
BlastReduce: High Performance Short Read Mapping with MapReduce 
Michael C. Schatz  

 
University of Maryland 

Center for Bioinformatics and Computational Biology 
mschatz@umiacs.umd.edu 

 
Abstract
Next-generation DNA sequencing machines generate
sequence data at an unprecedented rate, but traditional
single-processor sequence alignment algorithms are
struggling to keep pace with them. BlastReduce is a
new parallel read mapping algorithm optimized for
aligning sequence data from those machines to
reference genomes, for use in a variety of biological
analyses, including SNP discovery, genotyping, and
personal genomics. It is modeled after the widely used
BLAST sequence alignment algorithm, but uses the
open-source Hadoop implementation of MapReduce to
parallelize execution to multiple compute nodes. To
evaluate its performance, BlastReduce was used to map
next generation sequence data to a reference bacterial
genome in a variety of configurations. The results show
BlastReduce scales linearly for the number of
sequences processed, and with high speedup as the
number of processors increases. In a modest 24
processor configuration, BlastReduce is up to 250x
faster than BLAST executing on a single processor, and
reduced the execution time from several days to a few
minutes at the same level of sensitivity. Furthermore,
BlastReduce is fully compatible with cloud computing,
and can be easily executed on massively parallel remote
resources to meet peak demand. BlastReduce is
available open-source at:
http://www.cbcb.umd.edu/software/blastreduce/.

1. Introduction
Next-generation high-throughput DNA sequencing
technologies from 454, Illumina/Solexa, and Applied
Biosystems are changing the scale and scope of
genomics. These next generation sequencing machines
can sequence more DNA in a few days than a
traditional Sanger sequencing machine could in an
entire year, and at a significantly lower cost [1]. James
Watson’s genome was recently sequenced [2] using
technology from 454 Life Sciences in just four months,
whereas previous efforts to sequence the human
genome required several years and hundreds of
machines [3]. If this trend continues, an individual will
be able to have his or her DNA sequenced in only a few
days and perhaps for as little as $1000.

The data from the new machines consists of millions of
short sequences (25-250bp) of DNA called reads,
collected randomly from the DNA sample. After
sequencing, researchers will often align, or map, the
reads to a reference genome, to find the locations where
each read occurs in the reference sequence, allowing for
a small number of differences. This can be used, for
example, to catalog differences in one person’s genome
relative to the reference human genome, or compare the
genomes of different species. These comparisons are
used for a wide variety of biological analyses including
genotyping, gene expression, metagenomics,
comparative genomics, SNP discovery and personal
genomics. These results are of great interest since even
a single base pair difference between two genomes can
have huge impact on the health of those organisms. As
such, researchers are beginning to generate sequence
data at an incredible rate, and desperately need
inexpensive and highly scalable algorithms to analyze
their data.

One of the most widely used programs for sequence
alignment is BLAST [4]. It uses an algorithmic
technique called seed-and-extend to quickly find highly
similar alignments between sequences. During its 20
years of development, BLAST has been optimized for
fast operation, but as a single processor algorithm, is
struggling to keep pace with the volume of data
generated by next generation sequencing machines.
BlastReduce is a new parallel seed-and-extend
alignment algorithm modeled on the serial BLAST
algorithm. It is optimized for efficiently mapping reads
from next generation sequence data to reference
genomes, while allowing a small number of differences.
BlastReduce uses the open-source implementation of
MapReduce called Hadoop [5] to schedule, monitor,
and manage the parallel execution. Our results show
that even in a modest configuration of 24 processors
BlastReduce is up to 250x faster than a single processor
execution of BLAST for aligning large sets of
Illumina/Solexa reads to a bacterial genome.
Furthermore, BlastReduce can easily scale to execute
on hundreds or thousands of remote processors using
cloud computing, and thus can cut the execution time of
even the largest read mapping task from days to
minutes.

1.1 MapReduce
MapReduce [6] is the software framework invented by
and used by Google to support parallel execution of
their data intensive applications. Google uses this
framework internally to execute thousands of
MapReduce applications per day, each processing many
terabytes of data all on commodity hardware. The
framework automatically provides common services for
parallel computing, such as the partitioning the input
data, scheduling, monitoring, and inter-machine
communication necessary for remote execution. As
such, application developers for MapReduce need only
write a small number of functions relevant to their
problem domain, and the framework automatically
executes those functions for parallel processing.
Computation in MapReduce is divided into two major
phases called map and reduce, separated by an internal
grouping of the intermediate results. This two-phase
computation was developed after recognizing that many
different computations could be solved by first
computing a partial result (map phase), and then
combining those partial results into the final result
(reduce phase). The power of MapReduce is the map
and reduce functions are executed in parallel over
potentially hundreds or thousands of processors with
minimal effort by the application developer.

The first phase of computation, the map phase,
computes a set of intermediate key-value pairs from the
input data, as determined by a user-defined function.
Application developers can implement any relationship
applicable to their problem from the input including
outputting multiple pairs for a given input. For
example, if the overall computation was to count the
number of occurrences of all of the English words in a
large input text, the map function could output the key
value pair (w,1) for each word w in the input text. If the
input text is very large, many instances of the map
function could execute in parallel on different portions
of the input text.

After all of the map functions are complete, the
MapReduce framework then internally sorts the pairs so
all values with the same key are grouped together into a
single list. It also partitions the data, and creates one file
of key-value lists for each processor to be used in the
reduce phase. The application can use standard object
comparison and hash functions, or custom comparison
and partition functions based on arbitrary computations
of the key. Sorting the keys in this way is similar to
constructing a large distributed hash table indexed by
the key, with a list of values for each key. In the word
frequency computation example, the framework creates
a list of 1s for each word in the input set corresponding
to each instance of that word.

The reduce phase computes a new set of key-value
pairs from the key-value lists generated by the map
phase. These key-value pairs can serve as input for
another MapReduce cycle, or output to the user. In the
word frequency computation, the reduce function adds
together the value lists of 1s to compute the number of
occurrences of each word, and outputs the key-value
pair (w, # occurrences). Each instance of the reduce
function executes independently, so there can be as
many reduce functions executing in parallel as there are
distinct words in the input text. Since the words and the
computations are independent, the total execution time
should scale linearly with the number of processors
available, i.e. a 10 processor execution should take
1/10th the time of a 1 processor execution. In practice, it
is very difficult to achieve perfect linear speedup,
because Amdahl’s law [7] limits the maximum speedup
possible given some amount of overhead or serial
processing. For example, if an application has just 10%
non-parallelizable fixed overhead, than the maximum
possible speedup is only 10x regardless of the number
of processors used.

MapReduce uses data files for the inter-machine
communication between map and reduce functions.
This could become a severe bottleneck if a traditional
file system was used and thousands of processors
accessed to the same file at the same time. Instead,
Google developed the robust distributed Google File
System (GFS) [8] to support efficient MapReduce
execution, even with extremely large data sets. The file
system is designed to provide very high bandwidth, but
may potentially have high latency for individual
random reads and writes. This choice was deliberately
made to match the access pattern of MapReduce, which
almost exclusively requires bulk read and write access.
Files in the GFS are automatically partitioned into large
chunks, which are distributed and replicated to several
physical disks attached to the compute nodes. Metadata
and directory services are managed through a master IO
node, which stores the location of each chunk of each
file and grants access to those chunks. Furthermore,
MapReduce is data-aware and attempts to schedule
computation at the compute nodes that store the
required data whenever possible. Therefore, aggregate
IO performance can greatly exceed the performance of
an individual drive, and chunk redundancy ensures
reliability even when used with inexpensive commodity
drives with relatively high failure rates.

Hadoop and the Hadoop Distributed File System
(HDFS) [5] are an open source version of MapReduce
and the Google File System sponsored by Yahoo,
Google, IBM, Amazon, and other major vendors. Like
Google’s proprietary MapReduce framework,
applications developers need only write custom map
and reduce functions, and the Hadoop framework

automatically executes those functions in parallel.
Hadoop is implemented in Java, and is bundled with a
large number of support classes to simplify code
development. Hadoop and HDFS is used to manage
clusters with 10,000+ nodes and operating on petabytes
of data, and supports, in part, every Yahoo search result
[9].

In addition to in-house Hadoop usage, Hadoop is
quickly becoming a de-facto standard for cloud
computing. Cloud computing is a model of parallel
computation where compute resources are accessed
generically, without regard for physical location or
specific configuration. The generic nature of cloud
computing allows resources to be purchased on-
demand, such as to augment local resources for specific
large or time critical tasks. Several companies now sell
cloud compute cycles that can be accessed via Hadoop.
For example, Amazon’s Elastic Compute Cloud [10]
contains tens of thousands of processors priced at $.10
per hour per processor, and supports Hadoop with
minimal effort.

1.2 Read Mapping
After sequencing DNA the newly created reads are
often aligned or mapped to a reference genome to find
the locations where each read approximately occurs. A
read mapping algorithm reports all alignments that are
within a scoring threshold, commonly expressed as the
maximum acceptable number of differences between
the read and the reference genome (generally at most
1%-10% of the read length). The alignment algorithm
can allow just mismatches as differences, the k-
mismatch problem, or it can also consider gapped
alignments with insertions or deletions of characters,
the k-difference problem). The classical Smith-
Waterman sequence alignment algorithm [11] computes
gapped alignments using dynamic programming. It
considers all possible alignments of a pair of sequences
in time proportional to the product of their lengths. A
variant of the Smith-Waterman algorithm, called a
banded alignment, uses essentially the same dynamic
programming but restrict the search to those alignments
that have a (small) fixed number of differences. For a
single pair of sequences computing a Smith-Waterman
alignment is usually a fast operation, but becomes
computational infeasible as the number of sequences
increases.

Instead researchers use a technique called seed-and-
extend to accelerate the search for highly similar
alignments. The key insight is the observation that
within highly similar alignments there must be
significant exact alignments. By the pigeon-hole
principle, for a 20bp read to align with only 1
difference, there must be at least a 10bp exact

alignment someplace in the alignment. In general, a
full-length alignment of a m bp read with at most e
mismatches must contain at least 1 m/(e+1) bp exact
alignment. Several sequence alignment algorithms,
including the very popular BLAST [4] and MUMmer
[12] tools use this technique to accelerate alignment. In
the seed phase, the tools find substrings that are shared
between the sequences. For example, BLAST constructs
a hash table of fixed length overlapping substrings
called k-mers of the reference sequences to find seeds,
and MUMmer constructs a suffix tree of the reference
sequences to find variable length maximal exact
substrings as seeds. Then in the extension phase, the
tools compute more expensive in-exact banded Smith-
Waterman alignments restricted to the relatively short
substrings near the shared seeds. This technique can
greatly decrease the time required to align sequences at
a given level of sensitivity. However, as the sensitivity
increases by allowing more differences, the length of
the seed will decrease, and thus the number of
randomly matching seeds will increase as will the total
execution time.

The Landau-Vishkin k-difference alignment algorithm
[13] is an alternative dynamic programming algorithm
for determining if two strings align with at most k-
differences. Unlike the Smith-Waterman dynamic
programming algorithm, which considers all possible
alignments, the Landau-Vishkin algorithm considers
only the most similar alignments up to a fixed number
of differences by computing how many characters of
each string can be aligned with i=0 to k differences.
The number of characters that can be aliged using i
differences is computed from the (i-1) result by
computing the exact extensions possible after
introducing 1 mismatch, 1 insertion or 1 deletion from
the end of the (i-1) alignment. The algorithm ends when
i=k+1, indicating no k-difference alignment exists for
those sequences, or the end of the sequence is reached.
This algorithm is much faster than the full Smith-
Waterman algorithm for small values of k, since only a
small number of potential alignments are considered.
See Gusfield’s classical text on sequence alignment for
more information [14].

2. BlastReduce Algorithm
BlastReduce is a parallel read mapping algorithm
implemented in Java with Hadoop. It is modeled on the
BLAST algorithm, and is optimized for mapping short
reads from next generation sequencing machines to a
reference genome. Like BLAST, it is a seed-and-extend
alignment algorithm, and uses fixed length mers as
seeds. Unlike BLAST, BlastReduce uses the Landau-
Vishkin algorithm to extend the exact seeds and quickly
find alignments with at most k-differences. This

extension algorithm is more appropriate for short reads
with a small number of differences (typically k=1 or
k=2 for 25-50bp reads). The seed size (s) is
automatically computed based on the length of the
reads and the maximum number of differences (k) as
specified by the user.

The input to the application is a multi-fasta file
containing the reads and a multi-fasta file containing
one or more reference sequences. These files are first
converted to a compressed Hadoop SequenceFile
suitable for processing with Hadoop. SequenceFile’s do
not natively support sequences with more than 65,565
characters so long sequences are partitioned into
chunks. The sequences are stored as key-value pairs in
the SequenceFile as (id, SeqInfo) where SeqInfo is the
tuple (sequence, start_offset, tag)) where start_offset is
the offset of the chunk within the full sequence. The
chunks overlap by s-1 bp so that all seeds are present
only once, and reference sequences are indicated with

tag=1. After conversion, the SequenceFile is copied
into the HDFS so the main read mapping algorithm can
execute.

The read mapping algorithm requires 3 MapReduce
cycles, as described below (Figure 1). The first 2
cycles, MerReduce and SeedReduce, find all maximal
exact matches at least s bp long, and the last cycle,
ExtendReduce, extends those seeds with the Landau-
Vishkin algorithm into all alignments with at most k
differences.

1. MerReduce: Compute Shared Mers

This MapReduce cycle finds mers of length s that are
shared between the reads and the reference sequences.
The map function executes on every sequence chunk
independently, and mers that only occur in the reads or
only in the reference are automatically discarded.
ExtendReduce needs the sequence flanking the exact
seeds for the alignment, but HDFS is inefficient for
random access. Therefore, the flanking sequences (up
to read_length – s + k bp) are included with the read
and reference mers so they will be available when
needed.

Map: For each mer in the input sequence, the map
function outputs (mer, MerPos), where MerPos is the
tuple (id, position, tag, left_flank, right_flank)). If the
sequence is a read (tag=0) also output the MerPos
records for the reverse complement sequences. The map
function outputs s(M+N) mers total, where M is the
total length of the reads, and N is the total length of the
reference sequences. After all of the map function have
completed, Hadoop will internally sort the key-value
pairs, and group together all of the pairs with the same
mer sequence into a single list of MerPos records.

Reduce: The reduce function outputs position
information about mers that are shared by at least 1
reference sequence and 1 read. It requires 2 passes
through each list of MerPos records for each mer. It
first scans the list to find MerPos records from a
reference. Then it scans the list a second time and
outputs a (read_id, SharedMer) key-value pair for each
mer that occurs in a read and a reference sequence. A
SharedMer is the tuple (read_position, ref_id,
ref_position, read_left_flank, read_right_flank,
ref_left_flank, ref_right_flank).

2. SeedReduce: Coalesce Consistent Mers

This MapReduce cycle reduces the number of seeds by
merging consistent shared mers into larger seeds. Two
shared mers are consistent if they are 1 bp offset in the
read and the reference. Those 2 consistent mers can be

Figure 1. Overview of the BlastReduce algorithm
using 3 MapReduce cycles. Intermediate files used
internally by MapReduce are shaded.

safely merged since they must refer to the same
alignment.

Map: The map function outputs the same (read_id,
SharedMer) pairs as are input. After the map function is
complete, all SharedMer records from a given read are
internally grouped together for the reduce phase.

Reduce: Each list of SharedMer records is first sorted
by read position, and consistent mers are collasced into
seeds. The final seeds are all maximal exact matches at
least s bp long. They are output as the pairs (read_id,
SharedSeed) where SharedSeed is the tuple
(read_position, seed_length, ref_id, target_position,
read_left_flank, read_right_flank, ref_left_flank,
ref_right_flank).

3. ExtendReduce: Extend Seeds

This MapReduce cycle extends the exact alignment
seeds into a longer inexact alignment using the Landau-
Vishkin k-difference algorithm.

Map: For each SharedSeed, the code attempts to extend
the shared seed into and end-to-end alignment with at
most k-differences. If such an alignment exists, output
the pair (read_id, AlignmentInfo), where AlignmentInfo
is the tuple (ref_id, ref_align_start, ref_align_end,
num_differences). After all of the map functions are
complete, Hadoop groups all AlignmentInfo records
from the same read for the reduce function.

Reduce: The reduce function filters duplicate
alignments, since there may be multiple seeds in the
same alignment. For each read, it first sorts the
AlignmentInfo records by ref_align_start, and then in a
second pass, outputs unique (read_id, AlignmentInfo)
pairs that have difference ref_align_start fields.

The output of the ExtendReduce is a file containing
every alignment of every read with at most k-
differences. This file can be copied from HDFS to a
regular file system, or the HDFS file can be post-
processed with the bundled reporting tools.

3. Results
We evaluated how well BlastReduce performs in a
variety of configurations for the task of mapping many
short reads to a reference genome while allowing a
small amount of differences. For this evaluation,
BlastReduce mapped random subsets of 2,726,374
publically available Illumina/Solexa sequencing reads
to the corresponding 2.0 Mbp S. suis P1/7 genome [15]
allowing for either 1 or 2 differences. The reads are all
36 bp long, and represent a single lane of data from a

Figure 2. Running Time vs Number of Reads.
BlastReduce scales linearly as the number of
reads increases.

Figure 3. Blast Speedup vs Number of Reads.
BlastReduce dramatically outperforms BLAST
for large read sets.

Figure 4. BlastReduce Speedup vs. Number of
Processors. BlastReduce continues to have
higher speedup through 24 processors
configurations.

full Illumina/Solexa run. The test cluster has 12
compute nodes, each with a dual core 3.2 GHz Intel
Xeon (24 processors total) and 250 GB of local disk
space available. The compute nodes were running
RedHat AS Release 3 Update 4, and Hadoop 0.15.3 set
to execute 2 tasks per node. In the results below, the
time to convert and load the data into the HDFS is
excluded, since this time was the same for all tasks. In
addition, once the data is loaded into HDFS, it can be
reused for multiple analyses, similar to the pre-
processing needed for searching with BLAST.

The first test explored how well BlastReduce scales as
the number of reads increases. In this test, all 24
processors were used to align subsets of the reads
allowing for 1 difference (seed length=18) or 2
differences (seed length=12). Figure 2 shows the
runtime of these tasks. The results show BlastReduce
scales linearly in execution time as the number of reads
increases, as expected since the reads are independent.
The 2-difference mapping take substantially longer than
the 1-difference mapping (30-70% more), since there
are many more seeds to consider. Extrapolating the
curves to the y-axis shows there is approximately 90
seconds in overhead for Hadoop to schedule to all of
the compute nodes, process the genome sequence, and
map the first read. Thus, BlastReduce performs best
only when there is a large number of reads to processes.
However, this should not be a problem for BlastReduce,
since large workloads are expected when used in
conjunction with new sequencing technologies.

The second test compared the performance of the
parallel execution of BlastReduce on 24 processors to a
serial execution of NCBI BLAST (version 2.2.12) on the
same hardware as the BlastReduce. BLAST was
configured to use the same seed lengths as BlastReduce,
18 bp (-W 18) for the 1-difference alignment, and 12 bp
(-W 12) for the 2-difference alignment. Both
configurations disabled the low complexity filtering (-F
F) since researchers often want to find slight differences
between otherwise high copy repeats. BLAST was
configured to use a compact tabular output format (-w
8) very similar to the BlastReduce output format.

Figure 2 shows the results of the test, and plots the
speedup of BlastReduce over BLAST as the number of
reads increase. BLAST requires more than 2 days to
map all 2.7M reads, so that comparison was excluded.
Nevertheless with just 1.6M reads, BlastReduce is
175x-250x times faster than BLAST for 2- and 1-
difference read mappings, and is likely to be
significantly faster for even larger data sets. Since
BlastReduce was running on 24 processors, the
expected speedup was only 24x. The extra order of
magnitude super-linear speedup is most likely because
of both algorithm and computational resources changes.

Specifically, BlastReduce uses the Landau-Vishkin k-
difference algorithm for extending the seeds, while
BLAST uses a banded Smith-Waterman algorithm that
stops extending when the alignment score drops below
a threshold rather than a specific after a fixed number of
differences. As such, BlastReduce can filter extensions
with more than the desired number of differences
immediately, but noisy read mappings with more than
this number of differences must be manually filtered
after BLAST is complete. Failure to filter those high
noise mappings is necessary to ensure all mappings at
the same level of similarity are found. Finally, by
running on 24 processors, BlastReduce has 24x as much
IO and CPU caching, both of which can boost
performance by allowing a larger fraction of the data to
fit in cache, and thus faster access to that data.

The final test explored how well BlastReduce scales as
the number of processors increases for a fixed problem
size. Figure 3 shows the speedup of BlastReduce
mapping 100,000 reads on between 1 and 24
processors, and for 1- and 2- difference alignments.
Hadoop allows an application to specify the number of
processors for map or reduce functions, but there is no
mechanism to control where the map or reduce
functions run. Consequently, these operations may run
on physically different machines, so each data point
indicates the number of processors used for the map or
reduce functions, but not necessarily the total number
of processors used. The full BlastReduce execution may
be on a larger number of processors, up to the full 24
processor capacity of the cluster. However, since the
reduce functions can only operate after the map
functions have completed potentially using different
processors for the map and reduce functions should
have minimal impact on the overall performance.

The speedup curves in Figure 3 show the results of the
test, and shows the speedup of the two alignment
sensitivity levels are nearly the same. In both cases
BlastReduce achieves approximately 1/6 the
performance of ideal speedup for 24 processors (24x
speedup). This speedup is explained by large amount of
overhead (~90s) on 24 processors relative to the total
runtime (137s). For larger problem sizes with more
reads and higher execution time 24 processors would
likely show improved speedup. Furthermore, even for
100,000 reads the speedup curves do not appear to have
reached the plateau described by Amdahl’s law,
suggesting additional processors would further improve
the performance of the application for this sized
problem. Larger problems would delay reaching this
plateau until even later.

4. Discussion
BlastReduce is a new parallel read mapping algorithm
optimized for next generation short read data. It uses a
seed-and-extend alignment algorithm similar to BLAST
to efficiently find alignments with a small number of
differences. The alignment algorithm is implemented as
3 consecutive MapReduce computations, each of which
can be executed in parallel to many compute nodes. The
performance experiments show BlastReduce is highly
scalable to large sets of reads and has high speedup in a
variety of processor configurations. In a modest
configuration with 24 processors, BlastReduce is up to
250x faster than BLAST running on a single processor,
but at the same level of sensitivity.

BlastReduce’s high performance is made possible by
the Hadoop implementation of the MapReduce
framework. This framework makes it straightforward to
create massively scalable applications, since the
common aspects of parallel computing are
automatically provided, and only the application
specific code must be written. Hadoop’s ability to
deliver high-throughput, even in the face of extremely
large data sets, is a perfect match for many algorithms
in computational biology. Consequently, Hadoop-based
implementations of those algorithms are expected in the
near future with similar order of magnitude speedups.
Massively parallel applications, running on cloud
clusters with tens of thousands of nodes will drastically
change the scale and scope of DNA sequence analysis,
and allow researchers to perform analyses that are
otherwise impossible.

5. Acknowledgements
I would like to thank Jimmy Lin for introducing me to
Hadoop in his Cloud Computing Class, Arthur Delcher
for his helpful discussions, and Steven Salzberg for
reviewing the manuscript. I would also like to thank the
generous hardware support of IBM and Google via the
Academic Cloud Computing Initiative used in the
development of BlastReduce.

6. References
1. Shaffer, C., Next-generation sequencing

outpaces expectations. Nat Biotechnol, 2007.
25(2): p. 149.

2. Wheeler, D.A., et al., The complete genome of
an individual by massively parallel DNA
sequencing. Nature, 2008. 452(7189): p. 872-
6.

3. Venter, J.C., et al., The sequence of the human
genome. Science, 2001. 291(5507): p. 1304-
51.

4. Altschul, S.F., et al., Basic local alignment
search tool. J Mol Biol, 1990. 215(3): p. 403-
10.

5. Hadoop. [cited; Available from:
http://hadoop.apache.org/.

6. Jeffrey, D. and G. Sanjay, MapReduce:
simplified data processing on large clusters.
Commun. ACM, 2008. 51(1): p. 107-113.

7. Krishnaprasad, S., Uses and abuses of
Amdahl's law. J. Comput. Small Coll., 2001.
17(2): p. 288-293.

8. Sanjay, G., G. Howard, and L. Shun-Tak, The
Google file system, in Proceedings of the
nineteenth ACM symposium on Operating
systems principles. 2003, ACM: Bolton
Landing, NY, USA.

9. Yahoo Launches Worlds Largest Hadoop
Production Application. [cited; Available
from:
http://developer.yahoo.com/blogs/hadoop/200
8/02/yahoo-worlds-largest-production-
hadoop.html.

10. Running Hadoop MapReduce on Amazon EC2
and Amazon S3. [cited; Available from:
http://developer.amazonwebservices.com/conn
ect/entry.jspa?externalID=873.

11. Smith, T.F. and M.S. Waterman, Identification
of common molecular subsequences. J Mol
Biol, 1981. 147(1): p. 195-7.

12. Kurtz, S., et al., Versatile and open software
for comparing large genomes. Genome Biol,
2004. 5(2): p. R12.

13. Landau, G.M. and U. Vishkin, Introducing
efficient parallelism into approximate string
matching and a new serial algorithm, in
Proceedings of the eighteenth annual ACM
symposium on Theory of computing. 1986,
ACM: Berkeley, California, United States.

14. Gusfield, D., Algorithms on strings, trees, and
sequences: computer science and
computational biology. 1997: Cambridge
University Press. 534.

15. Streptococcus Suis Sequencing Webpage.
[cited; Available from:
http://www.sanger.ac.uk/Projects/S_suis/.

