## CMSC 250: Discrete Structures

Summer 2017

## Discussion Session 1

June 7, 2017

1. Show that $p \vee q \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$
2. Show that $(p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$.
3. Prove the following: The sum of two integers is even iff their difference is even.
4. Let $A=\{n \mid n=2 k+5$ for some $k \in \mathbb{N}\}$ and $B=\{n \mid n=2 j+1$ for some $j \in \mathbb{N}\}$. Is $A \subseteq B$ ?
5. Let $A=\left\{n \in \mathbb{N} \mid n=2 k^{2}-3\right.$, for some $\left.k \in \mathbb{N}\right\}$ and $B=\left\{n \in \mathbb{N} \mid n=j^{2}+3\right.$ for some $\left.j \in \mathbb{N}\right\}$. Prove that $A \nsubseteq B$.
6. Let $A=\{n \in \mathbb{N} \mid n \geq 2$ and $n=4 j-5$, for some $j \in \mathbb{N}\}$ and $B=\{n \in \mathbb{N} \mid n \geq 0$ and $n=$ $2 k+1$ for some $k \in \mathbb{N}\}$. Prove that $A \subset B$.
7. Let $x$ be an integer. If $x>1$, then $x^{3}+1$ is composite.
8. Show that at least three of any 25 days chosen must fall in the same month of the year.
9. Recall the cartesian product of $A$ and $B$, denoted by $A \times B$, is the set of all ordered pairs formed by taking an element from $A$ together with an element from $B$ in all possible ways. That is, $A \times B=\{(a, b) \mid a \in A, b \in B\}$. Prove that if $A$ and $B$ are non-empty sets then $A \times B=B \times A$ iff $A=B$.
10. For any integer $n \geq 2$, prove that if no prime $p \leq \sqrt{n}$ divides $n$, then $n$ must be prime.
