CMSC 250: Discrete Structures

Summer 2017

Discussion Session 1

June 7, 2017

1. Show that $p \lor q \to r \equiv (p \to r) \land (q \to r)$

2. Show that $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$.

3. Prove the following: The sum of two integers is even iff their difference is even.

- **4.** Let $A = \{n \mid n = 2k + 5 \text{ for some } k \in \mathbb{N}\}$ and $B = \{n \mid n = 2j + 1 \text{ for some } j \in \mathbb{N}\}$. Is $A \subseteq B$?
- 5. Let $A = \{n \in \mathbb{N} \mid n = 2k^2 3, \text{ for some } k \in \mathbb{N}\}$ and $B = \{n \in \mathbb{N} \mid n = j^2 + 3 \text{ for some } j \in \mathbb{N}\}.$ Prove that $A \not\subseteq B$.
- **6.** Let $A = \{n \in \mathbb{N} \mid n \ge 2 \text{ and } n = 4j 5$, for some $j \in \mathbb{N}\}$ and $B = \{n \in \mathbb{N} \mid n \ge 0 \text{ and } n = 2k + 1 \text{ for some } k \in \mathbb{N}\}$. Prove that $A \subset B$.

7. Let x be an integer. If x > 1, then $x^3 + 1$ is composite.

8. Show that at least three of any 25 days chosen must fall in the same month of the year.

9. Recall the *cartesian product* of A and B, denoted by $A \times B$, is the set of all ordered pairs formed by taking an element from A together with an element from B in all possible ways. That is, $A \times B = \{(a,b) | a \in A, b \in B\}$. Prove that if A and B are non-empty sets then $A \times B = B \times A$ iff A = B. 10. For any integer $n \ge 2$, prove that if no prime $p \le \sqrt{n}$ divides n, then n must be prime.