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Abstract

Web Services is an emerging paradigm in which very loosely coupled software
components are published, located, and invoked on the Web as parts of distributed
applications. Web Services provide a new way of distributed computing where
the interoperability between diverse applications is achieved through platform and
language independent interfaces. The main focus of Web Services is the ability
to easily combine existing components to create compositions that provide novel
functionality that was not directly available from the existing services. Web Ser-
vices composition is useful for a wide range of audience: ordinary users doing
everyday tasks on the Web, commercial organizations involved in e-business ap-
plications, and researchers doing intense scientific computation over distributed
networks such as the Grid.

Automated composition of Web Services requires fairly rich machine-under-
standable descriptions of services that can be shared between heterogeneous agents.
Given appropriate descriptions, AI planning techniques can be employed to auto-
mate the composition of Web Services described this way. However, Web Service
Composition problem differs from classical planning problems in variousways.
The information about the world is incomplete and constantly changing; the do-
main knowledge, i.e. Web Service descriptions, have been developed by different
parties and are distributed over the Web; and the plans generated involve communi-
cation and interaction with other agents, i.e. providers of the Web Services. In this
setting, creating a composition to accomplish a goal requires to interleave planning
with execution where both the state of the world and the domain knowledge about
planning operators are gathered during the planning process.

In this paper, I present the preliminary work I have done for automatingthe
composition of Web Services and discuss future directions for overcoming the
limitations of the preliminary work. The purpose is to show that AI planning tech-
niques can be extended to automatically generate useful and purposeful composi-
tions of Web Services under incomplete information. As a starting point, I have
worked on how Web Ontology Language (OWL) can be used to describe Web Ser-
vices. I have created an interactive tool for a user-oriented composition approach
and also studied how HTN planning can be used for automated composition of
Web Services. In both systems reasoning with Web Ontologies has been used to
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facilitate the composition task. The goal of this paper is to investigate how these
approaches can be combined, with each other and can be extended to efficiently
address the issues related to the nature of the Web, i.e. a large, distributed, dynamic
environment with incomplete and possibly inconsistent information.

1 Introduction

Web services are self-contained, self-describing, modular applications that can be pub-
lished, located, and invoked across the Web. Web services are designed to provide
interoperability between diverse applications. The platform and language independent
interfaces of web services allow the easy integration of heterogeneous systems.

Service Oriented Architectures tend to be component oriented with loose coupling
as a systematic design emphasis. Services should not only beloosely coupled with
their implementation, but they should be able to be coupled together with a minimum
difficulty so thatcombinationsof services can be separated from their particular real-
ization. Given such combinations — called servicecompositions— a service consumer
can mix and match components at will depending on service availability, quality, price,
and other factors.

While realizing service compositions on particular concrete services is an important
task,generatingsuch compositions to achieve new functionality is equally or some-
times even more important. Creating novel functionality bymeans of composition is
essential when there is no single service capable of performing that task but there are
combinations of existing services that could.

There are many different application areas where automaticcomposition of Web
Services would be useful.

• Web TasksThere are many tasks ordinary users perform on the Web everyday.
When the objective requires interacting with different parties – e.g. making travel
arrangements may involve buying plane tickets, booking hotel rooms, and rent-
ing cars – the task becomes tedious. Locating the services with required specifics
and coordinating the flow between these sources is not an easytask.

• B2B ApplicationsThe composition is very important in B2B applications where
online partnerships can automatically be formed without prior agreements. A
business who wants to order some items from a manufacturer and then arrange
the shipment details can achieve this goal by combining the services provided by
manufacturers and shipment companies. These compositionsallow the forma-
tion of dynamic trading communities.

• Grid ApplicationsThe Grid provides a computational framework to solve large-
scale problems in science, engineering, and commerce. Manytasks on the Grid
requires the coordination and combination of multiple services and resources.
Composing these services in workflows of varying complexityis required for
different tasks. For example, a scientist working on bioinformatics would want to
get data about DNA, apply some specific tests on the data and then transform the
results to a certain format. Each of these services may be provided by different
sources and need to be combined together to satisfy the goal.
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• Pervasive ComputingExposing the functionality of devices as Web Services pro-
vides a uniform method for describing the capabilities of these devices and thus
enables us to compose these services together. In today’s device-rich environ-
ment, most tasks require the ability to compose services such as the ones pro-
vided by printers, projectors, kiosks with the programs on your computer or the
services available on the Web.

All these examples come from relatively different areas butstill share some funda-
mental characteristics:

• Distributed SettingService descriptions are created by different sources thatdo
not necessarily share common knowledge or understanding. This implies that
services that will be used to create the composition should be discovered from
remote sources. This discovery process should take into consideration possible
misalignments between the vocabularies of Web Service descriptions.

• Incomplete InformationThe composition system will have incomplete informa-
tion about the world. When the size and nature of Web is considered, we cannot
assume that the system already knows the information neededto find a com-
position. As the set of services grows very large (i.e., as westart using large
repositories of heterogeneous services) it is likely that trying to complete the
initial state will be wasteful at best and practically impossible in the common
case.

• Interleaved Execution and CompositionThe composition system should execute
the necessary information-providing services during the composition process to
gather information. While not all the information relevant to a problem may
have already been known, i.e. the amount of money in the bank account, it will
often be the case that that information is accessible to the system, i.e. by using
the service provided by bank’s Web site. The relevance of possible information
can be determined by the possible combinations the planner is considering, so it
makes sense to gather the information at that point.

• Web ScaleA system to compose Web Services should scale to the Web standards
where the number of available services may be in the order of millions. It is not
possible to handle this number with any naive approach.

The dynamic composition of services primarily requires understanding thecapa-
bilities of the available services (i.e.,what they can do) and thecompatibilityof those
services. Several technologies, such as SOAP [45], WSDL [10], [44], are being devel-
oped to provide a standard way of describing Web Services. However, Web Service
standards mainly concentrates on the syntactic propertiesof the descriptions , i.e. syn-
tax of the descriptions, structure of messages exchanged between services, etc. Au-
tomating the composition process requires more comprehensive descriptions where the
semantics of a Web Service can be expressed in a machine-understandable format. The
means for sharing information between separate parties needs to be established in order
to combine the services together to achieve the overall goalof the composition.
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The Semantic Web vision is of a world where loosely coupled, independently
evolving ontologies provide common understandings between heterogeneous agents,
systems, and organizations. Several current efforts (OWL-S[34], SWSI [1], WSMO
[13]), are attempting to integrate the two visions, that is,to produce a world where Se-
mantic Web ontologies support greater automation of Web Service related tasks, such
as service discovery and composition.

Fairly rich Web Service descriptions provide the means to understand the semantics
of single services but it will still be required to put these services together to accomplish
goals that cannot be simply fulfilled with an individual service. Producing a sequence
of actions to reach a certain goal is the objective in AI planning. Web Service descrip-
tions can be mapped to action definitions and an AI planner canbe used to generate
compositions of Web Services.

The purpose of my research is to show that AI planning techniques can be extended
to automatically generate useful and purposeful compositions of Web Services under
incomplete information. My work will provide a basis for howto encode service de-
scriptions of sufficient richness to support partial to fullautomation of composition.

As a starting point, I have worked on how Web Ontology Language (OWL) can be
used to describe Web Services and their capabilities. This work resulted in developing
tools that partially automates of generating expressive Web Service descriptions and a
composition tool that helps users by using these descriptions to do selection and fil-
tering of the services. I have developed a Description Logicbased OWL reasoner that
was used to find combinations of Web Services and filter the results based on user con-
straints. As a preliminary work on automated composition I have worked on mapping
Web Service descriptions written from OWL-S to SHOP2 planning domains. I have
focused on the incomplete information problem and the issues related to interleaving
execution with planning process. I have also examined how tohandle the expressivity
of ontologies in the planning process. I have extended my work on reasoning proce-
dures to effectively handle precondition evaluations of the planner when the knowledge
about the state of the world is expressed in OWL.

In my future work, I will primarily concentrate on how to address the issues and
challenges listed above. I will work on extending the existing HTN planning paradigm
to be able to generate plans with operators and methods that are described by separate
sources. Enriching the task and method representation to allow easy-sharing descrip-
tions between different parties while improving the ability to match remote methods
with tasks at hand is going to play an important role. I will develop algorithms and
methodologies to interleave planning with execution not just to gather information
about the state of the world but also discover new planning operators and augment
the domain knowledge about the problem. I will not limit myself to use Web Services
described in a planning-oriented language such as OWL-S but also try to extend the
horizon to use less expressive Web Service descriptions, e.g. Web Services that do
not have explicit precondition/effect specifications but be associated with a message
exchange patterns or classified in a Web Service taxonomy.

4



2 Background and Related Work

2.1 Semantic Web and Ontologies

2.1.1 Semantic Web Languages

The Semantic Web [6] is an extension of the current Web in which information is given
well-defined meaning, better enabling computers and peopleto work in cooperation.
This is realized by marking up Web content, its properties, and its relations, in a rea-
sonably expressive markup language with a well-defined semantics.

Semantic Web languages are used to represent information about resources on the
Web. This information is not limited to be about Web resources but can be about any-
thing that can be identified. Uniform Resource Identifiers (URIs) are used to uniquely
identify entities. For example, it is possible to assign a URI to a person, to the company
he works for, to the car he owns, etc. so relations between these entities can be written
and shared on the Semantic Web.

There is a stack of languages that have been published as W3C recommendations
to be used on Semantic Web. At the bottom layer of the stack, there is the Resource De-
scription Framework (RDF) [9]. RDF is a simple assertional language that is designed
to represent information in the form of triples. Triples arestatements that contains a
subject, a predicate and an object. RDF Schema (RDFS) [8] is acollection of RDF
resources that can be used to describe properties of other RDF resources. Unlike its
name suggests, RDFS is not a schema that specific constraintson the structure of an
document, but instead provides information about the interpretation of the statements
given in an RDF data model. In this regard, RDFS has similarities to frame based lan-
guages and can even be described as a relatively inexpressive Description Logic (DL).
Though it should be noted that RDFS has a much more free representation and quite
different semantics that traditional DLs.

The Web Ontology Language (OWL) [14], is the most expressive standardized Se-
mantic Web language that is layered on top of RDF and RDFS. OWL can be used
to defineclasses(unary relations) andproperties(binary relations) as in RDFS but
also provides constructs to create new class descriptions as logical combinations (in-
tersections, unions, or complements) of other classes, define cardinality restrictions on
properties and so on. OWL has three different species: OWL Lite, OWL DL and OWL
Full. OWL Lite and DL differ from OWL Full such that they define certain constraints
on RDF and RDFS so as to be compatible with the traditional semantics of DLs.

2.1.2 Reasoning on Semantic Web

The semantics of unrestricted RDF-S and OWL Full is non-traditional and the reason-
ers built for OWL Full fragment tend to be sound but incomplete. Since there is no
straight-forward way to extend the existing reasoners to support the full expressivity
of OWL Full. Therefore, focusing on OWL DL fragment of the language and use the
sound and complete reasoning techniques developed for Description Logics.

Description Logics are a family of class-based knowledge representation formalisms
[4]. A DL knowledge base typically comprises two components: a “TBox” and an
“ABox”. The TBox contains intensional knowledge in the formof a terminology and
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the ABox contains extensional knowledge that is specific to the individuals of the do-
main of discourse. Intensional knowledge is usually thought not to change and exten-
sional knowledge is usually thought to be contingent, or dependent on a single set of
circumstances, and therefore subject to occasional or evenconstant change [4].

In DLs, there is one main inference problem, namely the consistency check for
ABoxes, to which all other inferences can be reduced. For example, checking if an
individuala belongs to a concept termC in an ABoxA can simply be done by checking
if A t {a : ¬C} is not consistent. Almost all other reasoning tasks, i.e. entailment,
query answering, can be reduced to consistency checking.

2.2 Web Services

2.2.1 Web Service Standards

There are various different standards that have been developed for different Web Ser-
vice tasks such as description, discovery and invocation. These technologies are pri-
marily designed to be used in conjunction with other Web standards, e.g. XML for
syntax and HTTP for communication.

SOAP [45] is the communication protocol designed to exchange messages between
applications over the Web. It is fundamentally a stateless,one-way message exchange
paradigm, but applications can create more complex interaction patterns by combin-
ing such one-way exchanges. SOAP provides a distributed processing model where
a SOAP message is delivered from a sender to an ultimate receiver via zero or more
SOAP intermediaries. This distributed processing model can support many message
exchange patterns including but not limited to one-way messages, request/response
interactions, and peer-to-peer conversations.

Web Service Description Language (WSDL) [10] is the languageto describe the
mechanics of interacting with a particular Web service. Theabstract functionality of
the Web service is defined in terms of the types of messages it sends and receives in
WSDL interface. An interfaces is a set ofoperationsand an operation is a sequence
of input and output messages. An operation associates a message exchange pattern
(MEP) with the message types that will be exchanged in that operation. The message
types are defined using a schema language such as (but not limited to) XML Schema.
The abstract interfaces are associated to concrete messageformats and transmission
protocols withbindingdescriptions.

Universal Description Discovery and Integration (UDDI) [44] is an emerging stan-
dard registry system for Web Services. UDDI allows businesses to advertise their Web
Services by publishing their descriptions on a global registry. There are three main
parts of this registry: White Pages that list contact information about the company that
developed the Web service; Yellow Pages that organize Web services by such cate-
gories as geography and industry code; and Green Pages that hold WSDL descriptions.
UDDI supports the association of an unbounded set of properties to the description
of Web Services via a construct called TModel. For example, aservice may specify
its category using an arbitrary classification system though their meaning is not cod-
ified, therefore there may be two different TModels with the same meaning, but this
similarity cannot be recognized.
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Business Process Execution Language for Web Services (BPEL4WS) [12] is a lan-
guage to define compositions of Web Services. It uses WSDL descriptions as the build-
ing block of the composition. BPEL4WS process is a kind of a flow-chart composed
of activities. An activity is either aprimitive or astructuredactivity. Primitive activi-
ties include single step operations such as invoking an operation on some Web Service
or waiting for a message from an external source. Structuredprocesses defined com-
positions using constructs such as sequences, conditionals, loops and so on. Similar
to WSDL, BPEL4WS allows both abstract (not executable) and concrete (executable)
descriptions. An abstract process description specifies the message exchange behavior
between different parties without revealing the internal behavior for any one of them.
An executable process, on the other hand, specifies the execution order between a num-
ber of activities constituting the process, the partners involved in the process and the
messages exchanged between these partners.

OWL-S [34] provides a set of OWL ontologies to describe Web Services in a more
expressive way than allowed by WSDL. The features of the Web Service, e.g. message
types, constraints and capabilities, are defined using the terms from Web Ontologies.
OWL-S partitions the semantic description of a web service into three components: the
service profile, process model, and grounding. TheServiceProfiledescribes what the
service does by specifying the input and output types, preconditions and effects. The
ProcessModeldescribes how the service works; each service is either anAtomicProcess
that is executed directly or aCompositeProcessthat is a combination of subprocesses
(i.e., a composition). TheGroundingcontains the details of how an agent can access a
service by specifying a communications protocol, parameters to be used in the protocol,
and the serialization techniques to be employed for the communication. The similari-
ties between OWL-S and other technologies may be briefly expressed as follows. The
ServiceProfile is analogous to yellow-page- like advertisements in UDDI, the Process-
Model is similar to the business process model in BPEL4WS, andthe Grounding is
a mapping from OWL-S to WSDL. The main contribution of OWL-S is the ability to
support richer descriptions of the services and the real world entities they affect in such
a way as to support greater automation of the discovery and composition of services.

Both BEPL4WS and OWL-S represents compositions from the perspective of a
single party. The client is responsible from handling the control and data flow between
the components of the composite service. This view of composition is calledorches-
tration. This view differs fromchoreography, which is more collaborative in nature
and aims to describe each involved party’s part in the interaction so each participant
will exact know how to interact with others. The choreography description outlines the
roles of participants, their obligations in the choreography, and the order and structure
of messages exchanged between these participants. A party who wants to participate
in this choreography needs to obey these rules. A W3C working group is now devel-
oping the Choreography Description Language (CDL) to specify the details of such a
description language.

2.2.2 Web Service Discovery and Matching

Research on Semantic Web Service discovery and matching hasprimarily focused on
using the subsumption relation between Web Service advertisements and requests. And
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more specifically the subsumption relation between the input and output types have
been used to generate matchings for Web Services that were defined using OWL-S.
The DAML-S 1 Matchmaker [35] is the first system that implemented this idea is a
system. The Matchmaker is designed to augment the current UDDI architecture with
semantic service descriptions. Using concepts from Web Ontologies for matchmaking
allows to find flexible matchings beyond the capabilities of UDDI which only supports
text based matching.

The Matchmaker system uses DAML-S (or, presumably in a successor, updated
Matchmaker, OWL-S) profiles to describe service requests as well as the services ad-
vertised. A service provider publishes a DAML-S description to a common service
repository. When someone needs to locate a service to performa specific task, a Servi-
ceProfile for the desired service is created. Request profiles are matched by the service
registry to advertised profiles using DL subsumption as the core inference service. In
particular, the Matchmaker computes subsumption relations between each individual
input, output, precondition and effect (IOPE) of the request and the advertisement Ser-
viceProfile. If the classes of the corresponding parametersare equivalent, there is an
exact and thus best match. If there is no subsumption relation, then there is no match.
Given a classification of the types describing the IOPEs, theMatchmaker assigns a
rating depending on the number of intervening named classesbetween the request and
advertisement parameters. Finally, the ratings for all of the IOPEs are combined to pro-
duce an overall rating of the match. In summary, the basic rating used in matchmaking
are as follows:

• Exact If advertisement A and request R are equivalent concepts, itis called an
Exact match

• PlugIn If request R is sub-concept of advertisement A, it is called aPlugIn match

• SubsumeIf request R is super-concept of advertisement A, it is called a Subsume
match

• Fail Otherwise, there is no match

[21] and [29] extends the matchmaking algorithms to exploitmore features of sub-
sumption relations. For example, when there is no subsumption relation between the
advertisement and request, a rating calledIntersectionmay be assigned when their in-
tersection is not empty, i.e. advertisement and request descriptions are not disjoint.
This case implies that relaxing some of the constraints on the request may provide
better results. And both approaches differ from the Matchmaker because they use
the whole service description, or more correctly the profiledescription, for discovery
purposes and try to find the subsumption relation between these more complex class
expressions. Lei and Horrocks point out a problem about OWL-Sprofile descriptions
where encoding too much information in the profile, e.g. nameand address of the
provider, prevents effective matching. They overcome thisproblem by separating var-
ious components of the description; in particular the description of the service being
provided was separated from the descriptions of the providing and requesting “actors”.

1OWL-S was formerly named as DAML-S and was based on DAML+OIL
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Benatallah et al. [7] presents a different matching algorithm, called “best pro-
file covering problem” to support flexible matching beyond equality and subsumption
matches. In this approach, matching the service request is encoded as a new instance
of the problem of rewriting concepts using terminologies. The goal is to rewrite a Web
Service request descriptionR into the closest description expressed as a conjunction of
(some) concept names (Web Service descriptions) in an ontology O. To enable flexi-
ble matchings, a difference operation on service descriptions is proposed to meet this
requirement. Such an operation enables to extract from a subset of Web service de-
scriptions, the part that is semantically common with a given service request and the
part that is semantically different from the request. Knowing the former and the latter
allows to select relevant Web services and then to choose thebest ones.

Roughly speaking, the difference of two descriptionsC andD, expressed using
C − D, is defined as being a description containing all information which is a part
of the descriptionC but not a part of the descriptionD [43]. However, it is worth
noting that, in some description logics,C − D may be a set of descriptions which are
not semantically equivalent. Teege [43] provides sufficient conditions to characterize
the logics where the difference operation is always semantically unique and can be
implemented in a simple syntactical way by computing the setdifference of subterms
in a conjunction. According to [43], structural subsumption is a sufficient condition
that allows to identify such logics.

In the profile cover algorithm, difference operator is applied to the inputs (denoted
by I(R)) and outputs (denoted byO(R)) of a request profileR and advertisement
profiles. Finding a set of advertised profilesA to minimizeO(R)−O(A) ensures that
the resulting set will satisfy the required output constraints. The algorithm considers
both themissingand theextrainformation in the found answer set. The implementation
of the algorithm is done by computing the minimal cost transversals of a hypergraph.

2.2.3 Automated Web Service Composition

Narayanan and McIlraith [32] define the semantics for a relevant subset of DAML-S
in terms of the situation calculus. Atomic process descriptions, preconditions and ef-
fects in DAML-S are mapped to situation calculus constructs. McIlraith and Son [31]
extends this mapping to encode composite processes in Golog[28], a high-level logic
programming language built on top of the situation calculus. They adapt and extend
the Golog language to enable programs that are generic, customizable and usable in
the context of the Web. To support information gathering combined with search, they
propose a middle-ground Golog interpreter that operates under an assumption of rea-
sonable persistence of certain information. A ConGolog interpreter is augmented with
online execution of information-providing services with offline simulation of world
altering services.

Berardi et al. [5] presents a framework in which the exportedbehavior of a Web
Service is described in terms of its possible executions (execution trees). The frame-
work is specialized to the case in which such exported behavior (i.e., the execution tree
of the Web Service) is represented by a (deterministic) Finite State Machines (FSMs).
It is shown that a composition for an external schema represented as a FSM is con-
stituted by a Mealy FSM (MSFM). Then synthesizing such a MFSMis achieved by
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reducing the problem of composition existence into satisfiability of a suitable formula
of Deterministic Propositional Dynamic Logic (DPDL).

2.3 AI Planning

2.3.1 Classical Planning

Most of the planning approaches rely on a general model, the model of state-transition
systems. In a state-transition system there are finite or recursively enumerable set of
states, actions and events along with a transition functionthat maps a state, action,
event tuple to a set of states. Given a state transition system, the purpose of planning
is to find which actions to apply to which states in order to achieve some objective,
starting from some given situation.

Classical planning is mainly based on the initial modeling of the STRIPS [16] sys-
tem. In this representation a state is represented by a set ofground literals expressed in
a first-order language. An action is an expression specifying which first-order literals
belong to the state in order for the action to be applicable, and which literals the action
will add or remove in order to make a new world state. An atomp holds in states iff
p ∈ s. If g is a set of literals with variables,s satisfiesg (denoteds |= g) when there is
a substitutionσ such that every positive literal ofσ(g) is in s and no negated literal of
σ(g) is in s.

In classical planning, a planning operator is a tripleo = (name(o), precond(o), ef-
fects(o)). Effects of an operator can be positive or negative, i.e.effects+(o) (generally
referred as the add list) represents the set of literals thatwill be added to the state and
effects−(o) (generally referred as the delete list) represents the setof literals that will be
removed from the state. An operatoro is applicable in a states when the preconditions
are satisfied in the state, i.e.s |= precond(o). Most planners represent the world state
with a relational database and thus precondition evaluation is very fast. Applying the
effects of an operator is done by adding or deleting entries from the database.

This representation is insufficiently expressive for some real domains. As a result,
many language variants have been developed. Action Description Language (ADL)
[36] is an important variation. ADL extends STRIPS representation by explicitly in-
cluding negative literals in the state, having conditionaleffects for operators and allow-
ing existential variables and disjunctions in goal formulas. Penberthy and Weld [39]
developed a partial order planning algorithm named UCPOP [40] to handle a signifi-
cant subset of ADL action representation.

2.3.2 HTN Planning

HTN planning is similar to classical planning in that each world state is represented
by a set of literals and each action corresponds to a state transition. However, HTN
planners differ from classical AI planners in what they planfor, and how they plan for
it. The objective of an HTN planner is to produce a sequence ofactions that perform
some activity or task. The description of a planning domain includes a set of opera-
tors similar to those of classical planning, and also a set ofmethods, each of which is
a prescription for how to decompose a task into subtasks. Planning proceeds by us-
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ing methods to decompose tasks recursively into smaller andsmaller subtasks, until
the planner reaches primitive tasks that can be performed directly using the planning
operators.

Many service oriented objectives can be naturally described with a hierarchical
structure. HTN-style domains fit in well with the loosely coupled nature of Web Ser-
vices: different decompositions of a task are independent so the designer of a method
does not have to have close knowledge of how the further decompositions will go or
how prior decompositions occurred. Such hierarchical modeling is the core of the
OWL-S [34] process model to the point where the OWL-S process model constructs
can be directly mapped to HTN methods and operators as shown in [47].

SHOP2 [33] is a domain independent HTN planner. A distinctive feature of SHOP2
is that it generates the steps of each plan in the same order that those steps will later
be executed, so it knows the current state at each step of the planning process. This
reduces the complexity of planning by eliminating a great deal of uncertainty about
the world, thereby making it easy to incorporate substantial expressive power into the
planning system. Thus SHOP2 can do axiomatic inference, mixed symbolic/numeric
computations, and calls to external programs during planning.

2.3.3 Planning with Incomplete Information

The XII [20] is a general-purpose planner which was originally designed to help an
autonomous agent plan in the presence of incomplete information. Other planners of
this genre include Cassandra [11] and IPEM [2]. XII can handle both causative goals
and knowledge-information goal. As an example one could useXII to first compress
all the ps files in a directory and then list all files which are below a certain size.
The first is a causative goal, while the second is an information-gathering goal, whose
outcome might change based on the causative actions that theagent might take before
considering this goal. In this case, some of the postscript files which were above the
size threshold before the compression was done, my get belowthe threshold after the
compression, and thus become eligible tuples for the information gathering goal.

XII can in principle be used to solve the pure information gathering problems,
with source calls modeled as information gathering actionswith knowledge effects.
However, use of XII for pure information gathering turns outto be an over-kill. This
is because the absence of causative changes to the environment around the information
gathering agent (the contents of the information sources are not modified by the queries
sent to them) vastly simplifies the planning problem, facilitating specialized methods
such as the ones described in [27]. However, XII methodologymay be useful once we
consider variants of the information gathering problem that model updates to sources
(either made by the information gatherer, or more likely, bythe source providers).

PUCCINI [20] is an extension of XII but has a richer language to specify actions
and goals and handles verification links. Interleaving planning with execution builds on
the approach used in IPEM. Unlike IPEM, PUCCINI can represent information goals
as distinct from satisfaction goals.

Knoblock et. al [3] developed the Sage system which is originally intended to
be a query planner for the SIMS project, that deals with heterogeneous distributed
databases. Sage assumes information source descriptions are complete, and that no
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source has query constraints, Sage casts the information gathering problem as a query
reformulation problem. Sage uses a modified version of UCPOPto search for the
correct sequence of reformulation operations that will transform the user’s query into
an equivalent query only on information sources.

3 Preliminary Work

In this section, I describe my preliminary work on Web Service composition. Section
3.1 explains the interactive composition of Web Services where a user builds a compo-
sition with the help of a semi-automated tool I built. The tool uses Web Ontologies to
find and filter Web Service matches. Issues such as the generation of OWL-S descrip-
tions from WSDL specifications and use of concept-mapping WebServices to improve
multi-ontology matches is also described in this section. Section 3.2 describes how
to automate the composition of Web Services using HTN planning. The section ex-
plains how the OWL-S processes was mapped to HTN task descriptions and includes
the proof for soundness and completeness of the plans generated after this mapping.
Section 3.3 describes my initial work on information gathering during planning and
presents some of the preliminary results obtained. Section3.4 describes the issues re-
lated to using Web Ontologies to describe preconditions andeffects of Web Services.
The integration of a Semantic Web reasoner with an HTN planner is examined and
the problems caused by the extra expressivity of Web Ontologies and their distributed
nature are discussed. Lastly, section 3.5 describes my workon implementing a Seman-
tic Web reasoner and how this relates to the various reasoning tasks that were used in
different parts of my preliminary work .

3.1 Interactive Composition of Web Services

As a starting point, I have developed an interactive tool to partially automate the Web
Service composition process. The composition of Web Services is achieved in a goal-
directed fashion where the composition is gradually generated with a forward or back-
ward chaining of services. At each step, a new service is added to the composition and
further possibilities are filtered based on the current context and user decisions.

Building the composition step-by-step is very intuitive for many cases. For exam-
ple, consider the task of making the necessary travel arrangements for a trip. The first
step is to book a means of transportation. You start by findingthe services that let you
make reservations for transportation. Then you need to filter these services because not
all of the services are relevant to your current task—e.g. ones that does not provide
transportation to your destination or ones that have no availability at the desired dates
should not need to be considered. Filtering may be further used to help determine the
service that best fits for your personal preferences, such asaccepting a certain credit
card or serving particular destinations with non-stop flights. After this step is resolved,
you can continue the composition process by finding compatible services. Perhaps you
have a clear idea of what further tasks you’d like to accomplish with this composition
or perhaps just seeing the available, compatible services will suggest further goals. Just
as with business or consumer services, we expect propinquity to be a key factor in de-
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Making Travel Arrangements
1. Book transportation

1.1. Find transportation services
1.2. Filter out the services which has no availability at thedesired dates
1.3. Select a service that accepts your credit card, offers agood price, etc.

2. Make hotel reservation
(feed date of arrival information from previous service to this one)
...

3. Record expenses in your financial organizer
(compute total of expenses from previous steps)

Table 1: A step by step composition of a service that will makethe travel arrangements
for a trip

termining desirable compositions, particularly when the “extra” services are not strict
requirements of the current task.

3.1.1 Creating Semantic Service Descriptions

Partial automation of composition can effectively be done when the Web Services have
fairly rich descriptions that will help to find the relevant Web Service matches. As
discussed in section 2.2.2, using Semantic Web ontologies to describe Web Services
provides possibilities to automatically generate flexiblematches. Unfortunately, it is
not possible to find a large number of Web Services described in OWL-S. On the hander
hand, there is an increasing number of WSDL-described web services available on
the Web, both from independent developers and large companies (e.g., Amazon and
Google). Annotating these web services with OWL-S provides agood opportunity for
us to access a lot of semantically described, executable services.

For this reason, I worked on to partially automate the derivation of OWL-S de-
scriptions from WSDL descriptions. For eachoperationa WSDL document describes,
the document will provide a description of the input and output messages and their
substructure for that operation. Normally we take a WSDL operation to correspond to
an OWL-S AtomicProcess, with the parameters of that process corresponding to var-
ious message parts. In nearly all WSDL documents, the contentof message parts are
described by XML Schema datatypes, quite often complex types (that is, types which
describe elements with possible attribute or subelement structure). Since parameter
type compatibility is a critical part of the interactive composition method, it is very
important that the service description supplies sufficiently expressive types.

For many purposes it is preferable to have the parameter types of OWL-S services
be OWL classes, as it would allow for more flexible matching andmore natural OWL-
based descriptions. Since we are already augmenting the information in a WSDL de-
scription, it seems reasonable to do so with the types as well. Thus, we treat the WSDL
supplied types as descriptions of the “wire format” of the service parameters, that is,
the serialization of the values actually used by our process. We extended the OWL-S
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Figure 1: A tool to automate translation from WSDL descriptions to OWL-S

Grounding to all for the inclusion of marshaling and unmarshaling functions which
our OWL-S executor can use to coerce XML Schema values to OWL individuals and
back.2 These functions are, by default, encoded as XSLT stylesheets. For example,
an unmarshaling function is written as an XSLT transformation from XML fragments
matching the specific XML Schema type to an RDF graph serialized in the RDF/XML
exchange syntax. That graph encodes the relevant assertions about the individual which
is the actual input to the service. Marshalling functions are implemented as the inverse
transformation. Using published XSLT obviates the need forthe OWL-S executor to
be extended with specific type coercion functions — it just needs a generic XSLT pro-
cessor, perhaps running as a remote service. The downside isthat due to the extremely
free syntax of RDF/XML (especially, the plurality of equivalent forms), it is difficult
to write XSLT that can handle all the legal serializations ofa given RDF graph, and the
resulting stylesheet is difficult to understand and maintain.

Clearly, writing such transformation functions by hand is not feasible. Marshalling
and unmarshaling functions already can be a source of subtlebugs as they require a
deep understanding of both source and target formalism, a good understanding of the

2These extensions, with further development by the OWL-S coalition, were subsequently included in
OWL-S. These extensions and their implementation were done in collaboration with Fujitsu Labs of Amer-
ica, College Park, with extensive feedback from Ryusuke Masuoka.
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services both on the WSDL side (i.e., of the operational semantics of the service) and
on the OWL-S side (i.e., of how the descriptions affect the various of OWL-S related
inferences). Adding essentially irrelevant and idiosyncratic details of a specific lin-
ear syntax for RDF compounds the problem. Unfortunately, current standard solutions
tend to compromise interoperability. In our system, since we control all our execution
engines (in fact, we reuse a single implementation), we can require a specific profile
of RDF/XML that avoids confusing or redundant constructs. Clearly if other engines
do not generate that profile, then our XSLT transformations can fail. Also it is unclear
that, even with a suitably designed profile, the necessary XPath queries will be suffi-
ciently obvious and transparent to the programmer. Finally, while feeding the XSLT
processor some XML allows for great flexibility, both in choice of implementation of
processor and of the specific instance of some processor, it is unlikely that the internal
representation of the individual will be, say, W3C DOM trees,so there is the constant
need for additional data conversion.

All three issues would be dealt with by the incorporation of an RDF and OWL
sensitive query language (such as RDQL or Versa) into the XSLT, or perhaps XQuery,
standards. Even if generic XSLT or XQuery processors generally failed to include
such extension, it would provide a standard and appealing target for OWL-S engines to
implement; and, even if the query languages were not ideal, they would have both less
of a conceptual gap and less of an implementation gap than XPath queries.

An appealing alternative to either technique is to use a higher level mapping lan-
guage, perhaps along the lines of MDL [46] as proposed in [37]. If the mappings could
be compiled to XSLT or other transformation languages, there would be an enormous
gain in portability, and by eschewing the general expressive power of programming
languages like XSLT, there might be a significant gain in transparency and analyzabil-
ity. Unfortunately, the design of such a language covering the entire expressivity of
OWL is a formidable task.

3.1.2 Using Web Ontologies for Partial Automation of Composition

I have built a system to provide support for our interactive composition approach us-
ing semantic service descriptions. Filtering and selection of services is achieved by
using matchmaking algorithms similar to those implementedin [35], [21] and [29].
extended this algorithm to consider the subsumption relation between the request and
advertisement profiles considered as whole concepts.

Our system uses the same basic typology of subsumption basedmatches, but in
some contexts we match based on the subsumption of the entireprofiles, and in other
contexts we use subsumption only to directly match individual parameters.

The system has two separate components. An inference engineis responsible for
storing service advertisements and processing match requests. The inference engine is
Pellet [38], the OWL-DL reasoner I implemented. The other component of the system
is the composer where the workflow of service composition is generated. The composer
communicates with the inference engine to discover possible matches and present them
to the user. It also lets users to invoke the completed composition on specific inputs.

The composer lets the user create a workflow of services by presenting the possible
choices at each step. The user is first presented with all the available services registered
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Location

GeographicLocation Address

USAddress

Figure 2: A simple hierarchy of location related concepts

to the system. This first step is totally unguided. Each subsequent step of the composi-
tion makes use of two sorts of matching, on IOPEs (which is fully automated) and on
other service parameters. Forms for entering constraints on the service parameters are
generated from the ontologies defining those parameters. Inany step, the final selection
of the specific service is done by the user.

3.1.3 Matching on IOPEs

At each step of the composition, a list shows the IOPE compatible services that can
be added to the composition. When a service is selected from the list, the composer
presents as options those services whose output could be fedto the current service as an
input. Suppose the selected service accepts an input of typeAddresswhich is defined
in a certain ontology where the concept hierarchy is shown inFigure 2. We would
like to find the services which have an output that is compatible with this type. An
output of a service would be considered compatible if it was of typeAddressor another
concept which is subsumed byAddress, i.e. USAddress. When the output of a service
is subsumed by the input, the output type can be viewed as a specialized version of the
input type and these services can still be chained together.However, a service whose
output isLocationcould not be composed with this service sinceAddressconcept will
most likely have additional properties and restrictions onthe existing properties of
Location.

Clearly, only Exact and PlugIn matches between the parameters of ServiceProfiles
would yield useful results at this step. For service selection, we need match on indi-
vidual parameters types instead of whole profiles, as we consider all type compatible
services to be reasonable “next steps” of a composition. Oneinteresting extension
would be to consider certain service parameters against global constraints as part of
service compatibility. For example, suppose before starting the composition process,
the user enters an overall price limit on the composition. Atany step, the system sums
the values of all cost service parameters of the currently composed services, and uses
the difference between that sum and the set limit to filter potential next steps.

The ordering of the result displayed in the list is based on the degree of the match.
The Exact matches are more likely to be preferred in the composition and these services
are displayed at the top of the list. The PlugIn matches are presented after the Exact
matches and PlugIn matches are ordered according to the distance between the two
types in the ontology tree.
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3.1.4 Filtering on Service Parameters

The number of services displayed in the list as possible matches can be extremely
large. For example, a power grid or telephone network might have many thousands
of sensors each providing several services. This will make it infeasible for someone
to scroll through a list and choose one of the services simplyby name. Furthermore,
even if the number of services is low, the service names themselves may not be contain
enough information to let a user know what they do. When the name of the service
does not help to distinguish the services, we turn to the other service parameters, such
as location, to help determine the most relevant service forthe current task. Thus,
a sensor description, linked to a particular service, can bequeried as to the sensor’s
location, type, deployment date, sensitivity, etc.

The ServiceProfile hierarchies defines a classification which is used at the first level
of filtering. By selecting a profile category from the list, user limits the shown available
choices whose ServiceProfile matches with the selection. Weexamine the definitions
of the various ServiceProfiles to build various user input forms for specifying further
constraints on the desirable services.

Figure 3: Filtering is used to see only omnidirectional acoustic sensors that are located
at a latitude between 30-40 and a longitude between 70-75. Itis seen that only one of
55 services satisfy these constraints

Consider a example in the sensor network where we want to select a specific sensor
service. With no other restriction, the system will presentevery available sensor ser-
vice. This is better than presenting all the services, but the remaining choices can still
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be overwhelming. If the user chooses to filter the results to the services withAcoustic-
SensorServiceProfiles, that decreases the number of matches significantly. The com-
poser then queries the inference engine about the possible service parameters of the
selected service type. Based on the answer returned from theengine, the composer
creates a GUI panel in which the user can enter constraints for the properties of the
services as shown in Figure 3.

The user’s constraints are combined in a service request profile. The service request
is sent to the inference engine and the result of this new query is applied to the previous
result set. The services that do not satisfy the current constraints are removed from
consideration. The matchmaking for this step can use Relaxed matches as well as
Exact and PlugIn matches. Using Relaxed matches will probably increase the choices
presented allowing the user to make a more flexible selection. Relaxed matches are
permissible because we already know that the set of servicesthe user is considering are
compatible in this context.

3.1.5 Improving IOPE Matching with Ontology Translation Services

With both IOPE matching and service parameter filtering there is a strong need for a
suitable set of service descriptions of sufficient and compatible detail to support, for
IOPE matching, the appropriate subsumptions and, for service parameter filtering, in-
telligible form based queries. It is straightforward to elaborate the service parameter
filter forms by extending the definitions of the concepts usedto describe those parame-
ters. We expect that such extension will be done using standard ontology editing tools.

We have already discussed improving IOPE matching by converting the IO type
descriptions from XML Schema datatypes to OWL classes. In that process, the choice
of target OWL class is critical to generating matchmaking hits. The Semantic Web is
likely to have a large number of somewhat overlapping ontologies, that is, ontologies
which have fairly similar, but distinct concepts. If service description authors choose
different, but relevantly equivalent, classes to unmarshall their XML Schema datatypes
to, the system will fail to match intuitively compatible services. Ideally, some sort of
concept or ontology mapping would make these relevant equivalences transparent to
the system. Aside from the normal OWL-DL constructs for equating classes, we have
the concept of aTranslatorServiceProfile, that is, of services whose entire job is to take
the description of an OWL individual against one ontology, and produce the relevantly
equivalent set of assertions against another.

However, there is an important sense in which these servicesare unimportant to
the composition process. Rather, they areonly important insofar as they promote the
composition of other services which actually move the user closer to her goal. They
are not suggestive of interesting further steps, thus are merely a burden on the user.
To eliminate this, we do not actually present the translation services to the user, but
rather created “fused” services on the fly. A fused service isa chain of translation
services terminating in a non-translation service. The fused service is presented as
a type compatible non-translation service, thus increasing the number of substantial
options at any particular step. Details about the mapping can be found in [42].
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3.2 Automated Composition of Web Services Using HTN Planning

Web Service descriptions can be extended to include information such as preconditions
and effects. OWL-S description language uses these constructs give more information
about what the service does. It is possible to map such descriptions to planning opera-
tors and exploit AI planning techniques for automatic service composition by treating
service composition as a planning problem. Ideally, given auser’s objective and a set
of Web services, a planner would find a collection of Web Services that achieves the
objective.

We believe that HTN planning is especially promising for this purpose, because the
concept of compound tasks in HTN planning is very similar to the concept of composite
process descriptions. A Web Service workflow that has a complex structure with many
different execution paths can be modeled as an HTN method. This information can be
fed to a HTN planner as a planning domain and planner would compose a sequence of
atomic processes that would consitute a valid deccomposition of the original composite
service.

There are several ways in which HTN approach is promising forservice composi-
tion. HTN encourages modularity. Methods can be written without consideration of
how its subtasks will decompose or what compound tasks it decomposes. The method
author is encouraged to focus on the particular level of decomposition at hand. This
modularity fits in well with Web Services. Methods correspond to recursively com-
posable workflows. These workflows can come from diverse independent sources and
then integrated by the planner to produce situation specific, instantiated workflows.
Also HTN planning scales well to large numbers of methods andoperators as method
decompositions provide means to prune the search space by ignoring unrelated method
descriptions.

In the following sections first encoding OWL-S process modelsas SHOP2 domains
is explained, then definition of how to formalize a Web Service composition problem as
SHOP2 domain is shown. Then the soundness and correctness ofthe plans generated
by SHOP2 is proven with respect to the situation-calculus semantics of OWL-S given
in [31] and [31].

3.2.1 Encoding OWL-S Process Models as SHOP2 Domains

In [47] we have provided the details of a mapping algorithm that translates the OWL-
S process descriptions to SHOP2 planning domains. The encoding of Web Service
descriptions to HTN domains is achieved as follows:

• Each atomic process with effects is encoded as a SHOP2 operator that simulates
the effects of the world-altering Web Service.

• Each atomic process with output is encoded as a SHOP2 operator3 whose pre-
condition include a call to the information-providing Web Service.

• Each simple or composite process is encoded as one or more SHOP2 methods.

3These processes are encoded as “book-keeping” operators sothey do not appear in the final plan.
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These methods will tell how to decompose an HTN task that represents the sim-
ple or composite process.

This mapping assumes that all atomic processes defined in OWL-S process model
can either have effects or outputs, but not both. An atomic process with only outputs
models a strictly information-providing Web Service. And an atomic process with only
effects models a world-altering Web Service. In general, wedon’t want to actually
affect the world during planning. However, we do want to gather certain informa-
tion from information-providing Web Services, which entails executing them at plan
time. To enable information gathering from Web Services at planning time, we require
that the atomic processes to be either exclusively information-providing or exclusively
world-altering.

It is also assumed that there is no OWL-S composite process in the input that uses
SplitandSplit+Joincontrol constructs. SHOP2 currently does not handle concurrency.
Therefore in our translation, we only consider OWL-S processmodels that have no
composite process usingSplit andSplit+Joincontrol construct. We also assume only a
non-concurrent interpretation ofUnordered. The details of the encoding can be found
in [47].

3.2.2 Encoding OWL-S Web Service Composition Problem as SHOP2 Planning
Problem

Narayanan and McIlraith [32] give a formal semantics for OWL-S in terms of the situ-
ation calculus [41] and Golog [28]. The situation calculus in a first-order language for
reasoning about action and change. In the situation calculus, the state of the world is
described by functions and relations (fluents) relativizedto a situations, e.g.,f(x, s).
The functiondo(a, s) maps a situations and an actiona into a new situation. A situa-
tion is simply a history of the primitive actions performed from an initial, distinguished
situationS0.

Golog is a high-level logic programming language based on the situation calcu-
lus, that enables the representation of complex actions. Itbuilds on top of the sit-
uation calculus by providing a set of extralogical constructs (Figure 4) for assem-
bling primitive actions, defined in the situation calculus,into complex actions that
collectively comprise a program,δ. Given a domain theory,D and a Golog program
δ, program execution must find a sequence~a, such thatD |= Do(δ, S0, do(~a, S0)).
Do(δ, S0, do(~a, S0)) denotes that Golog programδ starting atS0 will legally terminate
in situationdo(~a, S0)) wheredo(~a, S0)) is used to abbreviate the following expression
do(an, do(an−1, . . . , do(a1, S0)). Thus,a1, . . . , an are the actions that realize Golog
programδ, starting in the initial situation,S0.

The semantics given in [32] and [31] maps an OWL-S process to a Golog pro-
gram where atomic processes in OWL-S are mapped to primitive actions in Golog and
composite processes in OWL-S are mapped to corresponding complex Golog actions.
Using these semantics, we can define the OWL-S service composition problem as fol-
lows:

Definition 3.1 (OWL-S Service Composition)LetK = {K1, K2, . . ., Km} be a col-
lection of OWL-S process models satisfying the assumptionslisted in Section 3.2.1,
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a - primitive action
δ1; δ2 - sequence
cond? - test
δ1| δ2 - nondeterministic choice of actions
δ∗ - nondeterministic iteration
if cond then δ1 elseδ2 endIf - conditional
while cond do δ endWhile - while loop

Figure 4: A subset of Golog constructs to create complex actions that are relevant to
OWL-S constructs.

C be a possibly composite process defined inK, S0 be the initial state, andP =
(p1, p2, . . . , pn) be a sequence of atomic processes defined inK. ThenP is a compo-
sition forC with respect toK in S0 iff in action theory, we can prove:

Σ |= Do(δC , S0, do(~a, S0)))

where

• Σ is the axiomatization ofK andS0 as defined in action theory.

• δC is the complex action defined forC as defined in action theory

• ai is the primitive action defined forpi as defined in action theory

Note that this definition is for offline planning, i.e. there is no execution of informa-
tion-providing Web Services during planning. This definition assumes that the initial
state contains the complete information for the domain. In reality, this is not the case
as we interleave the execution of information-providing services with the simulation
of world-altering ones to complete the information in the initial state. Information
gathering is done with respect to the the initial state so theplanning process would
yield the same results if all the information-providing WebServices were executed
prior to planning. There are some conditions (similar to theIRP assumption [31]) that
need to hold in order to extend this theorem for interleaved execution. We will discuss
these conditions at the end of this section.

We will now prove that the plans SHOP2 finds for the OWL-S service composi-
tion problem are equivalent to the action sequences found insituation calculus. We
will use the simplified version of SHOP2 algorithm (Figure 5)during the proof. Since
Golog does not provide anUnorderedconstruct we will not consider this construct
in our proof and in the SHOP2 algorithm we have omitted the details related to un-
ordered tasks. It is possible to defineUnorderedconstruct in ConGolog (Concurrent
Golog) [19] which is an extension to Golog that allows concurrent execution. But since
SHOP2 does not allow concurrent processes we cannot use thisextension. Also note
that in the original Golog formalism complex actions are defined as macro definitions
[28] so complex actions do not have preconditions. In our proof, we will show the
correspondence to the original Golog approach and assume that in the given OWL-S
process model only atomic processes have preconditions.
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1 procedure SHOP2(s, T , D)
2 if T is empty then return empty plan
3 Let t be the first task in T
4 if t is a primitive task then
5 Find an operatoro = (h Pre Add Del) in D such that

h unifies witht ands satisfiesPre

6 if no sucho exists then return failure
7 Lets′ bes after deletingDel and addingAdd

8 LetT ′ beT after removingt
9 return [o, SHOP2(s′, T ′, D)]
10 else ift is a composite task
11 Find a methodm = (h Pre1 T1 Pre2 T2 . . .) in D such that

h unifies witht

12 Find the task listTi such that
s satisfiesPrei and does not satisfyPrek, k < i

13 if no suchTi exists then return failure
14 LetT ′ beT after removingt

and adding all the elements inTi at the beginning
15 return SHOP2(s′, T ′, D)
16 end if
17 end SHOP2

Figure 5: A simplified version of the SHOP2 planning procedure.

Theorem 3.2 Let K = {K1,K2, . . . ,Km} be a collection of OWL-S process models
satisfying the assumptions listed in Section 3.2.1,C be a possibly composite process
defined inK, S0 be the initial state, andP = (p1, p2, . . . , pn) be a sequence of atomic
processes defined inK. ThenP is a composition forC with respect toK in S0 iff P

is a plan for planning problem (S0, MC , D) whereMC is the SHOP translation for
processC andD is the SHOP domain created fromK.

Proof 3.3 Before giving the proof we should note that there is a representational dif-
ference between how SHOP2 and situation calculus describesthe state of the world.
SHOP2 represents state by a set of ground atoms whereas in thesituation calculus,
the state of the world is described by relations (fluents) relativized to a situation. For
example,f(~x) is true at some point in the planning process when that atom occurs in
SHOP2’s “state” (e.g., the set of ground atoms). In the situation calculus, truth value
for that relation is relative to a specific situation argument, e.g.,f(~x, s). The changes
to the state in SHOP2 is done by adding or deleting atoms from the state whereas sit-
uation calculus defines successor state axioms to define the truth values for the fluents
in different situations. Apart from this representationaldifference, there is an equiv-
alence between SHOP2 state and situations, e.g.f(~x) is true in the initial state of
SHOP2 ifff(~x, S0) is true in situation calculus. Applying the effects of an operator
will also preserve this equivalence. It is easy to verify that the truth value for the pred-
icatef(~x) after applying the effects of an operator will be equal to thetruth value of
f(~x, do(a, s)) whena is the corresponding situation calculus action and the starting
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states are equivalent. In general, when the same sequence ofactions/operators are
applied to a situation/state, the state of the world in the final situation/state will be
the same. Throughout the proof, we will use this equivalenceand use the same name
to denote world states in both notations when the meaning is clear. The proof of the
theorem is by induction:

Hypothesis For a given OWL-S processC, P is a plan for the planning problem
(S0, MC , D) iff Σ |= Do(δC , S0, do(~a, S0))) where~a = [a1, a2, . . .] is the sequence
of primitive actions in situation calculus that corresponds to the sequence of SHOP2
operators inP .

Base Case SupposeA is an atomic OWL-S process anda is the corresponding
primitive action in situation calculus andoA is the corresponding SHOP2 operator.
Then in Golog it is defined that

Do(a, s, s′) = Poss(a, s) ∧ s′ = do(a, s)

It means when the preconditions for the process is satisfied with respect to situation
s then the primitive action sequence we will get for this simple program will have
only one element, namely~a = [a]. As seen in line 9 of SHOP2 algorithm, the plan
for a primitive task will return the plan that includes the operator instance when the
preconditions of that operator are satisfied (the recursivecall will return empty list as
there are no more tasks in the list). Thus, the plan returned by SHOP2 is [oA] which is
equivalent to the situation calculus result.

Inductive Step We will do a case by case analysis for each of the control constructs
in the process model to show that our translation and resulting plans SHOP2 finds are
correct.

Choice SupposeC is a composite OWL-S process defined as aChoiceof two4 other
processesC1 andC2. The SHOP2 translation forC will yield two methodsM1 = (C ∅
MC1

) andM2 = (C ∅ MC2
). Note that the SHOP2 methods have no preconditions (∅

is used for preconditions) because we have assumed that composite processes cannot
have preconditions. Corresponding Golog program forC is δC = δC1

| δC2
and the

semantics is defined as

Do(δC1
|δC2

, s, s′) = Do(δC1
, s, s′) ∨ Do(δC2

, s, s′)

The disjunction means any~a that is a valid action sequence for eitherδC1
or δC2

will also be a valid sequence forδC . From our hypothesis we know for each action
sequence~a that satisfiesδC1

(or δC2
) we have a valid SHOP2 planPC1

(or PC2
). The

nondeterministic choice in SHOP2 algorithm (line 11) showsthat when a plan is being
sought forC, the solution for any matching method instance, in this caseM1 andM2,
will be returned as a result. This ensures that when SHOP2 is asked to find all the
plans forC, bothPC1

andPC2
will be returned proving the equivalence to the answer

in situation calculus.
Sequence SupposeC is a composite OWL-S process defined as aSequenceof two

other processesC1 andC2. The SHOP2 translation forC will yield one methodMC

4The Golog choice operator| is defined for two operands. A choice of more operands could be done by
nested| operators which would not effect our proof here
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= (C ∅ (MC1
MC2

)). The corresponding Golog program forC is δC = δC1
; δC2

and
the semantics is defined as

Do(δC1
; δC2

, s, s′) = (∃s∗)(Do(δC1
, s, s∗) ∧ Do(δC2

, s∗, s′))

Suppose that situations∗ represents a history of the action sequence~a1. If the
action sequence recorded between situationss∗ and s′ is ~a2 then the final situation
s′ represents the concatenated sequence~a =[~a1, ~a2]. Calling SHOP2(s, MC1

, D)
will return PC1

and from our hypothesis we know that it is equivalent to the action
sequence~a1. We also know that calling SHOP2(s∗, MC2

, D) will return a planPC2

that is equivalent to the action sequence~a1. The SHOP2 algorithm shows that (line 14)
when a task (in this caseMC) is removed from the input task networkT , it is replaced
with its sub-elements (in this caseMC1

andMC2
). The tasks to solve are selected from

T in the order they were added (line 3) so the resulting plan forSHOP2(s, MC , D)
will actually be the concatenation ofPC1

andPC2
which is equivalent to the sequence

~a.
If-Then-Else SupposeC is a composite OWL-S process defined with anIf-Then-

Elsecontrol construct andcond is the condition for the if statement,C1 is the process
in the then part andC2 is the process in the else part. The SHOP2 translation forC

will yield one methodMC = (C cond MC1
∅ MC2

). Corresponding Golog program
for C is δC = ( if cond then δC1

else δC2
endIf) and the semantics is defined as

Do(if cond then δC1
else δC2

endIf, s, s’)
= Do((cond?; δC1

), s, s’)∨ Do((¬cond?; δC2
), s, s’)

= (cond[s] ∧ Do(δC1
, s, s’))∨ (¬cond[s] ∧ Do(δC2

, s, s’))
The expressioncond[s] evaluates to true whenever the fluentcond is true in situ-

ation s. Suppose~a1 is the action sequence for the situationδC1
and~a2 is the action

sequence for the situationδC2
. If s satisfiescond then the result forδC will be ~a1

otherwise result will be~a2. From our hypothesis we know for any possible~a1 (or ~a2)
we have a valid SHOP2 planPC1

(or PC2
). When we call SHOP2(s, MC , D), the

algorithm will check the conditions in the method definition(line 12), cond and∅ in
this translation. Ifcond is satisfied algorithm returnsPC1

and otherwise returnsPC2

which is equivalent to the the result in situation calculus.
Repeat-While SupposeC is a composite OWL-S process defined with aRepeat-

While control construct andcond is the condition for the while statement andC1 is the
process in the loop body. As we have assumed that composite processes do not have
preconditions, without losing generality, we can simplifythe SHOP2 translation to be
MC = (C cond (C1 C) ∅ ∅). Corresponding Golog program forC is δC = (while cond

do δC1
endWhile) and the semantics is defined as

Do(while cond do δC1
endWhile, s, s’) = Do([[( cond?; δC1

)]∗; ¬cond?], s, s’)

This definition includes the nondeterministic iteration operation * which has a
second-order semantics [28]. We will use the restricted version of Golog as defined
in [31] where the the iterations has a limitk. This restriction eliminates the problems
caused by unlimited looping and enables us to define a first order semantics.

Assume the iteration runsk times. Whenk = 0, the above formula will simplify
to Do(¬cond?, s, s’) which returns an empty action sequence in situation calculus.
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This new formula also implies conditioncond is false in the initial situations. When
SHOP2 is trying to solveMC , sincecond is false the algorithm will choose (line 12)
the second condition-task list pair (note that the second condition in MC is ∅ which
is always true). The second task list is∅ so SHOP2 will return an empty plan as
well. Suppose~a is a valid action sequence forδC1

. From our hypothesis we know
for each action sequence~a that satisfiesδC1

we have a valid SHOP2 planPC1
. In

the general case, whenk > 0, the Golog formula becomesDo([cond?; (δC1
)1; . . .;

cond?; (δC1
)k; ¬cond?], s, s’) hence the action sequence will be [~a1, . . ., ~ak]. Note

that action sequence for each step of iteration may be different, for example whenδC1

contains nondeterministic choices. We also know thatcond will be true in situations
s, s1, . . . , sk−1 and false in situationsk. When SHOP2 is searching a plan forMC ,
the first condition (cond) will evaluate to true and SHOP2 will chose the first task list
(C1 C). Solving the first taskC1 will add P1 to the plan and solving second taskC will
recursively continue untilcond fails. Since, initial states are equal and plan prefixes
are same,cond will not hold afterkth iteration. At this point, algorithm will chose
the second condition-task list pair (empty task list) whichwill conclude the recursion
and the plan returned will be [P1, . . ., Pk]. At each step of the iteration we will have
the equivalent world states so the action sequenceai and planPi will be equivalent
due to our hypothesis. Therefore, the final plan and the final action sequence will be
equivalent.

Repeat-Until The proof for this case will be very similar to the above prooffor
Repeat-Whileconstruct.

Our proof did not include the effects of executing information-providing services
during planning. Information gathering during planning isequivalent to the Middle
Ground execution (MG) for sensing actions in the Golog approach [31]. In both cases,
planning starts with an incomplete initial state and executing sensing actions adds new
knowledge to the state. As long as the information retrievedfrom the services doesn’t
change over the course of planning, we would still have the equivalence of world states
in both representations and it would be straight-forward toextend the proof for this
case.

The correctness of MG depends on the Invocation and Reasonable Persistence
(IRP) assumption [31]. Intuitively, IRP assumption says that

• Information-providing services should be executable in the initial state, and

• Information gathered from these services cannot be changedby external or sub-
sequent actions.

The first condition follows from the fact that information gathering is done with respect
to the initial state. The second condition assumes no external source will change the
gathered information during the planning process but also prohibits the planner from
changing the gathered information as well. This is to prevent problems such as this
one: In our example domain (see Section 3.2.3) a Web Service is executed to get the
available appointment times from a hospital. Then planner simulates scheduling an
appointment at one of the available time slots. If the information-providing service is
executed again and the available appointment times (which have not yet been changed)
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are added to the knowledge base then there would be a problem because planner would
be able to schedule another appointment in the same time slot. The IRP prohibits
the second step (changing the information retrieved) to overcome this problem. This
solution is certainly very restrictive and obviously our example domain violates this
assumption. For this reason, our solution is to prohibit thelast step where the same
information-providing service is executed more than once.

To establish the soundness and completeness of our approachwe have the following
assumptions about the information-providing Web Services:

• executable (in the initial state with all parameters grounded)

• terminable (with finite computation)

• repeatable (with same result for the same call during the planning process)

We also assume that the information that is returned from different Web Services are
disjoint, i.e. no two services return the same information.These assumptions guar-
antee that gathered information can only be changed by the actions planner simulates.
Also there is no way that this simulated change will be undoneby another information
gathering step as long as we execute each information-providing Web Service at most
once. Note that we do not need to run the same service twice since the information is
guaranteed to be same each time due to repeatability assumption.

One other thing to note is that, different from the Golog approach, we don’t al-
low the information-providing services appear in the final plan since our translation
methodology maps them to “book-keeping” operators. However, this is just a style
difference as in the Golog approach a post-processing step is suggested to find the
world-altering services for the execution of the resultingplan. In some situations, it
could still be valuable to include the information-providing services in the plan so a
prudent action could verify if the information-providing services still return same in-
formation. This could be easily achieved in our system by changing the encoding of
information-providing services to use standard operatorsrather than “book-keeping”
operators.

3.2.3 Implementation

To realize these ideas, we started with an implementation ofa OWL-S to SHOP2 trans-
lator. This translator is a Java program that reads in a collection of OWL-S process
definitions and outputs a SHOP2 domain. As shown in the translation algorithm in
Section 3.2.1, when planning for any problem in this domain,SHOP2 will actually call
the information-providing Web services to collect information while maintaining the
ability of backtrack by merely simulating the effect of world-altering Web services.
The output of SHOP2 is a sequence of world-altering Web services calls that can be
subsequently executed.

We built a monitor which handles SHOP2’s calls to external information-providing
Web Services during planning. We wrote a OWL-S Web Services executor which
communicates with SOAP based Web Services described by OWL-Sgroundings to
WSDL descriptions of those Web Services. Upon SHOP2’s request, the monitor will
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call this OWL-S Web Services executor to execute the corresponding Web Service.
Since the information-providing services are always defined as atomic processes, the
service is executed by invoking the WSDL service in the grounding. The monitor also
caches the responses of the information-providing Web services to avoid invoking a
Web Service with same parameters more than once during planning. This will save
the network communication times and improve planning efficiency, and establishes
the repeatability condition required for proving SHOP2’s soundness and completeness.
Also information can only be added into the current state if it has not been changed
by the planner. We assume that the cached information will not be changed by other
agents during planning and we will generalize this in our future work.

We also built a SHOP2 to OWL-S plan converter, which will convert the plan pro-
duced by SHOP2 to OWL-S format which can be directly executed by the OWL-S
executor.

The system was tested on a domain which we created based on thescenario de-
scribed in the Scientific American article about the Semantic Web [6]. This scenario
describes two people who are trying to do arrangements for their mother’s medical
needs. They need to fill the prescription given by the doctor at a pharmacy, make
appointments for two different treatments, and make an appointment with the doctor
for a follow-up meeting. The planning problem is to come up with a sequence of ap-
pointments that will fit in to everyone’s schedules, and at the same time, to satisfy
everybody’s preferences, i.e. time and distance constraints.

We ran this domain on our system. In doing so:

• Our system communicated with real Web Services. Unfortunately, the current
Web Services available on the Web have only WSDL descriptionswithout any
semantic mark-up. Therefore, we created OWL-S mark-up for the WSDL de-
scriptions of these online services. For some services it was necessary to create
even the WSDL description, e.g. for the CVS Online Pharmacy Store. It was not
possible to use real services for some of the services eitherbecause they were not
available as Web Services, e.g. a doctor’s agent providing the patient’s prescrip-
tion, or it was infeasible to use a real Web Service for the demo, e.g. making an
appointment with a doctor each time the program is executed.For these services,
we implemented Web Services to simulate these functionalities.

• We built Web Services that allow access to the user’s personal information sources.
For example, it is necessary to learn the user’s schedule to be able to generate
a plan for the example task in our demo. It is possible to get this information
from the sources available on the user’s machine such as a Personal Information
Manager like Microsoft’s Outlook. We have implemented “local” SOAP based
services that will retrieve this kind of information. WSDL and OWL-S descrip-
tions are also generated for these local services so that they can be composed and
executed in the same way as other remotely available services.

Finally, some information gathering services were implemented as direct Java
calls from SHOP2 over a Java/SHOP2 bridge. For example, we have a service
which asks the user for acceptable distances to the treatment center by popping
up a window on the user’s client to accept input. Changing thedata entered at
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this point will possibly yield a different plan to be generated allowing the planner
produce custom plans depending on personal preferences.

• We also encoded a description of how to compose Web Services for the tasks de-
scribed in this example scenario. The description is given as a OWL-S composite
process that is composed of several other composite processes that are defined as
sequence, choice or unordered processes. This OWL-S description constitutes
the top level composite process described in Section 3.2.1 and is translated into
a SHOP2 domain for planning. We encode most of the constraints mentioned
above as preconditions of Web Services. Right now, there is no standard pro-
cess modeling language for specifying Web Service preconditions. Therefore,
we directly encode the Web Services preconditions in SHOP2 format.

Figure 6 shows the various components of the system5 and the results achieved
from a sample run of the example domain. The user starts with asimple user interface
where an OWL-S service description for any desired task can beloaded. When the
service description for the example domain is selected, a form to enter the required
parameters for the task is presented to the user. This form isgenerated based on the
ontologies used to describe the input parameters of the service. The UI will also au-
tomatically fill out some of the fields such as the home addressfrom a user specified
knowledge base.

Once all the input parameters are provided SHOP2 starts the planning process using
the domain description obtained from the translation of theOWL-S files. Note that
the service selected in the UI is specified by an “abstract” task list, that is, a set of
tasks which can be achieved in a variety of ways. In order to “execute” this service
we must decompose these abstract tasks into actions (services) that we can actually
invoked. SHOP2 decomposes the top level task into smaller subtasks, and of course
there may be multiple different decompositions for any given task. For example, one
decomposition for the top level task yields a task to schedule two appointments on
the same day for the same person whereas another decomposition will yield a task to
schedule two appointments on two different days for two different drivers for more
information on domain characteristics). Another example abstract task is to find the
availability of the prescribed medicine in an online pharmacy store. A decomposition
for this task will include all the different Web Services fordifferent online stores. These
decompositions are statically given in the OWL-S service descriptions but one can
imagine a more dynamic setting where a Web Service repository is queried for possible
decompositions.

The SHOP2 planner will execute the information-providing Web Services to gather
the necessary information for plan generation. e.g. get theavailable appointment times
from hospitals. Based on the collected information the planner will, if possible, pro-
duce a plan that is a valid decomposition of the top level task. This plan is simply a
sequence of atomic, directly executable Web Services such as “order the medicine from

5This system was demonstrated in the Developer’s Day of the 12th WWW conference in Budapest,
Hungary
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Figure 6: A snapshot of the running system and the interaction between different com-
ponents of the system

the online pharmacy store”, “make the appointment in the hospital for the treatment”,
and “update my personal calendar with the appointment info”. User has the option to
view the details of the plan, reject the plan if desired, and re-plan with a new set of
constraints.

To test the effectiveness of our approach, we have run SHOP2 on several instances
of the example problem. These problem instances varied fromcases where it was easy
to schedule satisfactory appointments to a case in which no nearby treatment centers
had treatment time slots that were close together, so that Bill and Joan would both have
to drive Mom for treatments on separate days. In all of these cases, SHOP2 was easily
able to find the best possible solution.

3.3 Information Gathering During Planning

There is a fundamental difference between exclusively information-providing and pos-
sibly world-altering atomic processes. We typically want to execute information-pro-
viding atomic processes at various points in the planning process, while we never want
to execute world-altering ones during planning. Contrariwise, at composition execu-
tion time, the primary interest is in the execution of world-altering processes. Indeed,
in the implementation 3.2.3 we do not include any information-providing processes in
compositions. Furthermore, currently we do not permit world-altering processes to be
information-providing, at least in the sense that they musthave no outputs. This sim-
plification made the system fairly easy to implement withoutsubstantial modification
of SHOP2.

However, mapping information-gathering processes to so-called “book-keeping”
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operators is somewhat unaesthetic. In the translation algorithm we described, for each
atomic process that does not have any effects a book-keepingoperator is created with
a precondition that contains the external call to execute the service and an effect to
assert the output results as knowledge effects. The book-keeping operator appears as a
subtask in the method definition that uses the result of that service. But, these operators
are treated specially by SHOP2 and they never appear in the resulting plans.

This approach successfully gathers information during planning time but still lacks
the flexibility of a general-purpose solution because it relies on the fact that information-
providing services are hard-coded in the given domain information. However, in a more
realistic situation the domain would not include such descriptions, i.e. the services that
needs to be executed to gather the information. It is required that planner itself figures
out when and how to gather the information.

In [26] we have relaxed this restriction such that the information providing services
do not need to be explicitly specified in the initial description. An arbitrary query
mechanism can be used to select the appropriate Web Service on the fly when the
information is needed. We have developed the ENQUIRER system which extends
SHOP2 by gathering information during planning as needed.

Executing Web Services to get the information will typically take longer time than
the planner would spend to generate plans. In some cases, it will not be known a
priori which Web Service gives the necessary information and it may not be possible
at all to find those services. Furthermore, in some cases the found service cannot be
executed because the service requires some password that the user cannot provide or
the service is inaccessible due to some network failure. ENQUIRER was designed to
tackle this problem can continue planning while the information-providing services are
still running.

3.4 Using Ontologies During Planning

OWL-S descriptions mainly use Semantic Web ontologies to specify input and output
types. All existing versions of OWL-S have left the particular language for encoding
preconditions and effects unspecified. Consequently, the mapping algorithm in section
3.2.1 assumed that the expressions were written in SHOP2’s encoding. However, these
conditions should (and as the forthcoming OWL-S 1.1 version forces) and will be also
be written in OWL. In order to evaluate these precondition formulas written in OWL,
planners must understand the semantics of OWL. Unfortunately, the typical logic for
expressing preconditions and effects in a planning system is quite differently expressive
than RDF and OWL do. Therefore, planning against the sorts of encodings of the world
state that is expected to exist on the Semantic Web will be different than the planners
can handle.

I have worked on integration of a Semantic Web reasoner with SHOP2 planner
in order to overcome this problem. The integration means that all of the planner’s
interaction with the state, i.e. querying and updating, will be done by the reasoner.
And most important of all the world state itself is actually represented as an OWL
knowledge base. Evaluation of preconditions is done by the reasoner and any statement
entailed by the KB is assumed to be true in the state.

30



Following sections explain the challenges of this integration. We do not discuss the
soundness and completeness of the integrated system because it trivially follows from
the fact that SHOP2 generates sound and complete plans as long as its theorem proving
is sound and complete.

3.4.1 Operator Definitions

We want to change the classical planning operator definitions such that preconditions
and effects will be written in OWL. First we need to determine what kind of OWL
statements can appear in operator preconditions and effects. For this purpose, we will
look at what kind of formalisms has been used in planning community and how these
can be used in our context.

The original STRIPS [16] language allowed to use arbitrary well-formed formulas
in first-order logic for preconditions and effects. However, defining a semantics for this
formulation was problematic [30]. Thus, in subsequent work, researchers have placed
some restrictions on the nature of the planning operators.

Typically, preconditions and effects contain only first-order literals. This means
that only SWRL atoms, which are in essence OWL facts (ABox assertions) with vari-
ables, can be used and we should exclude usage of arbitrary OWLaxioms (TBox ax-
ioms) in operator definitions. This is also intuitive because the axioms in ontologies
are used to model the world as we know it. They represent the nature of the world,
e.g. student is always subclass of person, whereas the factsabout individuals represent
our current knowledge that may change over time, e.g. a person may graduate and no
longer be a student.

Planners normally allow negated atoms to appear in preconditions. Planners gen-
erally operate with a closed world assumption and treats negation as failure. For ex-
ample, a registration service may have a condition that onlypeople who are not al-
ready registered may use that service and express this with the following precondition:
not(?person rdf:typeRegistered). With NAF this would evaluate to true whenever
we cannot prove the person is registered. However, with openworld semantics failing
to prove that person is registered may mean that we don’t knowif person is registered
or not. To make sure that person is not registered, we want a stronger condition such
as (?person rdf:type NotRegistered) whereNotRegistered is the complement of
Registered. As SWRL does not allow negated atoms appear in rule bodies, wealso
restrict the preconditions to contain only non-negated SWRLatoms.

One restriction planners impose on operator preconditionsand effects is that only
the variables defined as parameters can be used. It is easy to see that we cannot allow
arbitrary variables to appear in effects because all literals we add to the state should
be ground. However, this restriction can be relaxed as done in the Planning Domain
Description Language (PDDL) [18] and implemented in expressive planning systems
like SHOP. In particular, it is possible to use existentially quantified variables in the
operator preconditions and universally quantified variables in the effects. When the
variables in effects are universally quantified, we don’t have the problem of unground
variables because the variable will be bound to every instance in the state. The existen-
tially bound variables in the preconditions may also appearin the effects as long as it
is guaranteed that there will be only one substitution for that variable. If there is more
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(:action make-appointment
:parameters (?p - Person ?d - Doctor ?t - Time)
:precondition ...
:effect (and (?d hasAppointment ?appt)

(?p hasAppointment ?appt)
(?appt rdf:type Appointment)
(?appt appointmentTime ?t)))

Figure 7: A simplified service description where person?p makes an appointment with
doctor?d at time?t.

than one substitution and planner chooses one of these options arbitrarily during plan-
ning all the rest of the plan may depend on this choice. Since there is no way of seeing
this arbitrary choice in the plan generated (only the variables in the parameters can be
known) there is no guarantee the same binding will be chosen during the execution of
plan.

The restriction about variables do not apply to method preconditions. Since method
descriptions in SHOP2 does not have any effects it is possible to use existentially quan-
tified variables regardless of how many bindings for those variables may exist. Choos-
ing a binding for this variable becomes a nondeterministic branching point for SHOP2.
This feature is highly used in practice along with some heuristics about which bindings
are most likely to yield a plan [33].

One problem about limiting use of variables in effects arises when the effect of
an action is creating a new object that did not exist before. This problem emerges as
a difficulty in modeling in some planning domains (see the Settlers domain in 2002
International Planning Competition [17]) and becomes ubiquitous when using OWL-
S. Since OWL (and RDF) is based on triples, n-ary predicates must be described using
some (possibly anonymous) intermediary individuals. These anonymous individuals,
or so called bnodes, actually represent existential variables in the KB. Suppose the
service description shown in Figure 7 which makes an appointment for a person with a
doctor at a given time. Normally, this effect could be represented with a three variable
predicate such asappointment(?p, ?d, ?t). But using OWL requires us to define an
additional object, i.e.?appt variable, that will specify the relation between these three
objects.

These additional instances can be seen as the output of the service, i.e. the service
creates a new appointment instance as an effect of its execution. But modeling these
variables as outputs of the service would not be appropriatebecause output of a service
is considered to be some data returned by the service after execution of the service.
It is more proper to define a special category of variables to distinguish these“purely
syntactic” variables from variables which are relevant to the planning problem. For
example, in our implementation we used a simple syntax basedsolution where any
variable that starts with a character ’’ (as in Prolog don’t care variables) is treated as
an anonymous node rather than an existential variable.

Planners use axiomatic inference to infer conditions that were not in the world
state. This extension establishes a distinction between two classes of predicates used
in the domain: primitive and derived predicates. Derived predicates can be deduced

32



from other primary and secondary relations whereas primarypredicates are true only if
they explicitly exist in the state. Including derived predicates in the effects of operators
causes a problem as we will discuss in detail in Section 3.4.3. Commonly accepted
solution to this problem is to allow only primitive relations to appear in effects of
operators and restrict derived predicates to appear only inpreconditions. This is quite
an inconvenient restriction for OWL and we will discuss this issue in more detail in
section 3.4.3.

3.4.2 Precondition Evaluation

The applicability of a planning operatoro in a stateS is defined to be the satisfiability of
its precondition inS. In other words, a planning operator is applicable if its precondi-
tion is the logical consequence of the state, written asS |= precond(o). Preconditions
are generally defined as conjunctions and since we have defined that preconditions can
only contain OWL facts (or ABox assertions in DL terminology)possibly with vari-
ables, a precondition expression becomes equivalent to a conjunctive ABox query [24].
When the precondition expression does not contain any variables, precondition eval-
uation becomes boolean query answering, i.e. answering yesor no. When there are
existentially quantified variables then we also need to generate the variable bindings
that makes the conjunctive formula logical consequence of the state.

One important point in precondition evaluation is the presence of existentially
quantified variables. The satisfiability of the precondition actually depends on whether
we want to get the variable bindings for these existential variables or not. This is
a direct consequence of open world reasoning. Consider thissimple example: Sup-
pose we have a simple query (?p hasChild?c). If we don’t want to get the variable
bindings for?c then a KB containing only these assertions{Parent = ∃hasChild.>,
John:Parent} would satisfy the query with the binding{?p ← John} because we
know that John has a child even though we don’t know who that child is. On the other
hand, when we want to bind the variable ?c to an existing individual then the query
would fail for the very same KB. The same behavior would be observed when there are
anonymous individuals, individuals with no URI reference,in the KB.

Since the precondition evaluation highly depends on the interpretation of these ex-
istentially quantified variables we need to define a clear semantics as to which inter-
pretation will be preferred. OWL query language proposal [15] suggests to label the
variables asmust-bind, may-bind, anddont-bindto control this behavior. This is also
consistent with the ABox query answering schemes where somevariables are labeled
asdistinguishedmeaning they should be bound to a value.

Labeling the existential variables in preconditions asdont-bindvariables cannot be
done arbitrarily. A variable isactive if it is used in another context, e.g. an operator
may use it in the effects and a method may use it as an input of a subtask. Anactive
variable should always be bound to an actual individual to ensure that we always have
ground terms.Inactivevariables can be labeled asdont-bindor must-bindaccording to
the service writer. It is preferable that an existential variable that is not labeled either
way be interpreted as adont-bindvariable since this way we can benefit from the open
world semantics of OWL to continue planning in the face of incompleteness in the KB.

As we have mentioned in section 2.3.1, current state of the art planning systems use
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(:action buy-book
:parameters (?b - Book ?cc - CreditCard)
:precondition (and (?b hasCost ?price)

(?cc hasAvailableLimit ?limit)
(?price < ?limit))

:effect ...)

Figure 8: A simple book buying service saying that the available limit on the credit
card should be higher than the price of the book

more expressive constructs in preconditions such as disjunctions and quantified expres-
sions. Evaluating a disjunctive would be equivalent to answering a disjunctive query.
Note that answering disjunctive queries cannot simply be done by answering each dis-
junct separately because there are cases when the query itself is a logical consequence
of the KB but none of its disjuncts are [24].

Universally quantified expressions in preconditions also creates a problem with the
open world semantics. Consider the following simple precondition {(∀ ?x)(P hasChild
?x)(?x:Male)} where it says that all the children ofP should be male. The way
planners evaluate quantified expressions is with the closedworld assumption where
all the explicit children in the KB are found and tested with the condition. Then if
we consider the following KB{ParentWithNoSon=∀hasChild.Female, Female =
¬Male, John:(≥1hasChildu ParentWithNoSon)} this closed world interpretation
of the query would succeed although we know for sure that Johnhas a daughter (again
we just don’t know who she is).

In most real world problems preconditions involve some kindof numerical com-
putation (comparison). It is foreseeable that a lot of services will use expressions such
as the built-in primitives of SWRL to express these kind of preconditions. Consider
the precondition of the book buying service shown in Figure 3.4.2. We can evaluate
this precondition at two steps. In the first step, we do the query in our KB as de-
scribed above and bind the variables?price and?limit to actual values. In the second
step, we compare these two values and verify the condition holds. With this approach
there are cases again where we can get incomplete results. Consider another condi-
tion where{(?p hasAge?age), (?age > 18)} and a KB{PersonOlderThan40 =
∃hasAge.MoreThan40, John:PersonOlderThan40} whereMoreThan40 is de-
fined as an XML Schema type with the restriction on minValue facet. In our KB, we
don’t have explicit information about John’s age but we knowthat{?p ← John} sat-
isfies the condition (supposing?age is adon’t-bind variable). But the expressivity of
OWL cannot handle more complex conditions, like the one in Figure 3.4.2, so it may
be preferable to have another module that processes these expressions.

3.4.3 Applying Effects

The effects of an operator are applied to the current state tosimulate the action. Ap-
plying an operatoro to a states transforms it into a new state denoted bysnew =
apply(o, s). After the application of effects, the atoms in the positiveeffects of the op-
erator should be entailed by the state, i.e.apply(o, s) |= effects+{o}, and the atoms
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in the negative effects should not be entailed,apply(o, s) 6|= effects−{o}.
Applying the positive effects of an operator means adding new assertions to our KB

which may cause inconsistencies. For example, a service mayadvertise a description
where the effect of the service is given as (?person presidentUSA) saying that you
will be the president of USA after running that service. However, if the current KB
contains the information about the current president, i.e.there already exists another
distinct individual who has the president property with value USA and the president
property is defined as InverseFunctionalProperty, then adding this new assertion will
cause an inconsistency in the KB. When there is an inconsistency in the KB any con-
clusion can be deduced so we cannot guarantee the correctness of the further results.

Most planners assume that modeling the planning operators correctly is the respon-
sibility of the person who supplies the domain. The soundness and completeness of the
planners are proven with respect to correct domain descriptions, e.g. a blocks world
domain where an operator causes a block to be in two differentplaces at the same time
will cause the planner generate unsound plans. Since we are dealing with Web Service
descriptions that come from various different sources we cannot guarantee the correct-
ness of these descriptions. For this reason, a planner should reject the application of an
operator when its effects cause an inconsistency in the KB.

Negative effects cannot cause an inconsistency in the KB because of the mono-
tonic nature of our reasoning. Removing assertions from a consistent KB cannot cause
it to become inconsistent. However, we have the problem of KBderiving the same
assertion from other facts even after we remove that assertion from the KB. For exam-
ple, an unregister service may have a negative effect which requires the deletion the
fact (?person memberClub). But, if the KB includes another fact (Club hasMember
?person) such that hasMember is the inverse property of member then we will still
derive the same conclusion as before. This is exactly why planning systems make the
distinctions between primitive and derived predicates anddo not allow derived predi-
cates in effects (see section 3.4.1).

Unfortunately, restricting the usage of derived predicates in effects makes it nearly
impossible to model any action in OWL. The following table summarize the conditions
that causes an OWL propertyp to be a derived predicate:

When p is a derived predicate In DL syntax How it is derived
p has a subproperty q v p q(x, y) → p(x, y)
p has an equivalent property p = q q(x, y) → p(x, y)
p has an inverse property p = q− q(x, y) → p(y, x)
p is a symmetric property p = p− p(x, y) → p(y, x)
p is a transitive property Transitive(p) p(x, y) ∧ p(y, z) → p(x, z)

A type assertion in OWL such as (x rdf:typeC) is equivalent to a single variable
predicate in the formC(x). This type assertion would be a derived predicate if the
class for a classC meets any of the following conditions:

35



When C is a derived predicate In DL syntax How it is derived
C has a subclass D v C D(x) → C(x)
C has an equivalent class C = D D(x) → C(x)
C is defined to be the range of a property range(p, C) p(y, x) → C(y)
C is defined to be the domain of a propertydomain(p, C) p(x, y) → C(x)

Note that being a subclass of some restriction could also causeC to be a derived
predicate, e.g.D v ∀p.C ∧ D(x) ∧ p(x, y) → C(x). It is even hard to enumerate
all these case because the combination of cardinality restrictions, nominals and general
inclusion axioms may cause class membership to be derived from other facts.

If we allow derived predicates to appear in negative effectsthen we need a way to
make sure that statement will not be inferred after the effect is applied to the world
state. One possibility is to make the reasoner delete all therelated statements from the
KB until the statement in question is not entailed by the KB. Given the expressivity of
OWL DL this is quite a hard task. Furthermore, there is no deterministic way to control
this behavior. For example, in the KB{x:A, x:B} if we want to deletex:A u B then
we can either deletex:A, x:B or both to have the same effect. Another possibility is
to make the service writer include all the enumerations, other predicates that the truth
value depends on, in the negative effect list. This works well for simple domains but
gets quite hard quickly when the ontologies and definitions become complex. It is even
harder in the distributed setting of the Web where a service writer may enumerate all the
possibilities in the description to the best of his/her knowledge but the client who uses
that description may have access to another ontology that augments those definitions
with some new descriptions with dependencies not mentionedin the negative effects.

3.5 Reasoning with Semantic Web Ontologies

Ontologies play an important role in describing Web Services. Interpreting the in-
formation in these ontologies becomes a crucial task for understanding Web Service
capabilities and their behavior.

The performance of the planning system is considerably affected when the precon-
dition evaluation of operators and methods are done by theorem proving. During a plan
generation, planner will do hundreds of precondition evaluations so the reasoner needs
to handle these queries very fast to be at all workable.

A significant majority of the preconditions consist of conjunctive expressions so
we will focus on how to optimize conjunctive queries. As we have discussed in section
3.4.2, operator preconditions (generally) do not contain variables whereas method pre-
conditions have many existentially quantified variables. If the precondition does not
contain any variables we just need a yes/no answer, whereas the preconditions with
must-bindvariables than we have to generate answer sets for these variables. The ex-
isting conjunctive ABox query answering algorithms [24, 25] reduce the problem of
query answering to one or more KB satisfiability problems.

The main idea is to consider a conjunctive query as a directedgraph where the
nodes are either variables or individual names (constants). In addition, concept and
role terms provide labels for nodes and edges respectively.For example, the query
{(?x rdf:type Start), (?x path?y), (?z path?x)} corresponds to a graph with three
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nodes and two edges. When the query consists of one connected graph then the query
can be answered with one satisfiability test.

Answering queries with only one term, i.e. the query graph has no edges, is equiv-
alent to an entailment check. [23]. For example, the query (A rdf:type Rover) is
entailed by the KBS if and only if {S t (A rdf:type complementOf(Rover))} is not
consistent. When the query contains multiple terms, i.e. thequery graph has more
than one edge, then the technique of “rolling up” is applied to transform the query
into an equivalent query with a single concept term. For example, the following query
that has no variables{(C rdf:typeComputer), (C manufacturedByM ), (C hasCPU
CPU ), (CPU cpuTypeCentrino)} can be transformed into the following concept
term (C:∃.manufacturedBy{L} u ∃hasCPU. ({CPU} u ∃cpuType.{Centrino})).
The query can now be answered by adding the negation of this concept to individual
A and then check if the KB is consistent. If the query containsmultiple disconnected
components, each connected subcomponent can be rolled up toone individual and
tested separately.

Rolling up technique is quite effective when we don’t need the variable bindings
because one query that contains multiple terms can be answered with one satisfiability
check rather than multiple entailment tests. However, thistechnique is not efficient
when we also want the variable bindings. The variable bindings are returned by replac-
ing each variable with one individual, rolling up the query and answering the boolean
query. One must try every possible combination of bindings to get all the answers.
[25] proposes an optimization technique that attempts to reduce the number of candi-
date individuals. The idea is to roll-up the query into a distinguished variable prior to
substitute it with any individual name. The concept is used to retrieve the list of indi-
vidual names corresponding to instances of the concept. Theretrieved individuals are
used as the candidates for the distinguished variable.

This technique reduces the number of satisfiability tests but still tries unnecessary
tests. Consider the previous query with all the individual names are replaced with vari-
ables{(?c rdf:typeComputer), (?c manufacturedBy?m), (?c hasCPU?cpu), (?cpu

cpuTypet)} where we want to get all the computers, their manufacturers,the CPU they
have and the type of these CPUs. Suppose we have 10 computers manufactured by 10
different manufacturers and each computer has only one CPU (for a total of 10 distinct
CPU instances) and three types of CPUs, Pentium3, Pentium4 and Centrino. In the
original setting, we need to try each individual. Since we have 33 individuals, assum-
ing nothing else exists in the world, we try every combination of bindings where we do
a total of334 ≈ 1186000 consistency tests. The optimization described above would
help us to reduce the number of candidates so we wouldn’t try to use a manufacturer
as a candidate computer. Therefore, we have 10 different possibilities for variables?c,
?m, ?cpu and 3 candidates for?t. The algorithm still tries all possible combination of
these bindings yield a total of10 × 10 × 10 × 3 = 3000 tests.

The problem with this approach stems from not having the ability to see why a
binding fails. For example, if computerC1 is manufactured byM1 then a binding
with C1 andM2 will fail no matter what candidates we try for the other variables.
Unfortunately, it is not possible to learn the dependenciesbetween variable bindings
using the rolling up technique. For this purpose, we proposea new technique where
each individual term in the query is tested separately as an entailment test. For the
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given query example, given a candidate binding for a computer we would try the 10
different manufacturers and find the one binding that is the logical consequence of the
KB. Then we would try 10 different CPU bindings, out of which only one succeeds.
Then we try the remaining 3 candidates for the CPU types. In the end, we end up trying
only a total of10 × (10 + 10 + 3) = 230 consistency tests.

Computing the likely candidates itself is a costly operation. In the example query
we have four distinguished variables so we need to perform four instance retrieval
operations. Generally, reasoners realize the whole KB uponloading and this retrieval
operations become cheap. Unfortunately, in our setting planner is constantly changing
the current state possibly invalidating the cached results. It is much preferable to use
the optimized instance retrieval algorithms designed for dynamically changing ABoxes
[22]. The motivation of this approach is to eliminate all of the irrelevant individuals
with only one consistency check. Obvious instances of the concept need not be tested
at all and the rest of candidates can be eliminated with a binary partioning method. The
idea for retrieving the instances of conceptC is to add{x:¬C} assertion for everyx
that cannot be eliminated by inspection. If the new KB is consistent we conclude that
no more instances ofC exist in the remaining set, otherwise KB is partitioned to half
and this procedure is continued at each partition. Thus, at each step binary partitioning
may eliminate half of the candidates using a single test.

Computing the candidates by rolling up the whole query givestoo many possibil-
ities. If we compute the candidates based on each statement and the bindings done at
previous steps then we will find a smaller number of candidates that are more likely to
succeed at later steps. When we concentrate on the statementsof the query we can also
make use of the existing assertions in the KB more efficiently. In most DLs looking at
the existing role assertions is enough to determine if two individuals are related to each
other with a given role. However, in the presence of nominalsthis is not the case any
more and we may get incomplete results with this approach. But if we combine this
structural inspection with optimized retrieval we can get complete and fast results. For
example, if the statement in the query is (?s p o) we can first examine the existing role
assertions to get the obvious answers. Then we can retrieve the instance of the concept
∃p.{o} to get the remaining answers. Note that, if all the individuals are related with
explicit assertions then only one consistency check will beenough to eliminate all the
other possibilities.

When combined with an iterative query answering mechanism this approach may
help to avoid a lot of consistency tests. In a planning problem, most of the time finding
the first plan is enough (e.g. if we are not trying to optimize acost function). In this
case, we can first try the obvious candidates and delay the consistency test as much as
possible. If the planner cannot find a plan with the initial bindings then it would keep
asking the reasoner for more bindings which in the end would require us to make an
expensive consistency test. But there is a good chance that aplan can be found with
these trivial bindings.
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4 Future Directions

This section describes the challenges that I have identifiedas a result of my preliminary
work, and discuss how I intend to address those challenges asmy future work.

4.1 Planning with Web Service Descriptions

My preliminary work for using planning for Web Service composition was based on the
assumption that Web Services are described in a fairly rich and essentially planning-
oriented description language such as OWL-S. The process ontology of OWL-S is
designed to describe Web Services similar to planning operators. Web Services have
explicit precondition and effect descriptions and composite services may be modeled
similar to compound HTN tasks.

Describing preconditions and effects of Web Services usingWeb Ontologies intro-
duces some challenges. Handling the expressivity of Web Ontologies during planning
is non trivial. For example, as discussed in section 3.4.3, using derived predicates
in effect descriptions is prohibited in planning for the sake of soundness. However,
the expressivity of OWL causes almost all practical Web Service descriptions violate
this restriction. It is even harder to ensure this conditionon the Web where anyone
can extend an existing ontology causing a Web Service description violate the restric-
tion. I will investigate if and how these expressive descriptions can be handled in
planning. It might be possible to extend planner’s inferencing capabilities to handle
this expressivity but it might also be required to find some alternative ways of writing
these descriptions.

It is also important to note that not all Web Services are described in a planning-
oriented language. Most of the Web Service descriptions that are publicly available on
the Internet do not have explicit precondition/effect specification. These services are
merely described in terms of their functional signature, i.e input and output types. In
general, there is a tendency to describe Web Services using the structure of messages
and the message exchange patterns between Web Services. Another commonly used
method is to use taxonomies, such as UNSPCS or NAICS, to describe the functional-
ity of a Web Service. Although such descriptions are valuable, currently they cannot
be directly used in planning. I will conduct an in-depth analysis of the Web Service
description characteristics. As a result of this analysis Iaim to identify the features
that are critical for the automation of the composition taskand investigate how these
features can be used.

4.2 Planning with Distributed Descriptions

In classical planning, the planner is typically given complete information about the
planning domain. The set of all the operators (and methods) that can be used to solve
the problem is given to the planner as the input of the planning problem. However,
Web Service descriptions will be distributed over the Web, possibly stored in special-
ized Web Service repositories that use technologies like UDDI. A planner will need to
communicate with these remote Web Service registries to findrelevant Web Services
during the planning process.
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When the domain knowledge is distributed over multiple sources, the most im-
portant issue to solve is how to integrate Web Services that are supplied by different
sources that use possibly distinct vocabularies (ontologies). In HTN planning, when
the planner is searching for the possible decompositions ofa given task, the methods
in the domain knowledge are matched based on the name of a taskand its functional
signature, i.e. the number of the parameters and their types. This simple matching
criteria will obviously fail in a distributed and decentralized environment as separate
developers cannot be expected to use the same names for theirWeb Service descrip-
tions.

When the domain knowledge is distributed over multiple sources, it is required to
have more expressive task descriptions in order to match tasks at hand with remote
Web Service descriptions. I will investigate how to describe composite services so
matching and selection can be done effectively. I will examine two different paradigms
for describing composite Web Services:

• Complete Web Service Description: Every step of the composite Web Service
is bound to a specific Web Service name. The decomposition of the service is
expressed as a collection of existing services combined in acontrol construct.

• Partial Web Service Description: Some steps of the composite Web Service is
not described in terms of concrete actions. Instead these steps have abstract
definitions that outline the general features of the servicethat can be used at this
step.

Partial descriptionsare very useful when the exact Web Service to accomplish a task is
not known at design time. This type of description maximizesthe possibility of sharing
and reusing Web Service. Therefore, many Web Service description languages allow
constructs to model suchpartial descriptions, e.g. abstract processes in BPEL4WS
and the SimpleProcess construct in OWL-S. On the other hand, it is easier to generate
complete descriptionsas shown in section 3.1, tools can facilitate this process.

I will investigate how to utilize Web Ontologies to express these two different types
of descriptions so that effective task selection and matching can be achieved. My in-
tuition is to exploit the analogy betweenpartial descriptions(similarly complete de-
scriptions) and classes (instances) in ontologies. Task selection canthen be formulated
as an ordinary reasoning problem, e.g. the instance retrieval problem. The challenge
is to find the right level of expressivity for the Web Service descriptions so that effec-
tive matching can be done without the loss of correctness. Myaim is to investigate
the trade-off between the generality of descriptions and the success of the selection.
For example, having a generalBookSellingServicewould help us to find a lot of possi-
ble matches but most of these matches could be useless because different instances of
this category may have very different constraints, e.g. accepting different credit cards,
different rules about shipping, etc.

4.3 Planning with Incomplete Information

In the Web context it is not realistic to assume that a plannerwill have the complete
information about the world. The information required to solve a problem needs to be
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acquired from external sources. Considering that the amount of information available
on the Web is huge, the planner should gather the informationas needed by the planning
process. This means that information-gathering should be interleaved with the planning
process.

My preliminary work shows some results on how to interleave the information
gathering process with planning. However, there are various restrictions in the prelim-
inary work that need to be addressed. For example, it was assumed that information-
providing services cannot have any world-altering effects. Without this assumption, the
correctness of the plans generated cannot be guaranteed since the changes done by the
information-providing service may invalidate some of the steps the planner has already
committed to. For example, paying a fee to acquire some information may invalidate
the previous steps that committed the money to other tasks. However, this restriction
is not necessary when the effects of the information-providing services do not interact
with the plan being sought for. If we consider the previous example, it would be safe to
execute the fee-based service and change the state of the world if the original planning
problem has nothing to do with money or there is a reasonable budget that is enough
for both tasks. I will investigate the ways to relax the restricting assumptions and iden-
tify the necessary conditions where world altering information-providing services can
safely be executed.

Another important missing piece of the preliminary work is how to find the Web
Services which will provide the requested information. Forexample, in the case of the
appointment scheduling example, it is required to find the available time slots for the
hospital. In the preliminary work, this knowledge was assumed to somehow exist in
the domain description. In the real world, Web Services whose descriptions match the
requested query need to be discovered and executed. Actually, it might be necessary
to execute a set of Web Services to answer a query. For example, an information
providing service may first require you to sign up for the service and supply a username
and password to ask a question. Or the query might only be answered by combining
information from various different sources. This information-gathering problem itself
may be posed as another planning problem where the goal is to generate a plan that will
yield the required information upon execution. However, this means that the objective
will most typically be a goal formula, which is the case in action-based planning, rather
than a task, which is the case in HTN planning. This indicatesthat combining these
two methodologies might be fruitful to solve this problem. Iwill do further analysis to
investigate the applicability of this approach in the Web Services domain.

The information available to the planner is not only the results returned from the
Web Services but also the inferences dictated by the Web Ontologies. These two kinds
of information should be combined together in order to have acomplete understanding
of the state. I will investigate how sound and complete reasoning can be done over a
set of ontologies and information supplied by Web Services as if there is one single
knowledge base.

4.4 Other Issues

In the previous sections, I have outlined the main focus of myresearch. However,
there are various other issues that need to be considered in the context of Web Service
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composition problem. The following paragraphs briefly discuss these issues.

Interaction with Multiple Agents As stated earlier, most of the time the planner will
not have necessary knowledge or enough computational resources to solve the problem
at hand. In my future work, I suggest gathering information from remote Web sources
to overcome this problem. In this view, remote Web sources are modeled as reactive
agents that return answers for given queries. However, in reality, these agents may have
more sophisticated capabilities that can be exploited during the composition process.
For example, the remote Web Service registry itself may havethe ability to create
compositions if enough information about the problem is provided. The discovery
process can then be done in a more conversational style. Notethat interaction with
humans can also be modeled this way, e.g. a human user can be represented as another
remote agent that the planner can communicate with.

My interest on this subject is on the cooperative aspects of the multi-agent inter-
action where all the agents are trying to cooperate in some level with each other to
accomplish a set of shared or overlapping goals. The level ofcooperation between
agents may vary depending on the situation. For example, theuser who is using the
planner to find a composition would be a fully-cooperative agent giving any kind of
help to the planning agent. On the other hand, in a B2B application, parties would be
less cooperative in the sense that not every participant will be willing to share all the
information he/she has. In this scenario, all the parties involved share an overlapping
goal, e.g. purchase of a product, but each party has different objective functions, e.g.
seller trying to maximize the profit where the buyer is tryingto minimize the cost.

Generating Complex Workflows In classical planning, the result of the planning
process is typically a totally (or partially) ordered set ofoperators. In the presence of
nondeterminism, the resulting plan may involve conditional branches that contain sens-
ing actions. Generating such conditional plans is crucial for Web Service composition
because the information used to generate a composition may very well change at exe-
cution time. It is also possible that a Web Service in the planfails during execution due
to an exception. The plan generated needs to be robust enoughto handle these cases.
For example, undoing the effects of the previous steps of theplan may be required, e.g.
a payment order is canceled if the Web Service that arranges shipment has failed.

Composition Analysis and Optimization For any given task, it is probable to find
compositions with different components or even compositions with different structure
that would achieve the objective. It is not satisfactory to find only the first solution to
the composition problem. It is necessary to find all the “promising” compositions and
sort these solutions based on an optimality criteria. Of course, this requires the use of
some kind of metrics to assign a utility value to a composition. It is not easy to come up
with such metrics since there are many different dimensionsthat need to be considered
including the reliability, cost and duration of componentsin the composition.
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