
The Command Line

Matthew Bender

CMSC Command Line Workshop

Friday 18th September, 2015

Matthew Bender (2015) The Command Line Friday 18th September, 2015 1 / 51

Shells

Section 1

Shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 2 / 51

Shells

What is a shell?

What is a shell?
A shell is just another program.
It reads in a line of text from the user.
Then it processes any special characters.
The shell determines if you told it do something it already knows how to
do.
If so, take that action.
Else, look for a program installed on the computer of the same name, and
run that.
The shell will stop running when you tell it to (either by typing ’exit’ or
hitting ˆD)

Matthew Bender (2015) The Command Line Friday 18th September, 2015 3 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

Example shells

sh - Thompson shell - by Ken Thompson (co-creator of Unix) - first
Unix shell. Very basic, 1971

sh - Bourne shell - by Stephen Bourne at Bell Labs in 1977, included
scripting

csh - C shell - by Bill Joy (author of the Vi editor) in 1978 - closer to
C syntax than Bourne shell

tcsh - improved C shell - in 1983 - offered various features like
command completion

bash - Bourne-again shell - by Brian Fox in 1989. Gathered features
from many shells, widely used today

zsh - Z shell - Paul Falstad in 1990 - Very powerful, huge set of
feautures, fully customizable

http://en.wikipedia.org/wiki/Comparison of command shells

Matthew Bender (2015) The Command Line Friday 18th September, 2015 4 / 51

Shells

bash

bash is one of the most-used shells, and we will be talking about it.
Many of the features are also available in other shells, but the syntax may
differ.
Bash should come installed on most systems, though it may not be the
default shell.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 5 / 51

Shells

Help in bash

bash interprets many commands on its own, which generally do not have
their own man page.
To get help on them, you could run man bash and search for your
desired command.
Or, use bash’s help command, which prints help about bash’s internal
commands.
> help comm

Matthew Bender (2015) The Command Line Friday 18th September, 2015 6 / 51

Shells

echo

echo is a command that prints its arguments back to you.
It is often both an installed program, and a shell built-in, so the shell’s
version will run.
It is useful for seeing the values of variables and passing text to other
programs.
By default, it does not interpret escape sequences. Adding the -e flag
enables this (this must be the first argument to echo)
> echo "line 1\nline 2"
line 1\nline 2
> echo -e "line 1\nline 2"
line 1
line 2

Matthew Bender (2015) The Command Line Friday 18th September, 2015 7 / 51

Shells

Getting bash

Check if your default shell is bash - you can do this by running
> echo $SHELL
This tells your shell to print the default shell.
On Grace, the default shell is tcsh.
Because shells are just programs, you can run a shell from within another
shell.
Run the command > echo $0 to see what shell you’re currently running
(if it starts with a -, that means it is a login shell).
Changing shells does not change the value of the SHELL variable - the
default login shell.
The file /etc/shells contains a list of available shells.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 8 / 51

Shells

Changing shells example

> echo $SHELL
/bin/tcsh
> echo $0
-tcsh
> bash
> echo $SHELL
/bin/tcsh
> echo $0
bash
> exit
> echo $SHELL
/bin/tcsh
> echo $0
-tcsh

Matthew Bender (2015) The Command Line Friday 18th September, 2015 9 / 51

Shells

The chsh command

If you want to change your default shell, you can use chsh (change shell).
Run > chsh -s shellname to change your login shell (shellname
must be the full path to the shell, like /bin/bash).
You can a list of available shells with cat /etc/shells.
If you’re on Grace, chsh is disabled (in a way) for reasons I am still
unsure about. I suggest just running bash when you login.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 10 / 51

Shell features

Section 2

Shell features

Matthew Bender (2015) The Command Line Friday 18th September, 2015 11 / 51

Shell features

Variables

bash treats everything as a string.
Assigning to a variable: > name=Matthew
Use $ to get back the variable:
> echo My name is $name
My name is Matthew
If the variable is not set, the result is the empty string.
Many environment variables are all caps, so it is recommended you use
lowercase.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 12 / 51

Shell features

Variables

Strings can be combined by putting them next to each other.
> a=fruit
> b=fly
> echo ab
fruitfly
> echo butter$b
butterfly
> echo $as
This will print nothing, as the variable as is not set.
How do we print fruits then?

Matthew Bender (2015) The Command Line Friday 18th September, 2015 13 / 51

Shell features

Variables

We can be more explicit with our variables:
> echo ${a}s
fruits
We could also quote the variable:
> echo "$a"s
fruits

Matthew Bender (2015) The Command Line Friday 18th September, 2015 14 / 51

Shell features

The read command

Use read to read in a variable.
Lets the user enter a string into the variable $var:
> read var
Add a prompt string:
> read -p "Enter username: " username
Don’t have the text show up when the user types:
> read -s -p "Enter password: " password

Matthew Bender (2015) The Command Line Friday 18th September, 2015 15 / 51

Shell features

Environment Variables

Use the env command to see all the environment variables.

$HOME = your home directory (˜ also evaluates to this)

$PATH = a colon-separated list of directories that the shell looks for
programs to run

$PAGER = default pager (e.g. less, more used to view text when
there is too much to fit on the screen)

Matthew Bender (2015) The Command Line Friday 18th September, 2015 16 / 51

Shell features

Environment Variables

Use the env command to see all the environment variables.

$HOME = your home directory (˜ also evaluates to this)

$PATH = a colon-separated list of directories that the shell looks for
programs to run

$PAGER = default pager (e.g. less, more used to view text when
there is too much to fit on the screen)

Matthew Bender (2015) The Command Line Friday 18th September, 2015 16 / 51

Shell features

Environment Variables

Use the env command to see all the environment variables.

$HOME = your home directory (˜ also evaluates to this)

$PATH = a colon-separated list of directories that the shell looks for
programs to run

$PAGER = default pager (e.g. less, more used to view text when
there is too much to fit on the screen)

Matthew Bender (2015) The Command Line Friday 18th September, 2015 16 / 51

Shell features

The $PATH variable

The $PATH variable is a colon-separated list of directories.
When your shell doesn’t know how to do something (e.g. mkdir), it
searches the directories listed in $PATH, one by one.
The directories of the $PATH variable will be searched, one-by-one, until
one containing the specified program is found. Then that one is run.
If running > echo $PATH isn’t readable enough for you, try
> echo $PATH | tr : ’\n’.
We will cover exactly how this works later, but as a short explanation, it
send the output of echo $PATH to the input of tr : ’\n’, which
will translate colons to newlines.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 17 / 51

Shell features

Wildcards

Special characters that expand based on files in the given directory.
Also called ”globs”.

* - expands to any sequence of characters
? - expands to any 1 character
See man 7 glob for more information.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 18 / 51

Shell features

Wildcard examples

> ls
a b band.txt bend.c bend.txt
> echo *
a b band.txt bend.c bend.txt
> echo ?
a b
> echo bend.*
bend.c bend.txt
> echo b?nd.txt
band.txt bend.txt
> echo b?nd.*
band.txt bend.c bend.txt
> echo b*
b band.txt bend.c bend.txt

Matthew Bender (2015) The Command Line Friday 18th September, 2015 19 / 51

Shell features

Hidden Files

Files and directories that start with a . are ”hidden”.
These are often used for configuration files and directories.
These will not show up in a ls, but you can use ls -a to show them.
The wildcard * will not match them - use .* instead.
Use both to match all files in a directory:
> echo * .* will show all files (like ls -a)

Matthew Bender (2015) The Command Line Friday 18th September, 2015 20 / 51

Shell features

Aliases

Simple abbreviations for more complex commands.
alias abbreviation=longer command
If longer command contains spaces, you have to quote it.
> alias lsa="ls -a"
> lsa
. .. .dotfile file1 file2
You can also alias commands that already exist. A very common alias:
> alias ls="ls --color"
Typing alias without any arguments will print all the current aliases.
Typing alias comm will print whatever comm is currently aliased to.
If you alias over a command, put a backslash first to run the unaliased
command: > \ls runs the original version of ls
Use unalias to unalias a command.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 21 / 51

Shell features

Common Aliases

When removing files, ask before deleting each.
> alias rm="rm -i"
When moving files, ask for confirmation if doing so would overwrite
another file.
> alias mv="mv -i"
When copying files, ask for confirmation if doing so would overwrite
another file.
> alias cp="cp -i"
Move to parent directory, and move to parent directory’s parent directory
> alias ..="cd .."
> alias ...="cd ../.."

Matthew Bender (2015) The Command Line Friday 18th September, 2015 22 / 51

Shell features

Exit codes

Commands have an exit code.
0 means success, anything non-zero means failure.
In some code you write, you can specify this when you exit
(exit(exit code); in C, or the value you return from main).
In bash, the $? variable contains the exit code of the last command.
true is a command that does nothing and exits with code 0, false does
nothing and exits with code 1.
Most command will set a non-zero exit code if you tell it to do something
it can’t (like remove a non-existant file).

Matthew Bender (2015) The Command Line Friday 18th September, 2015 23 / 51

Shell features

;, && and ||

> comm1; comm2 will run comm1, followed by comm2
> comm1 && comm2 will run comm1, and then if successful (exit code
of 0), also runs comm2
> comm1 || comm2 will run comm1, and then if unsuccessful (exit
code not 0), also runs comm2
We can use this to print if a command succeeds or fails:
> comm && echo Success || echo Failure

Matthew Bender (2015) The Command Line Friday 18th September, 2015 24 / 51

Shell features

IO Redirection

Programs have 3 basic IO (input/output) streams: stdin (standard
input), stdout (standard output), and stderr (standard error)
If a program requests input on stdin, it will wait until you enter text at
the keyboard (generally the terminal buffers this until you enter a newline).
If a program writes something to stdout or stderr, this will be printed
out to you.
In C, use printf("Output") or fprintf(stdout, "Output") to
print to stdout.
Use fprintf(stderr, "Error") to print to stderr.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 25 / 51

Shell features

Output Redirection

$ comm > file will run comm, and redirect stdout to the file file
instead of printing it to the screen. Any previous contents of file are
erased. (Depending on bash’s settings, it may stop you from overwriting
files like this. Run set +o noclobber to disable this.)
$ comm >> file will run comm, and redirect stdout to append to the
end of file instead of printing it to the screen. The previous contents of
file are preserved.
The above command only redirects stdout, not stderr. To redirect
stderr, put a 2 in front, like $ comm 2> file or $ comm 2>>
file.
If a program prints to both stdout and stderr, you can separate these
by redirecting one of them and leaving the other to print to the screen, or
write both to separate files:
$ comm > outfile 2> errfile

Matthew Bender (2015) The Command Line Friday 18th September, 2015 26 / 51

Shell features

Output Redirection

You can also redirect stdout to wherever stderr is, or vice-versa like
so:
$ comm 2>&1 # redirects stderr to stdout
$ comm >&2 # redirects stdout to stderr
Note that stdout is file descriptor 1, and stderr is file descriptor 2,
hence the syntax. You can omit the 1 when redirecting stdout.
To ignore the output from a command, redirect it to the special file
/dev/null.
For example, the following command removes all output by first
redirecting stdout to /dev/null, and then redirecting stderr to
wherever stdout is going:
$ comm > /dev/null 2>&1

Matthew Bender (2015) The Command Line Friday 18th September, 2015 27 / 51

Shell features

Input Redirection

If a program reads from stdin, you can use the contents of a file instead
like so:
$ comm < file # reads input from file as if it was
stdin

$ comm << TOKEN # reads stdin until TOKEN is read
input line1
input line2
input line3
TOKEN # TOKEN read, input stops
TOKEN can be any word you want.
This is useful because you don’t have to create a file to read from, and it
allows you to repeat the command and edit it without re-entering the text.
If a program is reading from stdin and you are entering text, hit ˆD to
signal end of stdin.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 28 / 51

Shell features

Piping

A pipe redirects the stdout from one command to the stdin of another.
One of the most useful tools you have - it allows you to combine several
small, simple programs into a tool suited for your needs.
$ cat animals.txt | fgrep -i monkey | wc -l
This sends the contents of animals.txt to the fgrep program, which
outputs any lines that match ”monkey”, ignoring case (the -i flag).
Finally, that output is send to the wc program (word count), which prints
the number of lines (the -l flag).
We just combined small commands to count the number of monkeys in
our file.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 29 / 51

Shell features

Piping to a pager

When the output of a command is too long, it helps to pipe the output to
a pager, such as less or more.
Pagers allow you to scroll through text.
In less, use arrow keys or PgUp/PgDn to scroll. Hit ’q’ to exit. Hit ’h’
for help, and ’q’ to exit the help.
Use ’/abc’ to search for text containing ’abc’, and ’n’ and ’N’ to move
forward and back among the matches.
’g’ will take you to the top, and ’G’ to the bottom.
Pipe the output of a command to less to scroll through all of it:
> comm | less

Matthew Bender (2015) The Command Line Friday 18th September, 2015 30 / 51

Shell features

The tee command

Sometimes it is helpful to both see the output of a command and save it
to a file.
tee copies its stdin to a file, and also prints it to stdout
$ comm | tee file will save the output of comm in file, and also
print it to stdout.
Use tee -a to append to the file instead of overwriting it.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 31 / 51

Shell features

Grouping

You may want to group several command together, like parentheses in
other programming languages.
The syntax for this is to surround them with {}’s, and leave a semicolon
after the last command. There must be a space after the first {.
Compare:
$ echo one; echo two > nums.txt # prints "one" and
writes "two" to nums.txt
$ { echo one; echo two; } > nums.txt # prints
nothing, writes "one" and "two" to nums.txt

Matthew Bender (2015) The Command Line Friday 18th September, 2015 32 / 51

Shell features

Arguments and Quoting

1) bash reads a line of text from the user
2) bash processes the line for special characters like $, *, etc. and
translates these accordingly.
rm $prog1/*.o might translate to
rm /homes/bender/216/projects/1/list.o
/homes/bender/216/projects/1/test.o
3) bash then splits this on whitespace into a list of tokens:
[rm, /homes/bender/216/projects/1/list.o,
/homes/bender/216/projects/1/test.o]
4) bash then calls the program given by the first token, with the
arguments given by the remaining arguments
Note that programs do not see the special characters themselves, bash
translates them first.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 33 / 51

Shell features

Arguments in programs

Programming languages have a feature to accept arguments.
Java: public static void main(String[] args)
args is an array of Strings containing the arguments.

C: int main(int argc char * argv[])
argv is an array of character pointers containing the arguments, argc

is the number of arguments.
Python: import sys
sys.argv is a list of the arguments

In bash, aliases take no arguments, they just expand, and you can pass
arguments to what they expand to only on the end.
bash functions and shell scripts both take arguments.
Note that some languages will not include the executable as an argument.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 34 / 51

Shell features

Printing Program Arguments Example

#include <stdio.h>

int main(int argc, char * argv[]) {
int i;
for (i = 0; i < argc; i++) {

printf("%d: %s\n", i, argv[i]);
}
return 0;

}
Save this as argprint.c, run the following:
> gcc argprint.c -o argprint
This produces an executable called argprint.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 35 / 51

Shell features

argprint

> argprint
0: argprint
> argprint ONE TWO
0: argprint
1: ONE
2: TWO
> argprint *.txt
0: argprint
1: emails.txt
2: stuff.txt
3: test.txt
> argprint ˜ .
0: argprint
1: /homes/bender
2: .

Matthew Bender (2015) The Command Line Friday 18th September, 2015 36 / 51

Shell features

Configuration Files

Using commands like alias la="ls -a" or set +o noclobber
only last for the duration of the shell.
Many programs have configuration files that they read on startup to
determine settings.
Most of the time, these are start with a . and end with rc (the rc stands
for run commands).
Example: when bash starts up, it reads from the .bashrc file.
If you want to print a greeting everytime you start bash, add echo
Hello! to the end of your .bashrc file.
On Grace, the .bashrc file is read-only, but you can edit the
.bashrc.mine file.
So add your options like set +o noclobber to your .bashrc or
.bashrc.mine file.
Note: all these config files are in your home directory.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 37 / 51

Shell features

Sourcing Files

In bash, you can run source file to run the commands in the current
shell. So you can source a file containing options or aliases to have them
loaded in the current shell.
For example, bash sources your .bashrc file on startup. This in turn
sources your .bash aliases file, so put your aliases there (they
would work just as well in .bashrc though).
A synonym for source is ., so source .bashrc and . .bashrc
do the same thing.
If you edit your .bashrc or .bash aliases, you will have to source
them or logout and log back in to get the changes.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 38 / 51

Shell features

Want to be evil?

If you really want to be evil, and you have access to your friend’s
.bashrc, add the following line:
echo "sleep 0.5" >> ˜/.bashrc
This cause the line sleep 0.5 to be added to your friend’s .bashrc
everytime he logs in.
This means his login time will appear to slowly increase everytime he logs
in, because there will be more and more lines of sleep 0.5 in his
.bashrc

Matthew Bender (2015) The Command Line Friday 18th September, 2015 39 / 51

Shell features

Useful sourcing aliases

In my .bash aliases, I like to have the following 2 lines:
alias bashrc="vim ˜/.bashrc && source ˜/.bashrc"
alias als="vim ˜/.bash aliases && source
˜/.bash aliases"
These will open up my .bashrc or .bash aliases file, respectively,
and source them when I am done editing them so I don’t have to.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 40 / 51

Shell features

Command History

The history command prints your history of commands entered.
!! is the last command you entered.
!n is the nth command in your history.
!-n is the nth from last command in your history.
!abc is the last command starting with abc.
!?abc is the last command containing abc.
!* is all of the arguments to the last command.
!ˆ is the first argument of the last command.
!$ is the last argument of the last command.
!!:4 is the 4th argument of the last command (also works with !-2:4,
!v:4, etc.).
!!:2-5 is the 2nd through 5th arguments of the last command (also
works with other command like above).

Matthew Bender (2015) The Command Line Friday 18th September, 2015 41 / 51

Shell features

Shell Builtins

As mentioned before, there are some things bash knows how to do. For
everything else, there’s Mastercard it looks for an installed program of the
given name.
Some examples of bash builtins:
alias - create an alias for a command
function - create a function (more powerful than an alias)
echo - bash provides its own implementation of echo
shopt - set or unset various shell options
type - see what type of command something is

Matthew Bender (2015) The Command Line Friday 18th September, 2015 42 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.

”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.
”comm is a function”, followed by its implementation, if comm
is a user-defined function.
”comm is /bin/comm”, or some other path, if comm is a installed
program.
”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.
”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.
”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.

”comm is a function”, followed by its implementation, if comm
is a user-defined function.
”comm is /bin/comm”, or some other path, if comm is a installed
program.
”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.
”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.
”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.
”comm is a function”, followed by its implementation, if comm
is a user-defined function.

”comm is /bin/comm”, or some other path, if comm is a installed
program.
”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.
”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.
”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.
”comm is a function”, followed by its implementation, if comm
is a user-defined function.
”comm is /bin/comm”, or some other path, if comm is a installed
program.

”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.
”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.
”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.
”comm is a function”, followed by its implementation, if comm
is a user-defined function.
”comm is /bin/comm”, or some other path, if comm is a installed
program.
”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.

”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

Shell Builtins

To what bash thinks your command is, use the type command:
> type comm
This will print one of several things:

”comm is a shell builtin” if comm is one of bash’s internal
commands.
”comm is aliased to ‘blah blah blah‘” if comm is a
user-defined alias.
”comm is a function”, followed by its implementation, if comm
is a user-defined function.
”comm is /bin/comm”, or some other path, if comm is a installed
program.
”comm is hashed (/bin/comm)”, if comm is a installed
program and has been recently used. bash remembers where is is
located to avoid having to re-search for it in $PATH. Unhash it with
unhash comm.
”comm is a shell keyword” if comm is a keyword like if or !

Matthew Bender (2015) The Command Line Friday 18th September, 2015 43 / 51

Shell features

The which command

which command will find the first instance of command in your path;
that is, which executable program would be run if you had run command
Add the -a flag to print all the executables matching command in your
path.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 44 / 51

Shell features

Quoting

In bash, everything is separated by whitespace
You cannot run name=Matthew Bender, because Matthew Bender
is not seen as one string.
Similarly, running > mkdir Project 1 will create two directories,
Project and 1
To fix this, you can escape whitespace with a backslash:
> mkdir Project\ 1
Or add quotes:
> mkdir "Project 1"
> mkdir ’Project 1’
The difference is evident if we pass these to our argprint program from
earlier.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 45 / 51

Shell features

Quoting

Be careful using variables with whitespace: they will expand into multiple
arguments. Quote them to resolve this:
> proj="Project 1"
> cd $proj # will not work, cd receives 2 arguments:
Project, and 1
> cd "$proj" # will work, as bash treats quoting
strings as 1 argument
> cd ’$proj’ # will not work, variables are not
expanded in single quotes
This is why it is generally best practice to quote your variables.

Matthew Bender (2015) The Command Line Friday 18th September, 2015 46 / 51

Shell features

Brace Expansions

A comma-separated list inside braces will be expanded to each of its
arguments, with any text around them being added around each argument.
mkdir 216/{projects,homeworks,notes}
Expands to:
mkdir 216/projects 216/homeworks 216/notes

echo "a "{man,plan,canal}, Panama
Prints:
a man, a plan, a canal, Panama

cp path/to/file{,.bak} # copies path/to/file to
path/to/file.bak

Matthew Bender (2015) The Command Line Friday 18th September, 2015 47 / 51

Shell features

Brace Expansions

Two numbers or charactes separated by 2 dots in braces expand to the
given range.
mkdir 216/projects/p{1..5}
Expands to:
mkdir 216/projects/p1 216/projects/p2
216/projects/p3 216/projects/p4 216/projects/p5

echo {A..E} {f..j}
Prints:
A B C D E f g h i j

Ranges can take a step as well:
echo {A..Z..3}
Prints ever 3rd letter:
A D G J M P S V Y

Matthew Bender (2015) The Command Line Friday 18th September, 2015 48 / 51

Shell features

Brace Expansions

You can combine multiple brace expansions in the same expression.

alias chess squares="echo {a..h}-{1..8}"
chess squares prints:
a-1 a-2 a-3 a-4 a-5 a-6 a-7 a-8 b-1 b-2 b-3 b-4 b-5
b-6 b-7 b-8 c-1 c-2 c-3 c-4 c-5 c-6 c-7 c-8 d-1 d-2
d-3 d-4 d-5 d-6 d-7 d-8 e-1 e-2 e-3 e-4 e-5 e-6 e-7
e-8 f-1 f-2 f-3 f-4 f-5 f-6 f-7 f-8 g-1 g-2 g-3 g-4
g-5 g-6 g-7 g-8 h-1 h-2 h-3 h-4 h-5 h-6 h-7 h-8

Matthew Bender (2015) The Command Line Friday 18th September, 2015 49 / 51

Shell features

Brace Expansions

for i in {5..1}; do
echo "$i"...
sleep 1

done
echo Blastoff!

Matthew Bender (2015) The Command Line Friday 18th September, 2015 50 / 51

Shell features

Command Substitution

bash provides syntax to substitute the output of a command as other
arguments.
2 different notations are used: surround the command in backticks, or
surround it with $(). The latter notation is preferred, mainly because it
allows easy nesting.
> rm $(cat files to delete.txt) # removes the files
listed in files to delete.txt
> now=$(date) # sets the $now variable to be the
current date and time
> vim $(ls | fgrep -i "list") # opens all files in
the current directory with "list" in their name,
ignoring case

Matthew Bender (2015) The Command Line Friday 18th September, 2015 51 / 51

