Relations and Functions

Problem: Let A and B be arbitrary sets. How many different relations are there from a set A to a set B?

Solution: Note that all such relations are subsets of the set $A \times B$. In other words, the question is equivalent to asking the question, how many subsets are there of the set $A \times B$.

Recall that $2^{(A \times B)}$ is the set of all subsets of $A \times B$. The cardinality of the powerset is

$$|2^{A \times B}| = 2^{|A \times B|} = 2^{|A| \times |B|}$$

Recall the following properties on relations:

Let R be a relation defined on set A. We say that R is

- **reflexive**, if for all $x \in A$, $(x, x) \in R$.
- **irreflexive**, if for all $x \in A$, $(x, x) \notin R$.
- **symmetric**, if for all $x, y \in A$, $(x, y) \in R \implies (y, x) \in R$.
- **antisymmetric**, if for all $x, y \in A$, $x R y$ and $y R x \implies x = y$.
- **transitive**, if for all $x, y, z \in A$, $x R y$ and $y R z \implies x R z$.

Problem: What are the properties of the following relations?

- R_1: “is a sibling of” relation on the set of all people.
- R_2: “\leq” relation on \mathbb{Z}.
- R_3: “$<$” relation on \mathbb{Z}.
- R_4: “$|$” relation on \mathbb{Z}^+.
- R_5: “$|$” relation on \mathbb{Z}.

Solution.

- Reflexive: R_2, R_4
- Irreflexive: R_1, R_3
- Symmetric: R_1
- Antisymmetric: R_2, R_3, R_4
- Transitive: R_2, R_3, R_4, R_5
Note that R_5 is not reflexive because $(0, 0) \not\in R_5$; it is not antisymmetric because for any integer a, $a | -a$ and $-a | a$, but $a \neq -a$. Observe that R_5 is an example of a relation that is neither symmetric nor antisymmetric.

Equivalence Relations

A relation R on a set A is an *equivalence relation* if and only if it is reflexive, symmetric and transitive.

Prove: Let A be the set of all strings of English letters. Suppose that R is the relation on the set A such that $a R b$ if and only if $l(a) = l(b)$, where $l(x)$ is the length of the string x. Prove that R is an equivalence relation.

Solution: To show that R is an equivalence relation, we need to prove that R is reflexive, symmetric, and transitive.

- **Reflexive:** Let a be an arbitrary string in A. Note that $l(a) = l(a)$, and hence $a R a$. This shows that R is reflexive.

- **Symmetric:** Let a, b be arbitrary elements in A. Assume $(a, b) \in R$. Since $a R b$, this means that $l(a) = l(b)$. Hence $l(b) = l(a)$, so $b R a$. This shows that R is symmetric.

- **Transitive:** Let a, b, c be arbitrary elements in A. Assume that $(a, b), (b, c) \in R$. Thus $l(a) = l(b)$ and $l(b) = l(c)$, which implies that $l(a) = l(c)$. Hence $a R c$ and R is transitive.

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Operations on Relations

Since relations are sets, we can take a relation or a pair of relations and produce a new relation using set operations.

Examples:

- Let “$>$” be the greater than relation on the set of integers. Let “$<$” be the less than relation on the set of integers.

 Then “$>$” \cup “$<$” = “\neq”

- Let “\geq” be the greater than or equal relation on the set of integers. Let “$=$” be the equal relation on the set of integers.

 Then “\geq” \setminus “$=$” = “$>$”.
Functions

Let A and B be sets. A function from A to B is a relation, f, from A to B such that for all $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in f$.

Here are some definitions:

- If $(a, b) \in f$, then we write $b = f(a)$.
- A function from A to B is also called a mapping from A to B and we write it as $f : A \rightarrow B$.
- The set A is called the domain of f and the set B the codomain.
- If $a \in A$ then the element $b = f(a)$ is called the image of a under f. The range of f, denoted by $\text{Ran}(f)$ is the set
 \[
 \text{Ran}(f) = \{b \in B \mid \exists a \in A \text{ s.t. } b = f(a)\}
 \]
- Two functions are equal if they have the same domain, have the same codomain, and map each element of the domain to the same element in the codomain.

Examples:

- Some functions are ones that a familiar to ones that you may have studied before. For example: $f_1 : \mathbb{Z} \rightarrow \mathbb{Z}, f_1(x) = x^2$
- Functions need not have such a clean definition. For example:

 Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. Then there can be a function $f_2 : A \rightarrow B$, such that $f_2(1) = b$, $f_2(2) = a$, $f_2(3) = b$.

Let A and B be sets. Let $f : A \rightarrow B$ be a function.

- f is said to be **injective**, iff $\forall x, y \in A, x \neq y \implies f(x) \neq f(y)$.
 Sometimes it is informative to look at its contrapositive statement:
 $\forall x, y \in A, f(x) = f(y) \implies x = y$.
- f is called **surjective**, iff $\forall b \in B, \exists a \in A, f(a) = b$.
- f is a **bijection**, iff it is both surjective and injective.

Prove: Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$, such that $f(x) = x + 1$. Prove that f is bijective.

To prove that f is bijective, we wish to show that it is injective and surjective.

- **Injective:** Let x and y be arbitrary elements in A. Assume that $x \neq y$. Then $f(x) = x + 1 \neq y + 1 = f(y)$. Since $f(x) \neq f(y)$, then we have shown that f is injective.
- **Surjective:** Let \(x \) be an arbitrary element in \(B \). Let \(y = x - 1 \). Note that \(f(y) = f(x - 1) = x \). Hence, since there is a \(y \in \mathbb{Z} \) such that \(f(y) = x \), we have that \(f \) is surjective.

Since we have shown that the function is injective and surjective, we have that it is bijective.

Injection and Surjection Rule

The Injection Rule

Let \(A \) and \(B \) be two finite sets. If there is an injective function from \(A \) to \(B \), then \(|A| \leq |B| \).

We can see this as follows. Since each element in \(A \) is mapped to a distinct element in \(B \), this means that \(|A| = |\text{Ran}(f)| \). Further, since \(\text{Ran}(f) \subseteq B \), we know that \(|\text{Ran}(f)| \leq |B| \). Therefore, \(|A| \leq |B| \).

The Surjection Rule

Let \(A \) and \(B \) be two finite sets. If there is a surjective function from \(A \) to \(B \), then \(|A| \geq |B| \).

We can see this as follows. Suppose for the sake of contradiction that there is a surjective function, but \(|A| < |B| \). Note that since each element in \(A \) is mapped to exactly one element in \(B \), it must be that \(|A| \geq |\text{Ran}(f)| \). Since \(|\text{Ran}(f)| \leq |A| \) and \(|A| < |B| \), we have that \(|\text{Ran}(f)| < |B| \). Since \(\text{Ran}(f) \subseteq B \) and \(|\text{Ran}(f)| < |B| \), it must be that \(\text{Ran}(f) \subset B \). Therefore, we have that \(B \setminus \text{Ran}(f) \neq \emptyset \). In other words, there is an element in \(B \) such that it is not mapped onto by the function \(f \). This contradicts the assumption that \(f \) is surjective.