
The Command Line

Matthew Bender

CMSC Command Line Workshop

September 10, 2015

Matthew Bender (2015) The Command Line September 10, 2015 1 / 25

Introduction

Section 1

Introduction

Matthew Bender (2015) The Command Line September 10, 2015 2 / 25

Introduction

This Class

email: bendercommandline@gmail.com

website: www.cs.umd.edu/command line

Meets Fridays from 2-3 in CSIC 3118

No office hours, but I’m reachable through email

Matthew Bender (2015) The Command Line September 10, 2015 3 / 25

Introduction

Introduction

Why use the command line instead of a GUI?

More powerful - you have tons of tools at your disposal.

More control - tools tend to have many options, you choose exactly
what to do.

Scriptable - if there is a sequence of commands you find yourself
entering a lot, you can make it into a script to run easily and
automate your work.

Faster workflow - typing commands if faster than clicking if you know
what you’re doing.

Composable - small, single-purpose commands can be combined to do
powerful things.

Matthew Bender (2015) The Command Line September 10, 2015 4 / 25

Introduction

Introduction

Why use the command line instead of a GUI?

More powerful - you have tons of tools at your disposal.

More control - tools tend to have many options, you choose exactly
what to do.

Scriptable - if there is a sequence of commands you find yourself
entering a lot, you can make it into a script to run easily and
automate your work.

Faster workflow - typing commands if faster than clicking if you know
what you’re doing.

Composable - small, single-purpose commands can be combined to do
powerful things.

Matthew Bender (2015) The Command Line September 10, 2015 4 / 25

Introduction

Introduction

Why use the command line instead of a GUI?

More powerful - you have tons of tools at your disposal.

More control - tools tend to have many options, you choose exactly
what to do.

Scriptable - if there is a sequence of commands you find yourself
entering a lot, you can make it into a script to run easily and
automate your work.

Faster workflow - typing commands if faster than clicking if you know
what you’re doing.

Composable - small, single-purpose commands can be combined to do
powerful things.

Matthew Bender (2015) The Command Line September 10, 2015 4 / 25

Introduction

Introduction

Why use the command line instead of a GUI?

More powerful - you have tons of tools at your disposal.

More control - tools tend to have many options, you choose exactly
what to do.

Scriptable - if there is a sequence of commands you find yourself
entering a lot, you can make it into a script to run easily and
automate your work.

Faster workflow - typing commands if faster than clicking if you know
what you’re doing.

Composable - small, single-purpose commands can be combined to do
powerful things.

Matthew Bender (2015) The Command Line September 10, 2015 4 / 25

Introduction

Introduction

Why use the command line instead of a GUI?

More powerful - you have tons of tools at your disposal.

More control - tools tend to have many options, you choose exactly
what to do.

Scriptable - if there is a sequence of commands you find yourself
entering a lot, you can make it into a script to run easily and
automate your work.

Faster workflow - typing commands if faster than clicking if you know
what you’re doing.

Composable - small, single-purpose commands can be combined to do
powerful things.

Matthew Bender (2015) The Command Line September 10, 2015 4 / 25

Introduction

Composable Commands

Suppose we have a file called server.log :

72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
128.8.128.160 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
64.4.8.94 "GET /projects/p1.html HTTP/1.0"
72.30.61.37 "GET /projects/p1.html HTTP/1.0"
128.8.128.160 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw2.html HTTP/1.0"

Matthew Bender (2015) The Command Line September 10, 2015 5 / 25

Introduction

Composable Commands

We want to know all the pages that IP address 72.30.61.37 visited.

How would we do that?
We can combine several Linux commands to do so.

Matthew Bender (2015) The Command Line September 10, 2015 6 / 25

Introduction

Composable Commands

We want to know all the pages that IP address 72.30.61.37 visited.
How would we do that?

We can combine several Linux commands to do so.

Matthew Bender (2015) The Command Line September 10, 2015 6 / 25

Introduction

Composable Commands

We want to know all the pages that IP address 72.30.61.37 visited.
How would we do that?
We can combine several Linux commands to do so.

Matthew Bender (2015) The Command Line September 10, 2015 6 / 25

Introduction

Composable Commands

First, we use the fgrep command to choose only lines with the IP
address we care about:

$ fgrep "72.30.61.37" server.log

72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /projects/p1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw2.html HTTP/1.0"

Matthew Bender (2015) The Command Line September 10, 2015 7 / 25

Introduction

Composable Commands

However, we still have duplicates. We can remove these by first sorting the
lines to group identical ones:

$ fgrep "72.30.61.37" server.log | sort

72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw2.html HTTP/1.0"
72.30.61.37 "GET /projects/p1.html HTTP/1.0"

Matthew Bender (2015) The Command Line September 10, 2015 8 / 25

Introduction

Composable Commands

Now we just need to remove the duplicates, which is easy using the uniq
command:

$ fgrep "72.30.61.37" server.log | sort | uniq

72.30.61.37 "GET /hw/hw1.html HTTP/1.0"
72.30.61.37 "GET /hw/hw2.html HTTP/1.0"
72.30.61.37 "GET /projects/p1.html HTTP/1.0"

Matthew Bender (2015) The Command Line September 10, 2015 9 / 25

Getting Set Up

Section 2

Getting Set Up

Matthew Bender (2015) The Command Line September 10, 2015 10 / 25

Getting Set Up

Getting to a CLI

There are several ways you can work on a terminal.
Linux: just open up your terminal emulator.
Mac: open the Terminal application. (Some programs may be slightly
different).
Windows: download and install Cygwin. (Some programs and behavior
may be different).

Matthew Bender (2015) The Command Line September 10, 2015 11 / 25

Getting Set Up

Getting to a Linux CLI

Use a VM: Download VirtualBox, get a Linux image and install.
If you have a Grace/Linuxlab account, or access to a different Linux
server, you can SSH into it.
Linux and Mac: use the ssh command
Windows: download and install PuTTY
More detailed instructions are on the website.

Matthew Bender (2015) The Command Line September 10, 2015 12 / 25

Getting Started

Section 3

Getting Started

Matthew Bender (2015) The Command Line September 10, 2015 13 / 25

Getting Started

Shells

When you open a terminal/SSH into a server, a program called a shell
runs.

There are many different shells, the most common of which is called bash.
A shell waits for you to type in commands, and then takes an action or
launches a program for you.
Any output from the commands is printed back to you.
Shells provide extra features to help you do exactly what you want.

Matthew Bender (2015) The Command Line September 10, 2015 14 / 25

Getting Started

Shells

When you open a terminal/SSH into a server, a program called a shell
runs.
There are many different shells, the most common of which is called bash.

A shell waits for you to type in commands, and then takes an action or
launches a program for you.
Any output from the commands is printed back to you.
Shells provide extra features to help you do exactly what you want.

Matthew Bender (2015) The Command Line September 10, 2015 14 / 25

Getting Started

Shells

When you open a terminal/SSH into a server, a program called a shell
runs.
There are many different shells, the most common of which is called bash.
A shell waits for you to type in commands, and then takes an action or
launches a program for you.

Any output from the commands is printed back to you.
Shells provide extra features to help you do exactly what you want.

Matthew Bender (2015) The Command Line September 10, 2015 14 / 25

Getting Started

Shells

When you open a terminal/SSH into a server, a program called a shell
runs.
There are many different shells, the most common of which is called bash.
A shell waits for you to type in commands, and then takes an action or
launches a program for you.
Any output from the commands is printed back to you.

Shells provide extra features to help you do exactly what you want.

Matthew Bender (2015) The Command Line September 10, 2015 14 / 25

Getting Started

Shells

When you open a terminal/SSH into a server, a program called a shell
runs.
There are many different shells, the most common of which is called bash.
A shell waits for you to type in commands, and then takes an action or
launches a program for you.
Any output from the commands is printed back to you.
Shells provide extra features to help you do exactly what you want.

Matthew Bender (2015) The Command Line September 10, 2015 14 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Getting Started

Basic Commands

date - output the current date and time

cal - show a calander

Commands can take arguments and options:

the -3 option can be added telling cal to output the previous,
current, and next month.

An argument can be passed like 1999 to tell cal to show all of 1999.

Options and arguments are passed in the same way - adding them to
the command - cal -3 or cal 1999

Matthew Bender (2015) The Command Line September 10, 2015 15 / 25

Basic Filesystem Commands

Section 4

Basic Filesystem Commands

Matthew Bender (2015) The Command Line September 10, 2015 16 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Filesystem Structure

Computers need a way to organize their files

Most filesystems have a tree-like structure

Linux starts with the root directory, just called /

Each directory can have files and more directories inside it

You can specify a file or directory by its full path from the root
directory. /etc/passwd refers to a file called passwd in the
directory etc/ which itself is in the root directory /

When working on the command line, you are in a directory. This is
called your ”working directory”.

Matthew Bender (2015) The Command Line September 10, 2015 17 / 25

Basic Filesystem Commands

Basic Filesystem Commands

pwd - print working directory

ls - list the files in the given directory, or the current directory if
none is given.

cd - change directory - move to a different directory

Matthew Bender (2015) The Command Line September 10, 2015 18 / 25

Basic Filesystem Commands

Basic Filesystem Commands

pwd - print working directory

ls - list the files in the given directory, or the current directory if
none is given.

cd - change directory - move to a different directory

Matthew Bender (2015) The Command Line September 10, 2015 18 / 25

Basic Filesystem Commands

Basic Filesystem Commands

pwd - print working directory

ls - list the files in the given directory, or the current directory if
none is given.

cd - change directory - move to a different directory

Matthew Bender (2015) The Command Line September 10, 2015 18 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:

I / is the root directory
I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:

I / is the root directory
I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:

I / is the root directory
I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:
I / is the root directory

I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:
I / is the root directory
I . is the current directory

I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:
I / is the root directory
I . is the current directory
I .. is the current directory’s parent

I ˜ is your home directory - this is where your current directory starts as
when you start a shell

I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:
I / is the root directory
I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell

I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Filesystem Shortcuts

Referring to files and directories by their full name is inconvenient

You can also refer to them by their name relative to your current
directory. If you are in /home/bender/, then the files
/home/bender/file.txt and file.txt will refer to the same
file.

There are also special directory names:
I / is the root directory
I . is the current directory
I .. is the current directory’s parent
I ˜ is your home directory - this is where your current directory starts as

when you start a shell
I ˜bender is user bender’s home directory

As a side note, /, ., and .. are actual directory names. ˜ is a
character recognized by your shell, which then replaces it with the
home directory of a user or you

Matthew Bender (2015) The Command Line September 10, 2015 19 / 25

Basic Filesystem Commands

Man Pages

The man pages (short for manual) provide help on commands, topics,
and even C functions

Use the man command to bring up a topic’s man page

man pages tend to be long, so they will be displayed with a pager
program - usually less - which allows you to scroll through the
content. These can usually be exited by hitting q.

We will go more into detail with the man pages and pagers in the
future

And if you can’t figure out how to use the man pages, run man man

Matthew Bender (2015) The Command Line September 10, 2015 20 / 25

Basic Filesystem Commands

Man Pages

The man pages (short for manual) provide help on commands, topics,
and even C functions

Use the man command to bring up a topic’s man page

man pages tend to be long, so they will be displayed with a pager
program - usually less - which allows you to scroll through the
content. These can usually be exited by hitting q.

We will go more into detail with the man pages and pagers in the
future

And if you can’t figure out how to use the man pages, run man man

Matthew Bender (2015) The Command Line September 10, 2015 20 / 25

Basic Filesystem Commands

Man Pages

The man pages (short for manual) provide help on commands, topics,
and even C functions

Use the man command to bring up a topic’s man page

man pages tend to be long, so they will be displayed with a pager
program - usually less - which allows you to scroll through the
content. These can usually be exited by hitting q.

We will go more into detail with the man pages and pagers in the
future

And if you can’t figure out how to use the man pages, run man man

Matthew Bender (2015) The Command Line September 10, 2015 20 / 25

Basic Filesystem Commands

Man Pages

The man pages (short for manual) provide help on commands, topics,
and even C functions

Use the man command to bring up a topic’s man page

man pages tend to be long, so they will be displayed with a pager
program - usually less - which allows you to scroll through the
content. These can usually be exited by hitting q.

We will go more into detail with the man pages and pagers in the
future

And if you can’t figure out how to use the man pages, run man man

Matthew Bender (2015) The Command Line September 10, 2015 20 / 25

Basic Filesystem Commands

Man Pages

The man pages (short for manual) provide help on commands, topics,
and even C functions

Use the man command to bring up a topic’s man page

man pages tend to be long, so they will be displayed with a pager
program - usually less - which allows you to scroll through the
content. These can usually be exited by hitting q.

We will go more into detail with the man pages and pagers in the
future

And if you can’t figure out how to use the man pages, run man man

Matthew Bender (2015) The Command Line September 10, 2015 20 / 25

Basic Filesystem Commands

Creating Files

There are many ways to create and edit files via the command line. For
now, we will briefly cover text editors.

There are many text editors, such as emacs and vim, but the easiest to
use is probably nano.

Open a file with $ nano file.txt, edit it, and save it. There are
much better text editors out there, but for now this is the simplest.

Matthew Bender (2015) The Command Line September 10, 2015 21 / 25

Basic Filesystem Commands

More Basic Commands - cat

cat - catenate file - prints the contents of a file

$ cat file1.txt file2.txt file3.txt : outputs the contents
of each file

If no arguments are given, cat reads the user’s input and outputs that

The -n option to cat adds line numbers to the output

Matthew Bender (2015) The Command Line September 10, 2015 22 / 25

Basic Filesystem Commands

More Basic Commands - cat

cat - catenate file - prints the contents of a file

$ cat file1.txt file2.txt file3.txt : outputs the contents
of each file

If no arguments are given, cat reads the user’s input and outputs that

The -n option to cat adds line numbers to the output

Matthew Bender (2015) The Command Line September 10, 2015 22 / 25

Basic Filesystem Commands

More Basic Commands - cat

cat - catenate file - prints the contents of a file

$ cat file1.txt file2.txt file3.txt : outputs the contents
of each file

If no arguments are given, cat reads the user’s input and outputs that

The -n option to cat adds line numbers to the output

Matthew Bender (2015) The Command Line September 10, 2015 22 / 25

Basic Filesystem Commands

More Basic Commands - cat

cat - catenate file - prints the contents of a file

$ cat file1.txt file2.txt file3.txt : outputs the contents
of each file

If no arguments are given, cat reads the user’s input and outputs that

The -n option to cat adds line numbers to the output

Matthew Bender (2015) The Command Line September 10, 2015 22 / 25

Basic Filesystem Commands

More Basic Commands - cp

cp - copy file to make a duplicate

$ cp source.txt dest.txt : copies the file source.txt to the
file dest.txt
if dest.txt already exists, then it will be overwritten, unless the -n (no
clobber) flag is set, in which case no copy happens, or the -i (interactive)
flag is given, in which case cp will ask what you what to do.

the -r will recursively copy a directory and all files and subdirectories
rooted there: $ cp -r source-dir dest-dir

Matthew Bender (2015) The Command Line September 10, 2015 23 / 25

Basic Filesystem Commands

More Basic Commands - cp

cp - copy file to make a duplicate

$ cp source.txt dest.txt : copies the file source.txt to the
file dest.txt

if dest.txt already exists, then it will be overwritten, unless the -n (no
clobber) flag is set, in which case no copy happens, or the -i (interactive)
flag is given, in which case cp will ask what you what to do.

the -r will recursively copy a directory and all files and subdirectories
rooted there: $ cp -r source-dir dest-dir

Matthew Bender (2015) The Command Line September 10, 2015 23 / 25

Basic Filesystem Commands

More Basic Commands - cp

cp - copy file to make a duplicate

$ cp source.txt dest.txt : copies the file source.txt to the
file dest.txt
if dest.txt already exists, then it will be overwritten, unless the -n (no
clobber) flag is set, in which case no copy happens, or the -i (interactive)
flag is given, in which case cp will ask what you what to do.

the -r will recursively copy a directory and all files and subdirectories
rooted there: $ cp -r source-dir dest-dir

Matthew Bender (2015) The Command Line September 10, 2015 23 / 25

Basic Filesystem Commands

More Basic Commands - cp

cp - copy file to make a duplicate

$ cp source.txt dest.txt : copies the file source.txt to the
file dest.txt
if dest.txt already exists, then it will be overwritten, unless the -n (no
clobber) flag is set, in which case no copy happens, or the -i (interactive)
flag is given, in which case cp will ask what you what to do.

the -r will recursively copy a directory and all files and subdirectories
rooted there: $ cp -r source-dir dest-dir

Matthew Bender (2015) The Command Line September 10, 2015 23 / 25

Basic Filesystem Commands

More Basic Commands - mv

mv - move or rename files

$ mv old.txt new.txt will rename old.txt to new.txt
$ mv file.txt dest-dir will move file.txt into dest-dir

Like cp, mv supports the -n and -i options to deal with existing
destination files
Unlike cp, no -r flag is needed to deal with directories. Just do $ mv
source-dir dest-dir , but note different things will happen based
on if dest-dir already exists!

Matthew Bender (2015) The Command Line September 10, 2015 24 / 25

Basic Filesystem Commands

More Basic Commands - mv

mv - move or rename files

$ mv old.txt new.txt will rename old.txt to new.txt

$ mv file.txt dest-dir will move file.txt into dest-dir

Like cp, mv supports the -n and -i options to deal with existing
destination files
Unlike cp, no -r flag is needed to deal with directories. Just do $ mv
source-dir dest-dir , but note different things will happen based
on if dest-dir already exists!

Matthew Bender (2015) The Command Line September 10, 2015 24 / 25

Basic Filesystem Commands

More Basic Commands - mv

mv - move or rename files

$ mv old.txt new.txt will rename old.txt to new.txt
$ mv file.txt dest-dir will move file.txt into dest-dir

Like cp, mv supports the -n and -i options to deal with existing
destination files
Unlike cp, no -r flag is needed to deal with directories. Just do $ mv
source-dir dest-dir , but note different things will happen based
on if dest-dir already exists!

Matthew Bender (2015) The Command Line September 10, 2015 24 / 25

Basic Filesystem Commands

More Basic Commands - rm

rm - remove files

$ rm file1 file2 file3 : remove each file given as an argument.
Be careful! Once you do this, they are gone forever.
rm supports the -i flag to ask if you’re sure before you delete the file. It
also supports the -f flag to force removal of a file, overriding an earlier
-i flag

rm also supports the -r flag to recursively delete a directory and all its
contents. BE VERY CAREFUL WITH THIS: rm -rf dir will
completely remove dir and all of its contents without asking - this is very
dangerous

Matthew Bender (2015) The Command Line September 10, 2015 25 / 25

Basic Filesystem Commands

More Basic Commands - rm

rm - remove files

$ rm file1 file2 file3 : remove each file given as an argument.
Be careful! Once you do this, they are gone forever.

rm supports the -i flag to ask if you’re sure before you delete the file. It
also supports the -f flag to force removal of a file, overriding an earlier
-i flag

rm also supports the -r flag to recursively delete a directory and all its
contents. BE VERY CAREFUL WITH THIS: rm -rf dir will
completely remove dir and all of its contents without asking - this is very
dangerous

Matthew Bender (2015) The Command Line September 10, 2015 25 / 25

Basic Filesystem Commands

More Basic Commands - rm

rm - remove files

$ rm file1 file2 file3 : remove each file given as an argument.
Be careful! Once you do this, they are gone forever.
rm supports the -i flag to ask if you’re sure before you delete the file. It
also supports the -f flag to force removal of a file, overriding an earlier
-i flag

rm also supports the -r flag to recursively delete a directory and all its
contents. BE VERY CAREFUL WITH THIS: rm -rf dir will
completely remove dir and all of its contents without asking - this is very
dangerous

Matthew Bender (2015) The Command Line September 10, 2015 25 / 25

Basic Filesystem Commands

More Basic Commands - rm

rm - remove files

$ rm file1 file2 file3 : remove each file given as an argument.
Be careful! Once you do this, they are gone forever.
rm supports the -i flag to ask if you’re sure before you delete the file. It
also supports the -f flag to force removal of a file, overriding an earlier
-i flag

rm also supports the -r flag to recursively delete a directory and all its
contents. BE VERY CAREFUL WITH THIS: rm -rf dir will
completely remove dir and all of its contents without asking - this is very
dangerous

Matthew Bender (2015) The Command Line September 10, 2015 25 / 25

	Introduction
	Getting Set Up
	Getting Started
	Basic Filesystem Commands

