
The Command Line

Matthew Bender

CMSC Command Line Workshop

October 16, 2015

Matthew Bender (2015) The Command Line October 16, 2015 1 / 21

The Unix Philosophy

Section 1

The Unix Philosophy

Matthew Bender (2015) The Command Line October 16, 2015 2 / 21

The Unix Philosophy

The Unix Philisophy

Programs should do 1 thing and do it well

Programs should be able to be combined and composed with each
other

Programs should handle text streams, because text is the universal
interface

Example: combine the fgrep, sort, and uniq commands to print
lines containing 72.30.61.37, without duplicates

$ fgrep "72.30.61.37" server.log | sort | uniq

Matthew Bender (2015) The Command Line October 16, 2015 3 / 21

The Unix Philosophy

The Unix Philisophy

Programs should do 1 thing and do it well

Programs should be able to be combined and composed with each
other

Programs should handle text streams, because text is the universal
interface

Example: combine the fgrep, sort, and uniq commands to print
lines containing 72.30.61.37, without duplicates

$ fgrep "72.30.61.37" server.log | sort | uniq

Matthew Bender (2015) The Command Line October 16, 2015 3 / 21

The Unix Philosophy

The Unix Philisophy

Programs should do 1 thing and do it well

Programs should be able to be combined and composed with each
other

Programs should handle text streams, because text is the universal
interface

Example: combine the fgrep, sort, and uniq commands to print
lines containing 72.30.61.37, without duplicates

$ fgrep "72.30.61.37" server.log | sort | uniq

Matthew Bender (2015) The Command Line October 16, 2015 3 / 21

The Unix Philosophy

The Unix Philisophy

Programs should do 1 thing and do it well

Programs should be able to be combined and composed with each
other

Programs should handle text streams, because text is the universal
interface

Example: combine the fgrep, sort, and uniq commands to print
lines containing 72.30.61.37, without duplicates

$ fgrep "72.30.61.37" server.log | sort | uniq

Matthew Bender (2015) The Command Line October 16, 2015 3 / 21

The Unix Philosophy

Programs as Text Filters

Good programs will read in text from stdin, operate on it, and write
text to stdout

Example: rev reads in lines on stdin, and write the reverse of each
line on stdout

These programs are combined with | , which takes the stdout of
one command and sends it to the stdin of another

These programs generally will also accept a file argument and read
from that instead (and sometimes multiple files)

$ rev file.txt, $ rev < file.txt, and $ cat
file.txt | rev will all do the same thing

Matthew Bender (2015) The Command Line October 16, 2015 4 / 21

The Unix Philosophy

Programs as Text Filters

Good programs will read in text from stdin, operate on it, and write
text to stdout

Example: rev reads in lines on stdin, and write the reverse of each
line on stdout

These programs are combined with | , which takes the stdout of
one command and sends it to the stdin of another

These programs generally will also accept a file argument and read
from that instead (and sometimes multiple files)

$ rev file.txt, $ rev < file.txt, and $ cat
file.txt | rev will all do the same thing

Matthew Bender (2015) The Command Line October 16, 2015 4 / 21

The Unix Philosophy

Programs as Text Filters

Good programs will read in text from stdin, operate on it, and write
text to stdout

Example: rev reads in lines on stdin, and write the reverse of each
line on stdout

These programs are combined with | , which takes the stdout of
one command and sends it to the stdin of another

These programs generally will also accept a file argument and read
from that instead (and sometimes multiple files)

$ rev file.txt, $ rev < file.txt, and $ cat
file.txt | rev will all do the same thing

Matthew Bender (2015) The Command Line October 16, 2015 4 / 21

The Unix Philosophy

Programs as Text Filters

Good programs will read in text from stdin, operate on it, and write
text to stdout

Example: rev reads in lines on stdin, and write the reverse of each
line on stdout

These programs are combined with | , which takes the stdout of
one command and sends it to the stdin of another

These programs generally will also accept a file argument and read
from that instead (and sometimes multiple files)

$ rev file.txt, $ rev < file.txt, and $ cat
file.txt | rev will all do the same thing

Matthew Bender (2015) The Command Line October 16, 2015 4 / 21

The Unix Philosophy

Programs as Text Filters

Good programs will read in text from stdin, operate on it, and write
text to stdout

Example: rev reads in lines on stdin, and write the reverse of each
line on stdout

These programs are combined with | , which takes the stdout of
one command and sends it to the stdin of another

These programs generally will also accept a file argument and read
from that instead (and sometimes multiple files)

$ rev file.txt, $ rev < file.txt, and $ cat
file.txt | rev will all do the same thing

Matthew Bender (2015) The Command Line October 16, 2015 4 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order

I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order

I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order

I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order

I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order
I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order
I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

Example Text Filters

The following can either read from stdin or a given file:

cat: prints contents of all given files on stdout, or prints stdin to
stdout (add -n flag to number lines)

tac: reverses the order of the lines on stdin, but not the actual
lines

rev: reverses the lines of stdin, but not the order of them

sort: sorts the lines of input, by default in string order
I -f: ignore case
I -n: sort numerically
I -r: reverse sort

shuf: randomly permute order of lines

head -N: print first N lines (default 10)

tail -N: print last N lines (default 10)

Matthew Bender (2015) The Command Line October 16, 2015 5 / 21

The Unix Philosophy

More Text Filters

Not every text filter necessarily just modifies its input:
wc prints the number of lines, words, and characters of its input.

-l: print lines only

-w: print words only

-c: print characters(bytes) only

bc - basic calculator - read math expressions and write their value

Matthew Bender (2015) The Command Line October 16, 2015 6 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep

grep is a tool that takes a regular expression as argument and outputs all
lines matching it.
grep has its origins in the text editor ed - the g/re/p command would
print all lines matching the regex re

-v Invert match - print all lines not matching the given regex.

-n Number lines - preceed each line with its line number

-o Only match - print only the matched part of each line, not the
whole line

-i Ignore case

-q Quiet - produce no output, just set exit code based on if there
was a match

-A N, -B N, -C N After/Before/Context - print N lines
after/before/both around matching lines

Matthew Bender (2015) The Command Line October 16, 2015 7 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

The Unix Philosophy

grep and Regular Expressions

The grep command accepts a regex as an argument, and prints only lines
matching that argument to stdout
grep has 4 different regex modes:

Fixed string: grep -F pattern will match pattern exactly as a
string, with no character having special meaning

Basic (BRE): grep pattern matches with most characters
matching themselves, but . [] ˆ $ * all have special
meanings (escape them with a \ to match them match themselves)

Extended (ERE): grep -E pattern does the same as BRE, but .
[] | ˆ $? * + { } () are all metacharacters

Perl (PCRE): grep -P pattern uses Perl-compatable regexes,
look at the man page for pcresyntax and pcrepattern for more
details.

fgrep and egrep are short for grep -F and grep -E, but the
former usage is deprecated and the latter is preferred.

Matthew Bender (2015) The Command Line October 16, 2015 8 / 21

Regular Expressions

Section 2

Regular Expressions

Matthew Bender (2015) The Command Line October 16, 2015 9 / 21

Regular Expressions

Regular Expressions

Regular expressions (regex for short) are ways to match certain parts of
text, in which certain characters can have special meanings
For example, [a-z]{4,8} will match any lowercase letter, 4 to 8 times
in a row
The regex ˆ\s*$ will match any line containing only whitespace
Regexes can come in multiple ”flavors”, aka which characters have what
meanings.

Matthew Bender (2015) The Command Line October 16, 2015 10 / 21

Regular Expressions

Basic Regular Expressions (BRE): the .

The . metacharacter will match any character
Print all lines with an a, then any char, then b, then any char, then c:
$ grep ’a.b.c’ words.txt
barbecue
drawback
etc...
Print all lines with an M followed by a .:
$ grep ’M\.’ words.txt
Y.M.C.A
etc...

Matthew Bender (2015) The Command Line October 16, 2015 11 / 21

Regular Expressions

Basic Regular Expressions (BRE): character classes

Use [and] to define a character class. This will match any character
inside it.
Print all words with ”bl<vowel>z”:
$ grep ’bl[aeiou]z’ words.txt
ablaze
blizzard
etc...
$ grep ’[abc][abc][abc][abc]’ words.txt
cabbage
tabacco
etc...

Matthew Bender (2015) The Command Line October 16, 2015 12 / 21

Regular Expressions

Basic Regular Expressions (BRE): character classes

We can add ranges to this, instead of listing each individual character:
$ grep ’[a-d][e-h][i-l][m-p][q-t]’ words.txt
chins
ocelot
etc...

Look for anything resembling a hex digit: (e.g. 0x3f)
$ grep ’0x[0-9A-Fa-f][0-9A-Fa-f]’ file.txt

Matthew Bender (2015) The Command Line October 16, 2015 13 / 21

Regular Expressions

Basic Regular Expressions (BRE): character classes

If the first character is a ˆ, then the character class is negated:
$ grep ’[ˆaeiouy][ˆaeiouy][ˆaeiouy][ˆaeiouy]’
patchwork
thoughts
etc...
’i’ before ’e’ except after c?
$ grep ’cie’ words.txt
$ grep ’[ˆc]ei’ words.txt

Matthew Bender (2015) The Command Line October 16, 2015 14 / 21

Regular Expressions

Basic Regular Expressions (BRE): character classes

The \w means match any alpha-numeric character, and \W matches the
opposite.

Similarly, \s matches any whitespace, and \S matches the opposite.

\b matches any word boundary, and \B matches not at a word boundary.

as\b will match all words ending in as - even if the next character is
whitespace, or a period, or dash, etc. It will not match things like mast.

Matthew Bender (2015) The Command Line October 16, 2015 15 / 21

Regular Expressions

Basic Regular Expressions (BRE): anchors

The ˆ and $ characters match the beginning and ending of a line,
respectively.
$ grep ’ˆabc’ words.txt
abcess
$ grep ’az$’ words.txt
spaz
How many 18-letter words start with ’a’ and end with ’y’?
$ grep ’ˆa................y$’ words.txt
antidemocratically

Matthew Bender (2015) The Command Line October 16, 2015 16 / 21

Regular Expressions

Extended Regular Expressions (ERE): |

The -E flag gives us access to Extended Regular Expressions, with more
metacharacters.
The should also be accessable by escaping them in BRE.
patt1|patt2 will match patt1 or patt2:
$ grep -E ’abc|xyz’ words.txt
abcess
hydroxyzine
This works with any regex pattern:
$ grep -E ’x...x|z[aeiou]z’ words.txt
exotoxin
pizazz

Matthew Bender (2015) The Command Line October 16, 2015 17 / 21

Regular Expressions

Extended Regular Expressions (ERE): ?

The ? matches either the previous token or the empty string, a.k.a. it
makes a token optional:
$ grep -E ’ˆabc?e’ words.txt
abcess
abettor
Note how it makes a whole character class optional:
$ grep -E ’od[aeiou]?d’ words.txt
goddess
wooded

Matthew Bender (2015) The Command Line October 16, 2015 18 / 21

Regular Expressions

Extended Regular Expressions (ERE): * and +

* will match any number of the previous token, + will match one or more
(* is also available in BRE):
All words with no vowels:
$ grep -E ’ˆ[ˆaeiou]+$’ words.txt
crypt
Which words contain all the vowels in order?
$ grep -E ’a.*e.*i.*o.*u’ words.txt
haemoglobinous
How would you modify it to have only those 5 vowels?

Matthew Bender (2015) The Command Line October 16, 2015 19 / 21

Regular Expressions

Extended Regular Expressions (ERE): ranges

You can also specify a range after a token: {n} matches it exactly n
times, {n,} matches n or more times, {,n} matches up to n times, and
{n,m} matches n to m times:

All 20-letter words:
$ grep -E ’ˆ.{20}$’ words.txt

All words containing 4 or more vowels in a row:
$ grep -E ’[aeiou]{4,}’ words.txt

Matthew Bender (2015) The Command Line October 16, 2015 20 / 21

Regular Expressions

Extended Regular Expressions (ERE): Grouping and
Backreferences

Parentheses can be used for grouping: (abc)def is the same as
abcdef, but ab(cd|ef)gh matched abcdgh or abefgh.

Parentheses also store their capture in a backreference, which can be
referred to later in the regex with \N, where N is the number of the
backreference.

All words containing the same 3-character string twice:
$ grep -E ’(.{3}).*\1’

All words with the same first and last 3 characters, but reverse:
$ grep -E ’ˆ(.)(.)(.).*\3\2\1$’

Matthew Bender (2015) The Command Line October 16, 2015 21 / 21

	The Unix Philosophy
	Regular Expressions

