
The Command Line

Matthew Bender

CMSC Command Line Workshop

Friday 9th October, 2015

Matthew Bender (2015) The Command Line Friday 9th October, 2015 1 / 22

Functions

Section 1

Functions

Matthew Bender (2015) The Command Line Friday 9th October, 2015 2 / 22

Functions

Combining Commands

Often you will find yourself repeating a series of commands.
You can combine these into either a function or a shell script.
These can take arguments on the command line just like any other
command.

Matthew Bender (2015) The Command Line Friday 9th October, 2015 3 / 22

Functions

Functions

function funcname1 {
comm1
comm2

}

Or (arguments do not go in the parentheses):

funcname2 () {
comm1
comm2

}

Also on 1 line (note the semicolon before the closing brace):

function funcname3 { comm1; comm2; }

Matthew Bender (2015) The Command Line Friday 9th October, 2015 4 / 22

Functions

Function Example

function setup {
cd ˜/216/projects/1
clear
date
echo Welcome back

}

Call functions like any other command (no parentheses):

> setup

Matthew Bender (2015) The Command Line Friday 9th October, 2015 5 / 22

Functions

Function arguments

Function arguments are stored as variables $1, $2, etc.
After the 9th argument, you must use braces: ${10}, ${11}, etc.
The $@ variable holds all the arguments passed.
The $# arguments holds the number of arguments passed.
The $0 variable still holds the name of the shell you’re running.
The $FUNCNAME variable holds the name of the function.
Remember to quote these variables or they will not work when passing
arguments with whitespace.

Matthew Bender (2015) The Command Line Friday 9th October, 2015 6 / 22

Functions

Function arguments

function funcinfo {
echo Function: "$FUNCNAME"
echo \# args: $#
echo arg 1: "$1"
echo arg 2: "$2"
echo all args: "$@"

}
> funcinfo foo bar # call like regular command

function mkdircd {
mkdir "$1" && cd "$1"

}

What happens if we pass 0 arguments to mkdircd?

Matthew Bender (2015) The Command Line Friday 9th October, 2015 7 / 22

Shell Scripting

Section 2

Shell Scripting

Matthew Bender (2015) The Command Line Friday 9th October, 2015 8 / 22

Shell Scripting

Shell Scripts

Shell scripts are another way to group commands to create programs
Save them in a file, usually with a .sh extension (though not necessary)
When ready, run > bash script.sh to run your script
This launches a new instance of bash, which runs the commands in
script.sh instead of commands entered from the user

Matthew Bender (2015) The Command Line Friday 9th October, 2015 9 / 22

Shell Scripting

Shell Scripts

You can also execute the script directly using a shebang.
A shebang is a character sequence at the top of a file telling a shell what
program to execute it with.
Put a #! (the shebang) at the top of your script, followed by the full path
to the bash executable at the top of your script (find this with which
bash).
#!/bin/bash
echo Hello, world
You must then make the script executable:
$ chmod +x script.sh
You can then run it by specifying the path to it as the command:
./script.sh
Or if the . directory is in your path, just run > script.sh.
(The executable after the shebang can be any interpreter, like another
shell, or python or perl)

Matthew Bender (2015) The Command Line Friday 9th October, 2015 10 / 22

Shell Scripting

Script arguments

Positional arguments work like functions: $1, $2, etc.
The difference is that $0 is now the script name.
And $FUNCNAME is not set.

Matthew Bender (2015) The Command Line Friday 9th October, 2015 11 / 22

Shell Scripting

Difference between functions and scripts

Functions exist in the environment of a shell. A function you define in
this shell will not exist in another instance. You can get around this
by defining the function in your .bashrc

Shell scripts are just files independent of the shell. You can move
them around, put them in your path, copy and edit them, email them,
etc.

Functions have access to the entire environment of the shell - aliases,
other functions, variables, etc.

Shell scripts do not, because a new shell is started every time they are
run.

Use functions for small things that are more complicated than an alias
could do.

Use shell scripts for larger, more complicated things that might have
to be modified and maintained.

Matthew Bender (2015) The Command Line Friday 9th October, 2015 12 / 22

Control Flow

Section 3

Control Flow

Matthew Bender (2015) The Command Line Friday 9th October, 2015 13 / 22

Control Flow

The test command

The test command is used to check some conditional. If the conditional
is true, it sets its exit code to 0, else something non-zero.
test -f blah checks if blah is a regular file
test -d blah checks if blah is a directory
test -n str checks if the length of str is non-zero
test -z str checks if the length of str is zero
test str1 = str2 checks string equality
test str1 != str2 checks string inequality
test int1 -eq int2 checks integer equality
Instead of -eq, use -ne, -gt, -ge, -lt, and -le for not equals,
greater than, greater than or equals, less than, and less than or equals

Matthew Bender (2015) The Command Line Friday 9th October, 2015 14 / 22

Control Flow

The test command

test ! expr tests if expr is false
test expr1 -a expr2 tests if both are true
test expr1 -o expr2 tests if either are true
Instead of saying test expr, you can say [expr],
e.g. [-f blah.txt]
Make sure you surround expr with spaces.

Matthew Bender (2015) The Command Line Friday 9th October, 2015 15 / 22

Control Flow

Control flow: if

if comm1; then
expr1;

elif comm2; then
expr2;

else
expr3;

fi

Matthew Bender (2015) The Command Line Friday 9th October, 2015 16 / 22

Control Flow

if example

read -p "Who are you? " name
if test "$name" = "Matt"; then
echo "Hello!"

elif ["$name" = "John"]; then
echo "Hey there"

else
echo "I don’t know you"

fi

Matthew Bender (2015) The Command Line Friday 9th October, 2015 17 / 22

Control Flow

Control flow: while

while comm; do
expr

done

Example:

while true; do
echo Another minute...
sleep 60

done

Matthew Bender (2015) The Command Line Friday 9th October, 2015 18 / 22

Control Flow

Looping through arguments

The shift command puts $2 into $1, $3 into $2, etc. and decrements
$#

while [$# -ge 1]; do
echo "$1";
shift;

done

Matthew Bender (2015) The Command Line Friday 9th October, 2015 19 / 22

Control Flow

Control flow: for

for var in arg1 arg2 argN; do
expr "$var"

done

Example: backing up files

for file in *.c *.h; do
cp "$file" "$file".bak

done

Matthew Bender (2015) The Command Line Friday 9th October, 2015 20 / 22

Control Flow

for loop example: testing your project

for i in {1..6}; do
./project1 < public"$i".in > test"$i".out
if cmp -s public"$i".out public"$i".out; then
echo "public test $i succeeded"
else
echo "public test $i failed"
fi

done

Matthew Bender (2015) The Command Line Friday 9th October, 2015 21 / 22

Control Flow

Control flow: case

case expr in
pattern1)
comm1
;;

pattern2)
comm2
;;

pattern3)
comm3
;;

esac

Matthew Bender (2015) The Command Line Friday 9th October, 2015 22 / 22

Control Flow

case example

read -p "What class are you in? " class
case "$class" in
13?)
echo "Enjoy Java!"
;;

216)
echo "C isn’t so bad"
;;

4*)
echo "You’re in some hard classes"
;;

*)
echo "I don’t know that class"
;;

esac

Matthew Bender (2015) The Command Line Friday 9th October, 2015 23 / 22

	Functions
	Shell Scripting
	Control Flow

