 2. Thus we ignore the clusters which occur in only one tweet.
After resetting the value of Support level we are left with only one cluster [going, tomorrow]. Note that
we have set Support level to be 2 for this example only. The actual value for this parameter is found
after conducting several experiments.

In the second iteration, we try to form 3-Clusters based on the 2-Clusters formed in the previous step.
After the second iteration, we arrive at the following clusters:

[going, tomorrow, rain]

[going, tomorrow, LA]

Figure 5: Clusters formed after Step 2

The corresponding C_Table_2 is shown in Figure 6. We continue this iterative process until all the
clusters with Max_Cluster number of tokens are formed or until no more clustering could be done.
Finally, duplicate clusters are deleted. Thus we get various clusters each of varying length.

We now illustrate how Algorithm-II works for the same example. Note that Algorithm-II works in a
similar fashion as that of Algorithm-I except that we create a C’_Table_k table instead of C_Table_k table
at every step.

As in Algorithm-I, every step of Algorithm-II could be viewed as creating C’_Table_K in Step k using the k-
Clusters created in the previous step. Figure 3 gives a snapshot of C’_Table_1. It gives an idea about the
tokens which can be combined to form 2-Clusters. When the C’ value is greater than or equal to the
Confidence level, the corresponding cluster and token are clustered to form a new cluster.

For illustration purposes we have set Support level = 1 and Confidence level = 0.5. Thus, after the first
iteration the list of 2-Clusters formed would be the same as in Figure 4.

In the next iteration we look for 3-Clusters that can be formed using the 2-Clusters formed in the
previous step. For this we populate C’_Table_2 (shown in Figure 7) and then decide which elements
could be clustered further. Notice that C’_Table_2 is different from C_Table_2.

If we change the Support value to 2 as we did for Algorithm-I then the list of clusters formed would be
the same as that in Figure 5. However we continue the process for a Support value of 1 for illustration
purposes.

 love rain going tomorrow LA looks like might

[love, rain] 0 0 0 0 0 0

[going, rain] 0 1 0 0 0 0

[going, tomorrow] 0 1/2 1/2 0 0 0

[going, LA] 0 0 1 0 0 0

[tomorrow, rain] 0 1 0 0 0 0

[tomorrow, LA] 0 1 0 0 0

[looks, rain] 0 0 0 0 1 1

[looks, like] 0 1 0 0 0 1

[looks, might] 0 1 0 0 0 1

[like, rain] 0 0 0 0 1 1

[like, might] 0 1 0 0 0 1

[might, rain] 0 0 0 0 1 1

Figure 6: C_Table_2

 love rain going tomorrow LA looks like might
[love, rain] 1/6 1/6 0 1/6 1/6 1/6

[going, rain] 1/6 2/3 1/4 1/6 1/6 1/6

[going, tomorrow] 0 1/2 1/2 0 0 0

[going, LA] 0 1/4 1 0 0 0

[tomorrow, rain] 1/6 1 1/4 1/6 1/6 1/6

[tomorrow, LA] 0 1/4 1 0 0 0

[looks, rain] 1/6 1/6 1/6 0 2/3 2/3

[looks, like] 0 1 0 0 0 1

[looks, might] 0 1 0 0 0 1

[like, rain] 1/6 1/6 1/6 0 2/3 2/3

[like, might] 0 1 0 0 0 1

[might, rain] 1/6 1/6 1/6 0 2/3 2/3

 C’ value >= Confidence level

 The corresponding token is already part of the cluster

Figure 7: C’_Table_2

 The number of tweets that this cluster occurs = 1

 The tokens are already part of the cluster

The table below gives a list of clusters formed after the second iteration assuming that the Support
value is 1.

[going, rain, tomorrow]

[going, tomorrow, LA]

[looks, like, rain]

[looks, might, rain]

[like, might, rain]

Figure 8: Clusters formed after Step 2

We continue this iterative process until all the clusters with Max_Cluster number of tokens are formed
or until no more clustering could be done. Finally, duplicate clusters are deleted. Thus we get various
clusters each of varying length.

Software Implementation

Microsoft Visual C # 2008 Express Edition has been installed on a Windows 7 machine (Pentium Dual
Core, 4GB Ram) to aid in programming. SQL Management Studio 2008 has been installed and has been
used as the SQL client.

A total of 925 tweets have been used as a sample. Sample data collected contain tweets comprising of
various topics with common keywords. The above algorithms have been fully implemented using C#.
Core functionality includes – reading the tweets, tokenizing them, clustering them using the algorithm
and returning clustered output.

A simple front end GUI has been developed as part of the implementation. On the left, you would see all
the tweets read from a file. When the user clicks on the “Cluster” button, the clustering process starts
and upon completion, the clustered output of tweets is displayed in a text box in the descending order
of cluster length. Ex: Clusters of length 5 are displayed followed by clusters of length 4 followed by
clusters of length 3 and so on…

Figure 9 gives a snapshot of an execution of Algorithm-I. The results shown are for a Confidence level of
0.5 and Support level of 5. The ListBox on the left lists the various clusters formed organized according
to their length. Whenever a cluster is selected from the ListBox on the left, the corresponding Tweets
that the cluster occurs in are displayed in the TextBox on the right. In the figure, the Tweets that are
displayed on the TextBox on the right correspond to the cluster that has been selected from the ListBox
on the left.

Figure 9: Algorithm-I

Figure 10 gives a snapshot of an execution of Algorithm-II. The results shown are for a Confidence level
of 0.5 and Support level of 5. The ListBox on the left lists the various clusters formed organized
according to their length. Whenever a cluster is selected from the ListBox on the left, the corresponding
Tweets that the cluster occurs in are displayed in the TextBox on the right. In the figure, the Tweets that
are displayed on the TextBox on the right correspond to the cluster that has been selected from the
ListBox on the left.

Figure 10: Algorithm-II

Results:

Of the total clusters formed, the percentage of 1-Clusters, percentage of 2-Clusters,…, percentage of 5-

Clusters formed were compared for various values of Confidence level and Support level.

In general, the percentage of 5-Clusters decreased as the Support level value increased, i.e., as the

Support level increased, the number of larger length clusters reduced. This is due to the fact that the

newly formed clusters were required to be part of a higher number of tweets thus making it less

plausible to be clustered further.

On the other hand, as the value of Confidence level varied, it seemed to have different effects on

clusters of different length for different Support levels.

The following two graphs show how the Support Level impacts the percentage of K-Clusters formed for

both the algorithms for a Confidence level of 0.3. Of the total number of clusters formed, the

percentage of 1-Clusters, 2-Clusters, …, 5-Clusters is shown for a Support level of 3, 4, and 5.

Figure 11: Algorithm-I with Confidence level 0.3

Figure 12: Algorithm-II with Confidence level 0.3

0

10

20

30

40

50

60

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

0

10

20

30

40

50

60

70

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

The following two graphs show how the Support Level impacts the percentage of K-Clusters formed for

both the algorithms for a Confidence level of 0.4. Of the total number of clusters formed, the

percentage of 1-Clusters, 2-Clusters, …, 5-Clusters is shown for a Support level of 3, 4, and 5.

Figure 13: Algorithm-I with Confidence level 0.4

Figure 14: Algorithm-II with Confidence level 0.4

0

10

20

30

40

50

60

70

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

0

10

20

30

40

50

60

70

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

The following two graphs show how the Support Level impacts the percentage of K-Clusters formed for

both the algorithms for a Confidence level of 0.5. Of the total number of clusters formed, the

percentage of 1-Clusters, 2-Clusters, …, 5-Clusters is shown for a Support level of 3, 4, and 5.

Figure 15: Algorithm-I with Confidence level 0.5

Figure 16: Algorithm-II with Confidence level 0.5

0

10

20

30

40

50

60

70

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

0

10

20

30

40

50

60

70

80

90

1-Clusters 2-Clusters 3-Clusters 4-Clusters 5-Clusters

SL 3

SL 4

SL 5

Note that according to the construction of our algorithms, the number of 1-Clusters formed is the same

for both the algorithms irrespective of the Support level and Confidence level chosen. Thus finding the

percentage of k-Clusters gives us an idea about how the number of larger clusters grows for each value

of Confidence level and Support level. We do not want too many large clusters. Instead we would like to

have fewer clusters which are tightly packed. Thus we do not want the number of larger clusters formed

to exceed the number of 1-Clusters.

The figure below displays the percentage of k-Clusters formed for our sample data for various
Confidence level and Support level values for both the Algorithms.

Figure 17: Percentage of k-Clusters formed for various Confidence level and Support level values

Many experiments were conducted with varying values of the parameters – Confidence level and

Support level. Algorithm-II always seemed to have fewer larger clusters than Algorithm-I. The least value

of Confidence level and Support level that seemed to give reasonable results was found to be as follows

for both the algorithms for our sample data:

 Confidence Level = 0.4

 Support Level = 5

Conclusion:

A survey of two techniques of clustering was conducted. Two different distance functions were used in a
hierarchical clustering algorithm and the effect of the distance function on the algorithm was analyzed.
The percentage of 1-Clusters, 2-Clusters,…, 5-Clusters formed was calculated to see if they varied for
both the algorithms for different values of Confidence level and Support level. Since the number of 1-
Clusters formed is the same for both the algorithms irrespective of the Support level and Confidence
level chosen, finding the percentage of k-Clusters gives us an idea about how the number of larger
clusters grows for each value of Confidence level and Support level.

The algorithms presented here help group the tweets into clusters which help the user parse the results
better. Thus we do not want too many large clusters. Instead we are looking for fewer clusters that are
tightly packed. The percentage of 1-clusters formed was found to be higher for Algorithm-II than
Algorithm-I for all values of Support level and Confidence level for our sample data. The percentage of
larger clusters gradually increased for Support level 3 and 4 for both the algorithms. Although the overall
behavior was found to be similar for both the algorithms, Algorithm-II always seemed to fare better for
each of the Confidence level and Support level values for our sample data.

Future work:

In the original algorithm given by Ward, he initially considers ‘k’ different clusters each containing one of
the ‘k’ given elements. He then iteratively merges clusters based on their distance from each other.
Consider the following two variations of Ward’s algorithm:

Variation-I:
Step 1: Given ‘k’ different elements, run ‘n’ iterations of Algorithm-I
Step 2: Run Ward’s algorithm by considering the clusters formed in the above step as the initial

clusters. (Note that Ward originally considered ‘k’ different clusters each containing one
of the ‘k’ different elements as the initial clusters)

Variation-II:
Step 1: Given ‘k’ different elements, run ‘n’ iterations of Algorithm-II
Step 2: Run Ward’s algorithm by considering the clusters formed in the above step as the initial

clusters. (Note that Ward originally considered ‘k’ different clusters each containing one
of the ‘k’ different elements as the initial clusters)

In the future, it would be interesting to analyze the behavior of the above two variations of Ward’s
algorithm. Note that the number ‘n’ has not been specified. We could see how the behavior changes for
various values of ‘n’.

Acknowledgment

I owe my deepest gratitude to Dr Evan Golub for his encouragement, guidance and support which was
crucial in the completion of this paper. I would also like to thank Dr Nick Roussopoulos for his inspiration
and guidance which helped me gain a better understanding of the subject.

Finally I thank my family and friends for supporting me through the completion of the paper.

References:

 *1+ “Twitter – Wikipedia, the free encyclopedia”, Feb. 20, 2010. *Online+. Available:
http://en.wikipedia.org/wiki/Twitter. [Accessed: Feb. 23, 2010]

[2] Matt Williams, "Governments use Twitter for Emergency Alerts, Traffic Notices and More",
Government Technology, Jan. 7, 2009. [Online]. Available: http://www.govtech.com/gt/579338.
[Accessed Feb. 23, 2010]

*3+ Biz Stone, “Twitter Blog - What's Happening?”, Twitter Blog, Nov. 19, 2009. [Online] Available:
http://blog.twitter.com/2009/11/whats-happening.html. [Accessed: Feb. 23, 2010]

*4+ PearAnalytics, “Twitter Study – August 2009” *Online+ Available: http://www.pearanalytics.com/wp-
content/uploads/2009/08/Twitter-Study-August-2009.pdf. [Accessed: Feb. 23, 2010]

[5] Rashmi Sinha, “Clustering comes to Flickr”, Rashmi's Blog, Aug. 4, 2005. [Online] Available:
http://rashmisinha.com/2005/08/04/clustering-comes-to-flickr [Accessed: Feb. 23, 2010]

[6] A.K Jain, M.N.Murty and P.J.Flynn, “Data clustering: A Review”, ACM Computing Surveys, Vol. 31, No.
3, September 1999. Available:
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=346683B81CA7EEB2CD9159240DE816E2?doi
=10.1.1.18.2720&rep=rep1&type=pdf

 [7] Themos Kalafatis, “Emotions, Beliefs and Analytics”, Life Analytics Blog. [Online] Available:
http://lifeanalytics.blogspot.com/2009/01/emotions-beliefs-and-analytics.html. [Accessed: Mar. 19,
2010]

[8] Alessio Signorini, “Why Twitter Clients still lack Classification, Clustering and Ranking?”, Tech
Research and Life Blog, Feb 7, 2010. [Online] Available:
http://blog.alessiosignorini.com/2010/02/why-twitter-clients-still-lack-classification-clustering-and-
ranking/. [Accessed: Mar. 19, 2010]

[9] Themos Kalafatis, “Emotions, Beliefs and Analytics”, Life Analytics Blog. [Online] Available:
http://lifeanalytics.blogspot.com/2009/01/clustering-thoughts-of-twitter-users.html. [Accessed: Mar.
19, 2010]

*10+ Paul, “TopicScoop: Twitter Search with real-time topic clustering”, Tech Combo Blog, Sept. 28, 2009.
[Online] Available: http://techcombo.com/2009/09/28/topicscoop-twitter-search-with-real-time-topic-
clustering-123/ [Accessed: Mar. 19, 2010]

http://en.wikipedia.org/wiki/Twitter
http://www.govtech.com/gt/579338
http://blog.twitter.com/2009/11/whats-happening.html
http://www.pearanalytics.com/wp-content/uploads/2009/08/Twitter-Study-August-2009.pdf
http://www.pearanalytics.com/wp-content/uploads/2009/08/Twitter-Study-August-2009.pdf
http://rashmisinha.com/2005/08/04/clustering-comes-to-flickr
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=346683B81CA7EEB2CD9159240DE816E2?doi=10.1.1.18.2720&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=346683B81CA7EEB2CD9159240DE816E2?doi=10.1.1.18.2720&rep=rep1&type=pdf
http://lifeanalytics.blogspot.com/2009/01/emotions-beliefs-and-analytics.html
http://blog.alessiosignorini.com/2010/02/why-twitter-clients-still-lack-classification-clustering-and-ranking/
http://blog.alessiosignorini.com/2010/02/why-twitter-clients-still-lack-classification-clustering-and-ranking/
http://lifeanalytics.blogspot.com/2009/01/clustering-thoughts-of-twitter-users.html
http://techcombo.com/2009/09/28/topicscoop-twitter-search-with-real-time-topic-clustering-123/
http://techcombo.com/2009/09/28/topicscoop-twitter-search-with-real-time-topic-clustering-123/

[11] Bill Heil and Mikolaj Piskorski, ” New Twitter Research: Men Follow Men and Nobody Tweets”,
Harvard Business Review Blog, Jun 1, 2009. [Online] Available:
http://blogs.hbr.org/cs/2009/06/new_twitter_research_men_follo.html. [Accessed: Mar. 19, 2010]

*12+ Ben Parr, “5 Terrific Twitter Research Tools”, Mashtable. [Online] Available:
http://mashable.com/2009/05/03/twitter-research-tools/. [Accessed: Mar. 19, 2010]

*13+ “HubSpot’s Inbound Internet Marketing Blog”, Mar 2, 2009. [Online] Available:
http://blog.hubspot.com/blog/tabid/6307/bid/4594/Is-22-Tweets-Per-Day-the-Optimum.aspx
[Accessed: Apr 9, 2010]

*14+ “Languages by Average word length”. *Online+ Available: http://blogamundo.net/lab/wordlengths/
[Accessed: Apr 9, 2010]

*15+ “Twitter facts from the Oxford English Corpus”. *Online+ Available:
http://www.askoxford.com/pressroom/archive/twitter_facts.pdf [Accessed: Apr 9, 2010]

[16] Rakesh Agrawal, Ramakrishnan Srikant, “Fast Algorithms for Mining Association Rules”, Proceedings
of the 20th VLDB Conference Santiago, Chile, 1994

*17+ Tian Zhang, Raghu Ramakrishnan, Miron Livny, “BIRCH: An Efficient Data Clustering Method for
Very Large Databases”, ACM 1996

[18] Joseph M. Hellerstein, Michael Stonebraker, “Readings in Database Systems”, Fourth Edition

*19+ Peter Doyle and John Saunders, “Market Segmentation and Positioning in Specialized Industrial
Markets”, The Journal of Marketing, Vol. 49, No. 2 (Spring, 1985), pp. 24-32

*20+ G Punj, DW Stewart, “Cluster analysis in marketing research: review and suggestions for
application”, Journal of marketing research, 1983 - JSTOR

*21+ Y Wind, “Issues and advances in segmentation research”, Journal of Marketing Research, 1978 -
JSTOR

*22+ Ward, J. H., Jr., “Hierarchical grouping to optimize an objective function”, Journal of the American
Statistical Association, 1963, 58, 236-244.

*23+ Stephen c. Johnson, “Hierarchical clustering schemes”, Psychometrika vol 32; no. 3; Sept 1967

*24+ Weili Wu, Hui Xiong, Shashi Shekhar , “Clustering and information retrieval”, 2004

*25+ Frank Höppner , Rudolf Kruse , Frank Klawonn , Thomas Runkler, “Fuzzy Cluster Analysis: Methods
for Classification, Data Analysis and Image Recognition”, 1999

http://blogs.hbr.org/cs/2009/06/new_twitter_research_men_follo.html
http://mashable.com/2009/05/03/twitter-research-tools/
http://blog.hubspot.com/blog/tabid/6307/bid/4594/Is-22-Tweets-Per-Day-the-Optimum.aspx
http://blogamundo.net/lab/wordlengths/
http://www.askoxford.com/pressroom/archive/twitter_facts.pdf

*26+ Ulrike von Luxburg, Sébastien Bubeck, Stefanie Jegelka, Michael Kaufmann, “Nearest Neighbor
Clustering”

[27] Bubeck S., U. von Luxburg , “Nearest Neighbor Clustering: A Baseline Method for Consistent
Clustering with Arbitrary Objective Functions”, Journal of Machine Learning Research, 2009.

*28+ Peter Cheeseman, James Kelly, Matthew Self, et al., “Auto Class : A Bayesian Classification System”,
Proc. of the 5th Int’l Conf. on Machine Learning, Morgan Kaufmau, Jun. 1988.

*29+ Douglas H. Fisher, “Knowledge Acquisition via Incremental Conceptual Clustering”, Machine
Learning, 2(2), 1987

*30+ Michael Lebowitz, “Experiments with Incremental Concept Formation: UNIMEM”, Machine
Learning, 1987.

[31] MacKay, David, "Information Theory, Inference and Learning Algorithms", Cambridge University
Press, 2003.

[32] MacQueen, J. B., "Some Methods for classification and Analysis of Multivariate Observations",
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967

*33+ “Cluster analysis – Wikipedia, the free encyclopedia”, *Online+. Available:
http://en.wikipedia.org/wiki/Cluster_analysis . [Accessed: Feb. 23, 2010]

*34+ “Euclidean Distance – Wikipedia, the free encyclopedia”, *Online+. Available:
http://en.wikipedia.org/wiki/Euclidean_distance . [Accessed: Jul. 09, 2010]

*35+ “Levenshtein Distance – Wikipedia, the free encyclopedia”, *Online+. Available:
http://en.wikipedia.org/wiki/Levenshtein_distance . [Accessed: Jul. 09, 2010]

[36] "The tweets of your life, now archived at the Library of Congress", Reuters, [Online]. Available:
http://blogs.reuters.com/frontrow/2010/04/14/the-tweets-of-your-life-now-archived-at-the-library-of-
Congress/ , Apr 2010. [Accessed: Jul 2010]

[37] Girish J. Gulati, Christine B. Williams, "Communicating with Constituents in 140 Characters or Less:
Twitter and the Diffusion of Technology Innovation in the United States Congress", JEL Classification, Apr
2010

*38+ Jennifer Golbeck, “Trust and Nuanced Profile Similarity in Online Social Networks”, ACM
Transactions on the Web

[39] Sandro Saitta, "Data Miners on Twitter", Feb 2009, [Online]. Available:
http://www.dataminingblog.com/data-miners-on-twitter/ , [Accessed: Jul 2010]

[40] "R-Project", [Online]. Available: http://www.r-project.org/ , [Accessed: Jul 2010]

*41+ “Association rule learning – Wikipedia, the free encyclopedia”, *Online+. Available:
http://en.wikipedia.org/wiki/Association_rule_learning . [Accessed: Jul. 09, 2010]

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://blogs.reuters.com/frontrow/2010/04/14/the-tweets-of-your-life-now-archived-at-the-library-of-Congress/
http://blogs.reuters.com/frontrow/2010/04/14/the-tweets-of-your-life-now-archived-at-the-library-of-Congress/
http://www.dataminingblog.com/data-miners-on-twitter/
http://www.r-project.org/
http://en.wikipedia.org/wiki/Association_rule_learning

[42] Jennifer Golbeck, Justin M. Grimes, Anthony Rogers, “Twitter use by the U.S. Congress”, Journal of
the American Society for Information Science and Technology, May 2010

[43] Christopher Fox, "A stop list for general text", ACM, 1989

