
The Command Line

Matthew Bender

CMSC Command Line Workshop

Octover 30

Matthew Bender (2015) The Command Line Octover 30 1 / 12



Development from the Command Line

Section 1

Development from the Command Line

Matthew Bender (2015) The Command Line Octover 30 2 / 12



Development from the Command Line

gcc

GCC (The GNU Compiler Collection, formerly the GNU C Compiler) was
released in 1987, and could originally only compile C, although today it
can compile languages such as C++, Fortran, Go, and others.

$ gcc [.c source files] will compile the given files, and produce
an executable names a.out
$ gcc [.c source files] -o progname will produce an
executable names progname
$ gcc -S prog.c will produce an assembly file prog.s

Matthew Bender (2015) The Command Line Octover 30 3 / 12



Development from the Command Line

Useful gcc flags

-Wall -Wextra -Werror are 3 flags that should always be added to
gcc (create an alias!) - they will warn you about a lot of things that could
go wrong with your code when you compile.
-g : turn on debugging info. When you are debugging with gdb, you
want to compile with this flag.
-O, -O2, -O3 - turn on size optimizations (each is a higher level than
the last)
-Os - optimize for executable space

Matthew Bender (2015) The Command Line Octover 30 4 / 12



Development from the Command Line

Examining Output

Don’t inspect your code output by hand! You can check it against the
expected output from the command line.
The cmp command will compare 2 files quickly. However, it doesn’t
produce useful output.
The diff command compares files and points out the lines and
characters that differ:
$ diff expected output.txt actual output.txt

< Average: 87.6
---
> Average: 87.600000

The < means that line was from the first file, and the > means that line
was from the second. The student forgot to truncate the float when
printing!

Matthew Bender (2015) The Command Line Octover 30 5 / 12



Debugging

Section 2

Debugging

Matthew Bender (2015) The Command Line Octover 30 6 / 12



Debugging

Debugging with gdb

gdb (The GNU Debugger) is one of the most useful tools for developing.
To use it, add the -g flag when compiling:
$ gcc -g prog.c -o prog

Then start the debugger:
$ gdb prog

You will see a prompt:
(gdb)

This is gdb waiting for you to enter commands

Matthew Bender (2015) The Command Line Octover 30 7 / 12



Debugging

Debugging with gdb

There are two ways to run the program - all at once or step by step.

To go step by step, enter (gdb) start arg1 arg2 argn - where
each arg is an argument to your program

gdb will print each line of code for you as you step through.
To step to the next line, enter (gdb) next (or n) for short.

To step to the next line, or into a function, enter (gdb) step (or s) for
short.

To run all at once, replace start with run above.
This will run your code until it completes or runs into an error, like a DB0
or segfault, or it encouters a breakpoint.

Matthew Bender (2015) The Command Line Octover 30 8 / 12



Debugging

Breakpoints

Breakpoints are ways to stop your code running when it reaches a certain
line.
Create one with (gdb) break <linenum> or (gdb) break
<funcname>
To continue running after hitting a breakpoint, enter (gdb) continue
(or c for short)
Or, use next or step if you want to step through the program instead of
run it.

You can also set conditional breakpoints, which only pause if a certain
condition is met (like if x > 5 or strcmp(s, "Hello") == 0).
Another useful thing is to set a watchpoint on a variable, which pauses if
it is read or wrote to.

Matthew Bender (2015) The Command Line Octover 30 9 / 12



Debugging

Printing Information

Enter (gdb) print x to view the value of the x variable - the variable
must be in scope.
You can print full C expressions in the debugger as well:
(gdb) print strlen(str)
(gdb) print (x << 3) * y

You can view all local variables with (gdb) info locals
You can view all arguments to the current function with (gdb) info
args

Matthew Bender (2015) The Command Line Octover 30 10 / 12



Debugging

The stack

If you are unsure where you are, run (gdb) frame to view the current
line.
Even more helpful is (gdb) backtrace (or just bt) to view the whole
stack trace.
An easy way to debug segfaults is to run the program until the fault
happens, then run (gdb) backtrace to see what function calls with
what values got you to the fault and what line it happened on.

If you want to exit the current function, run (gdb) up to go up a stack
frame. Run (gdb) down to go back down to where you were.

Matthew Bender (2015) The Command Line Octover 30 11 / 12



Debugging

Valgrind

The other most important tool you have for debugging is Valgrind.
Valgrind is more useful for catching memory errors.
Some examples of the errors it will catch:

Catching memory leaks (when you don’t free a block after you malloc
it)

Reading or writing to memory after is has been free’d

Reading or writing beyond allocated blocks (like arrays or malloc’ed
blocks)

Freeing memory that was not malloc’ed

Reading from uninitialized variables

You should also compile with -g to get better output from Valgrind.

Matthew Bender (2015) The Command Line Octover 30 12 / 12


	Development from the Command Line
	Debugging

