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Abstract 
Next-generation DNA sequencing machines generate 
sequence data at an unprecedented rate, but traditional 
single-processor sequence alignment algorithms are 
struggling to keep pace with them. BlastReduce is a 
new parallel read mapping algorithm optimized for 
aligning sequence data from those machines to 
reference genomes, for use in a variety of biological 
analyses, including SNP discovery, genotyping, and 
personal genomics. It is modeled after the widely used 
BLAST sequence alignment algorithm, but uses the 
open-source Hadoop implementation of MapReduce to 
parallelize execution to multiple compute nodes. To 
evaluate its performance, BlastReduce was used to map 
next generation sequence data to a reference bacterial 
genome in a variety of configurations. The results show 
BlastReduce scales linearly for the number of 
sequences processed, and with high speedup as the 
number of processors increases. In a modest 24 
processor configuration, BlastReduce is up to 250x 
faster than BLAST executing on a single processor, and 
reduced the execution time from several days to a few 
minutes at the same level of sensitivity. Furthermore, 
BlastReduce is fully compatible with cloud computing, 
and can be easily executed on massively parallel remote 
resources to meet peak demand. BlastReduce is 
available open-source at: 
http://www.cbcb.umd.edu/software/blastreduce/. 

 

1. Introduction 
Next-generation high-throughput DNA sequencing 
technologies from 454, Illumina/Solexa, and Applied 
Biosystems are changing the scale and scope of 
genomics. These next generation sequencing machines 
can sequence more DNA in a few days than a 
traditional Sanger sequencing machine could in an 
entire year, and at a significantly lower cost [1]. James 
Watson’s genome was recently sequenced [2] using 
technology from 454 Life Sciences in just four months, 
whereas previous efforts to sequence the human 
genome required several years and hundreds of 
machines [3]. If this trend continues, an individual will 
be able to have his or her DNA sequenced in only a few 
days and perhaps for as little as $1000.  

The data from the new machines consists of millions of 
short sequences (25-250bp) of DNA called reads, 
collected randomly from the DNA sample. After 
sequencing, researchers will often align, or map, the 
reads to a reference genome, to find the locations where 
each read occurs in the reference sequence, allowing for 
a small number of differences. This can be used, for 
example, to catalog differences in one person’s genome 
relative to the reference human genome, or compare the 
genomes of different species. These comparisons are 
used for a wide variety of biological analyses including 
genotyping, gene expression, metagenomics, 
comparative genomics, SNP discovery and personal 
genomics. These results are of great interest since even 
a single base pair difference between two genomes can 
have huge impact on the health of those organisms. As 
such, researchers are beginning to generate sequence 
data at an incredible rate, and desperately need 
inexpensive and highly scalable algorithms to analyze 
their data. 

One of the most widely used programs for sequence 
alignment is BLAST [4]. It uses an algorithmic 
technique called seed-and-extend to quickly find highly 
similar alignments between sequences. During its 20 
years of development, BLAST has been optimized for 
fast operation, but as a single processor algorithm, is 
struggling to keep pace with the volume of data 
generated by next generation sequencing machines. 
BlastReduce is a new parallel seed-and-extend 
alignment algorithm modeled on the serial BLAST 
algorithm. It is optimized for efficiently mapping reads 
from next generation sequence data to reference 
genomes, while allowing a small number of differences. 
BlastReduce uses the open-source implementation of 
MapReduce called Hadoop [5] to schedule, monitor, 
and manage the parallel execution. Our results show 
that even in a modest configuration of 24 processors 
BlastReduce is up to 250x faster than a single processor 
execution of BLAST for aligning large sets of 
Illumina/Solexa reads to a bacterial genome. 
Furthermore, BlastReduce can easily scale to execute 
on hundreds or thousands of remote processors using 
cloud computing, and thus can cut the execution time of 
even the largest read mapping task from days to 
minutes. 



1.1 MapReduce 
MapReduce [6] is the software framework invented by 
and used by Google to support parallel execution of 
their data intensive applications. Google uses this 
framework internally to execute thousands of 
MapReduce applications per day, each processing many 
terabytes of data all on commodity hardware. The 
framework automatically provides common services for 
parallel computing, such as the partitioning the input 
data, scheduling, monitoring, and inter-machine 
communication necessary for remote execution. As 
such, application developers for MapReduce need only 
write a small number of functions relevant to their 
problem domain, and the framework automatically 
executes those functions for parallel processing. 
Computation in MapReduce is divided into two major 
phases called map and reduce, separated by an internal 
grouping of the intermediate results. This two-phase 
computation was developed after recognizing that many 
different computations could be solved by first 
computing a partial result (map phase), and then 
combining those partial results into the final result 
(reduce phase). The power of MapReduce is the map 
and reduce functions are executed in parallel over 
potentially hundreds or thousands of processors with 
minimal effort by the application developer.  

The first phase of computation, the map phase, 
computes a set of intermediate key-value pairs from the 
input data, as determined by a user-defined function. 
Application developers can implement any relationship 
applicable to their problem from the input including 
outputting multiple pairs for a given input. For 
example, if the overall computation was to count the 
number of occurrences of all of the English words in a 
large input text, the map function could output the key 
value pair (w,1) for each word w in the input text. If the 
input text is very large, many instances of the map 
function could execute in parallel on different portions 
of the input text. 

After all of the map functions are complete, the 
MapReduce framework then internally sorts the pairs so 
all values with the same key are grouped together into a 
single list. It also partitions the data, and creates one file 
of key-value lists for each processor to be used in the 
reduce phase. The application can use standard object 
comparison and hash functions, or custom comparison 
and partition functions based on arbitrary computations 
of the key. Sorting the keys in this way is similar to 
constructing a large distributed hash table indexed by 
the key, with a list of values for each key. In the word 
frequency computation example, the framework creates 
a list of 1s for each word in the input set corresponding 
to each instance of that word.  

The reduce phase computes a new set of key-value 
pairs from the key-value lists generated by the map 
phase. These key-value pairs can serve as input for 
another MapReduce cycle, or output to the user. In the 
word frequency computation, the reduce function adds 
together the value lists of 1s to compute the number of 
occurrences of each word, and outputs the key-value 
pair (w, # occurrences). Each instance of the reduce 
function executes independently, so there can be as 
many reduce functions executing in parallel as there are 
distinct words in the input text. Since the words and the 
computations are independent, the total execution time 
should scale linearly with the number of processors 
available, i.e. a 10 processor execution should take 
1/10th the time of a 1 processor execution. In practice, it 
is very difficult to achieve perfect linear speedup, 
because Amdahl’s law [7] limits the maximum speedup 
possible given some amount of overhead or serial 
processing. For example, if an application has just 10% 
non-parallelizable fixed overhead, than the maximum 
possible speedup is only 10x regardless of the number 
of processors used. 

MapReduce uses data files for the inter-machine 
communication between map and reduce functions. 
This could become a severe bottleneck if a traditional 
file system was used and thousands of processors 
accessed to the same file at the same time. Instead, 
Google developed the robust distributed Google File 
System (GFS) [8] to support efficient MapReduce 
execution, even with extremely large data sets. The file 
system is designed to provide very high bandwidth, but 
may potentially have high latency for individual 
random reads and writes. This choice was deliberately 
made to match the access pattern of MapReduce, which 
almost exclusively requires bulk read and write access. 
Files in the GFS are automatically partitioned into large 
chunks, which are distributed and replicated to several 
physical disks attached to the compute nodes. Metadata 
and directory services are managed through a master IO 
node, which stores the location of each chunk of each 
file and grants access to those chunks. Furthermore, 
MapReduce is data-aware and attempts to schedule 
computation at the compute nodes that store the 
required data whenever possible. Therefore, aggregate 
IO performance can greatly exceed the performance of 
an individual drive, and chunk redundancy ensures 
reliability even when used with inexpensive commodity 
drives with relatively high failure rates. 

Hadoop and the Hadoop Distributed File System 
(HDFS) [5] are an open source version of MapReduce 
and the Google File System sponsored by Yahoo, 
Google, IBM, Amazon, and other major vendors. Like 
Google’s proprietary MapReduce framework, 
applications developers need only write custom map 
and reduce functions, and the Hadoop framework 



automatically executes those functions in parallel. 
Hadoop is implemented in Java, and is bundled with a 
large number of support classes to simplify code 
development. Hadoop and HDFS is used to manage 
clusters with 10,000+ nodes and operating on petabytes 
of data, and supports, in part, every Yahoo search result 
[9].  

In addition to in-house Hadoop usage, Hadoop is 
quickly becoming a de-facto standard for cloud 
computing. Cloud computing is a model of parallel 
computation where compute resources are accessed 
generically, without regard for physical location or 
specific configuration. The generic nature of cloud 
computing allows resources to be purchased on-
demand, such as to augment local resources for specific 
large or time critical tasks. Several companies now sell 
cloud compute cycles that can be accessed via Hadoop. 
For example, Amazon’s Elastic Compute Cloud [10] 
contains tens of thousands of processors priced at $.10 
per hour per processor, and supports Hadoop with 
minimal effort. 

 

1.2 Read Mapping 
After sequencing DNA the newly created reads are 
often aligned or mapped to a reference genome to find 
the locations where each read approximately occurs. A 
read mapping algorithm reports all alignments that are 
within a scoring threshold, commonly expressed as the 
maximum acceptable number of differences between 
the read and the reference genome (generally at most 
1%-10% of the read length). The alignment algorithm 
can allow just mismatches as differences, the k-
mismatch problem, or it can also consider gapped 
alignments with insertions or deletions of characters, 
the k-difference problem). The classical Smith-
Waterman sequence alignment algorithm [11] computes 
gapped alignments using dynamic programming. It 
considers all possible alignments of a pair of sequences 
in time proportional to the product of their lengths. A 
variant of the Smith-Waterman algorithm, called a 
banded alignment, uses essentially the same dynamic 
programming but restrict the search to those alignments 
that have a (small) fixed number of differences. For a 
single pair of sequences computing a Smith-Waterman 
alignment is usually a fast operation, but becomes 
computational infeasible as the number of sequences 
increases. 

Instead researchers use a technique called seed-and-
extend to accelerate the search for highly similar 
alignments. The key insight is the observation that 
within highly similar alignments there must be 
significant exact alignments. By the pigeon-hole 
principle, for a 20bp read to align with only 1 
difference, there must be at least a 10bp exact 

alignment someplace in the alignment. In general, a 
full-length alignment of a m bp read with at most e 
mismatches must contain at least 1 m/(e+1) bp exact 
alignment. Several sequence alignment algorithms, 
including the very popular BLAST [4] and MUMmer 
[12] tools use this technique to accelerate alignment. In 
the seed phase, the tools find substrings that are shared 
between the sequences. For example, BLAST constructs 
a hash table of fixed length overlapping substrings 
called k-mers of the reference sequences to find seeds, 
and MUMmer constructs a suffix tree of the reference 
sequences to find variable length maximal exact 
substrings as seeds. Then in the extension phase, the 
tools compute more expensive in-exact banded Smith-
Waterman alignments restricted to the relatively short 
substrings near the shared seeds. This technique can 
greatly decrease the time required to align sequences at 
a given level of sensitivity. However, as the sensitivity 
increases by allowing more differences, the length of 
the seed will decrease, and thus the number of 
randomly matching seeds will increase as will the total 
execution time. 

The Landau-Vishkin k-difference alignment algorithm 
[13] is an alternative dynamic programming algorithm 
for determining if two strings align with at most k-
differences. Unlike the Smith-Waterman dynamic 
programming algorithm, which considers all possible 
alignments, the Landau-Vishkin algorithm considers 
only the most similar alignments up to a fixed number 
of differences by computing how many characters of 
each string can be aligned with i=0 to k differences. 
The number of characters that can be aliged using i 
differences is computed from the (i-1) result by 
computing the exact extensions possible after 
introducing 1 mismatch, 1 insertion or 1 deletion from 
the end of the (i-1) alignment. The algorithm ends when 
i=k+1, indicating no k-difference alignment exists for 
those sequences, or the end of the sequence is reached. 
This algorithm is much faster than the full Smith-
Waterman algorithm for small values of k, since only a 
small number of potential alignments are considered. 
See Gusfield’s classical text on sequence alignment for 
more information [14]. 

 

2. BlastReduce Algorithm 
BlastReduce is a parallel read mapping algorithm 
implemented in Java with Hadoop. It is modeled on the 
BLAST algorithm, and is optimized for mapping short 
reads from next generation sequencing machines to a 
reference genome. Like BLAST, it is a seed-and-extend 
alignment algorithm, and uses fixed length mers as 
seeds. Unlike BLAST, BlastReduce uses the Landau-
Vishkin algorithm to extend the exact seeds and quickly 
find alignments with at most k-differences. This 



extension algorithm is more appropriate for short reads 
with a small number of differences (typically k=1 or 
k=2 for 25-50bp reads). The seed size (s) is 
automatically computed based on the length of the 
reads and the maximum number of differences (k) as 
specified by the user. 

The input to the application is a multi-fasta file 
containing the reads and a multi-fasta file containing 
one or more reference sequences. These files are first 
converted to a compressed Hadoop SequenceFile 
suitable for processing with Hadoop. SequenceFile’s do 
not natively support sequences with more than 65,565 
characters so long sequences are partitioned into 
chunks. The sequences are stored as key-value pairs in 
the SequenceFile as (id, SeqInfo) where SeqInfo is the 
tuple (sequence, start_offset, tag)) where start_offset is 
the offset of the chunk within the full sequence. The 
chunks overlap by s-1 bp so that all seeds are present 
only once, and reference sequences are indicated with 

tag=1. After conversion, the SequenceFile is copied 
into the HDFS so the main read mapping algorithm can 
execute.  

The read mapping algorithm requires 3 MapReduce 
cycles, as described below (Figure 1). The first 2 
cycles, MerReduce and SeedReduce, find all maximal 
exact matches at least s bp long, and the last cycle, 
ExtendReduce, extends those seeds with the Landau-
Vishkin algorithm into all alignments with at most k 
differences.  

 

1. MerReduce: Compute Shared Mers  

This MapReduce cycle finds mers of length s that are 
shared between the reads and the reference sequences. 
The map function executes on every sequence chunk 
independently, and mers that only occur in the reads or 
only in the reference are automatically discarded. 
ExtendReduce needs the sequence flanking the exact 
seeds for the alignment, but HDFS is inefficient for 
random access. Therefore, the flanking sequences (up 
to read_length – s + k bp) are included with the read 
and reference mers so they will be available when 
needed. 

Map: For each mer in the input sequence, the map 
function outputs (mer, MerPos), where MerPos is the 
tuple (id, position, tag, left_flank, right_flank)). If the 
sequence is a read (tag=0) also output the MerPos 
records for the reverse complement sequences. The map 
function outputs s(M+N) mers total, where M is the 
total length of the reads, and N is the total length of the 
reference sequences. After all of the map function have 
completed, Hadoop will internally sort the key-value 
pairs, and group together all of the pairs with the same 
mer sequence into a single list of MerPos records. 

Reduce: The reduce function outputs position 
information about mers that are shared by at least 1 
reference sequence and 1 read. It requires 2 passes 
through each list of MerPos records for each mer. It 
first scans the list to find MerPos records from a 
reference. Then it scans the list a second time and 
outputs a (read_id, SharedMer) key-value pair for each 
mer that occurs in a read and a reference sequence. A 
SharedMer is the tuple (read_position, ref_id, 
ref_position, read_left_flank, read_right_flank, 
ref_left_flank, ref_right_flank).  

 

2. SeedReduce: Coalesce Consistent Mers 

This MapReduce cycle reduces the number of seeds by 
merging consistent shared mers into larger seeds. Two 
shared mers are consistent if they are 1 bp offset in the 
read and the reference. Those 2 consistent mers can be 

 
Figure 1. Overview of the BlastReduce algorithm 
using 3 MapReduce cycles. Intermediate files used 
internally by MapReduce are shaded. 



safely merged since they must refer to the same 
alignment. 

Map: The map function outputs the same (read_id, 
SharedMer) pairs as are input. After the map function is 
complete, all SharedMer records from a given read are 
internally grouped together for the reduce phase. 

Reduce: Each list of SharedMer records is first sorted 
by read position, and consistent mers are collasced into 
seeds. The final seeds are all maximal exact matches at 
least s bp long. They are output as the pairs (read_id, 
SharedSeed) where SharedSeed is the tuple 
(read_position, seed_length, ref_id, target_position, 
read_left_flank, read_right_flank, ref_left_flank, 
ref_right_flank). 

 

3. ExtendReduce: Extend Seeds 

This MapReduce cycle extends the exact alignment 
seeds into a longer inexact alignment using the Landau-
Vishkin k-difference algorithm.  

Map: For each SharedSeed, the code attempts to extend 
the shared seed into and end-to-end alignment with at 
most k-differences. If such an alignment exists, output 
the pair (read_id, AlignmentInfo), where AlignmentInfo 
is the tuple (ref_id, ref_align_start, ref_align_end, 
num_differences). After all of the map functions are 
complete, Hadoop groups all AlignmentInfo records 
from the same read for the reduce function. 

Reduce: The reduce function filters duplicate 
alignments, since there may be multiple seeds in the 
same alignment. For each read, it first sorts the 
AlignmentInfo records by ref_align_start, and then in a 
second pass, outputs unique (read_id, AlignmentInfo) 
pairs that have difference ref_align_start fields. 

 

The output of the ExtendReduce is a file containing 
every alignment of every read with at most k-
differences. This file can be copied from HDFS to a 
regular file system, or the HDFS file can be post-
processed with the bundled reporting tools. 

 

3. Results 
We evaluated how well BlastReduce performs in a 
variety of configurations for the task of mapping many 
short reads to a reference genome while allowing a 
small amount of differences. For this evaluation, 
BlastReduce mapped random subsets of 2,726,374 
publically available Illumina/Solexa sequencing reads 
to the corresponding 2.0 Mbp S. suis P1/7 genome  [15] 
allowing for either 1 or 2 differences. The reads are all 
36 bp long, and represent a single lane of data from a 

 
Figure 2. Running Time vs Number of Reads. 
BlastReduce scales linearly as the number of 
reads increases. 

 

 
Figure 3. Blast Speedup vs Number of Reads. 
BlastReduce dramatically outperforms BLAST 
for large read sets. 

 

 
Figure 4. BlastReduce Speedup vs. Number of 
Processors. BlastReduce continues to have 
higher speedup through 24 processors 
configurations. 

 



full Illumina/Solexa run. The test cluster has 12 
compute nodes, each with a dual core 3.2 GHz Intel 
Xeon (24 processors total) and 250 GB of local disk 
space available. The compute nodes were running 
RedHat AS Release 3 Update 4, and Hadoop 0.15.3 set 
to execute 2 tasks per node. In the results below, the 
time to convert and load the data into the HDFS is 
excluded, since this time was the same for all tasks. In 
addition, once the data is loaded into HDFS, it can be 
reused for multiple analyses, similar to the pre-
processing needed for searching with BLAST. 

The first test explored how well BlastReduce scales as 
the number of reads increases. In this test, all 24 
processors were used to align subsets of the reads 
allowing for 1 difference (seed length=18) or 2 
differences (seed length=12). Figure 2 shows the 
runtime of these tasks. The results show BlastReduce 
scales linearly in execution time as the number of reads 
increases, as expected since the reads are independent. 
The 2-difference mapping take substantially longer than 
the 1-difference mapping (30-70% more), since there 
are many more seeds to consider. Extrapolating the 
curves to the y-axis shows there is approximately 90 
seconds in overhead for Hadoop to schedule to all of 
the compute nodes, process the genome sequence, and 
map the first read. Thus, BlastReduce performs best 
only when there is a large number of reads to processes. 
However, this should not be a problem for BlastReduce, 
since large workloads are expected when used in 
conjunction with new sequencing technologies. 

The second test compared the performance of the 
parallel execution of BlastReduce on 24 processors to a 
serial execution of NCBI BLAST (version 2.2.12) on the 
same hardware as the BlastReduce. BLAST was 
configured to use the same seed lengths as BlastReduce, 
18 bp (-W 18) for the 1-difference alignment, and 12 bp 
(-W 12) for the 2-difference alignment. Both 
configurations disabled the low complexity filtering (-F 
F) since researchers often want to find slight differences 
between otherwise high copy repeats. BLAST was 
configured to use a compact tabular output format (-w 
8) very similar to the BlastReduce output format.  

Figure 2 shows the results of the test, and plots the 
speedup of BlastReduce over BLAST as the number of 
reads increase. BLAST requires more than 2 days to 
map all 2.7M reads, so that comparison was excluded. 
Nevertheless with just 1.6M reads, BlastReduce is 
175x-250x times faster than BLAST for 2- and 1- 
difference read mappings, and is likely to be 
significantly faster for even larger data sets. Since 
BlastReduce was running on 24 processors, the 
expected speedup was only 24x. The extra order of 
magnitude super-linear speedup is most likely because 
of both algorithm and computational resources changes. 

Specifically, BlastReduce uses the Landau-Vishkin k-
difference algorithm for extending the seeds, while 
BLAST uses a banded Smith-Waterman algorithm that 
stops extending when the alignment score drops below 
a threshold rather than a specific after a fixed number of 
differences. As such, BlastReduce can filter extensions 
with more than the desired number of differences 
immediately, but noisy read mappings with more than 
this number of differences must be manually filtered 
after BLAST is complete. Failure to filter those high 
noise mappings is necessary to ensure all mappings at 
the same level of similarity are found. Finally, by 
running on 24 processors, BlastReduce has 24x as much 
IO and CPU caching, both of which can boost 
performance by allowing a larger fraction of the data to 
fit in cache, and thus faster access to that data.  

The final test explored how well BlastReduce scales as 
the number of processors increases for a fixed problem 
size. Figure 3 shows the speedup of BlastReduce 
mapping 100,000 reads on between 1 and 24 
processors, and for 1- and 2- difference alignments. 
Hadoop allows an application to specify the number of 
processors for map or reduce functions, but there is no 
mechanism to control where the map or reduce 
functions run. Consequently, these operations may run 
on physically different machines, so each data point 
indicates the number of processors used for the map or 
reduce functions, but not necessarily the total number 
of processors used. The full BlastReduce execution may 
be on a larger number of processors, up to the full 24 
processor capacity of the cluster. However, since the 
reduce functions can only operate after the map 
functions have completed potentially using different 
processors for the map and reduce functions should 
have minimal impact on the overall performance.  

The speedup curves in Figure 3 show the results of the 
test, and shows the speedup of the two alignment 
sensitivity levels are nearly the same. In both cases 
BlastReduce achieves approximately 1/6 the 
performance of ideal speedup for 24 processors (24x 
speedup). This speedup is explained by large amount of 
overhead (~90s) on 24 processors relative to the total 
runtime (137s). For larger problem sizes with more 
reads and higher execution time 24 processors would 
likely show improved speedup. Furthermore, even for 
100,000 reads the speedup curves do not appear to have 
reached the plateau described by Amdahl’s law, 
suggesting additional processors would further improve 
the performance of the application for this sized 
problem. Larger problems would delay reaching this 
plateau until even later. 

 

 



4. Discussion 
BlastReduce is a new parallel read mapping algorithm 
optimized for next generation short read data. It uses a 
seed-and-extend alignment algorithm similar to BLAST 
to efficiently find alignments with a small number of 
differences. The alignment algorithm is implemented as 
3 consecutive MapReduce computations, each of which 
can be executed in parallel to many compute nodes. The 
performance experiments show BlastReduce is highly 
scalable to large sets of reads and has high speedup in a 
variety of processor configurations. In a modest 
configuration with 24 processors, BlastReduce is up to 
250x faster than BLAST running on a single processor, 
but at the same level of sensitivity. 

BlastReduce’s high performance is made possible by 
the Hadoop implementation of the MapReduce 
framework. This framework makes it straightforward to 
create massively scalable applications, since the 
common aspects of parallel computing are 
automatically provided, and only the application 
specific code must be written. Hadoop’s ability to 
deliver high-throughput, even in the face of extremely 
large data sets, is a perfect match for many algorithms 
in computational biology. Consequently, Hadoop-based 
implementations of those algorithms are expected in the 
near future with similar order of magnitude speedups. 
Massively parallel applications, running on cloud 
clusters with tens of thousands of nodes will drastically 
change the scale and scope of DNA sequence analysis, 
and allow researchers to perform analyses that are 
otherwise impossible.  
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