
Deep Learning in Parallel
Siddharth Singh, Department of Computer Science

Introduction to Parallel Computing (CMSC416 /
CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Deep neural networks

• Neural Networks (NN): Parameterized function approximators

• Can work with very high dimensional data (text, videos, audio)

2

Abhinav Bhatele (CMSC416 / CMSC616)

Neural Networks have a Layered Structure

• Computation organized in a sequence of layers with linear dependencies.

3

Abhinav Bhatele (CMSC416 / CMSC616)

Other definitions

• Learning/training: task of selecting weights that lead to an accurate function

• Loss: a scalar proxy that when minimized leads to higher accuracy

• Gradient descent: process of updating the weights using gradients (derivatives) of the
loss weighted by a learning rate

• Batch: Small subsets of the dataset processed iteratively

• Epoch: One pass over all the mini-batches

4

Abhinav Bhatele (CMSC416 / CMSC616)

Why Parallel Deep Learning?
• Parallel Deep Learning - Training on multiple GPUs.

Exponential
Growth

Time to train on a single A100
GPU on Zaratan?

172 years!!

5

Abhinav Bhatele (CMSC416 / CMSC616)

Networks are trained on 1000s of GPUs!

Billions of
parameters

1000s of GPUs

6

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel/distributed training
• Many opportunities for exploiting parallelism

• Iterative process of training (epochs)

• Many iterations per epoch (mini-batches)

• Many layers in DNNs

7

Abhinav Bhatele (CMSC416 / CMSC616)

Data parallelism
• Divide training data among workers

(GPUs)

8

GPU 0

GPU 1

Neural
Network
Copy 0

Neural
Network
Copy 1

Batch

Batch Shard 0

Batch Shard 1

• Each worker has a full copy of the entire
NN.

• All reduce operation to synchronize
gradients.

Abhinav Bhatele (CMSC416 / CMSC616)

Pros and Cons of Data Parallelism

Pros

1. Embarrassingly parallel
2. Easy to implement and use

Cons

1. Cannot train models that
exceed memory capacity of a
single GPU.

How to train models that do not fit on a single GPU?

9

Abhinav Bhatele (CMSC416 / CMSC616)

Inter-layer Parallelism
• Distribute entire layers to different processes/GPUs

• Point-to-point communication (activations and gradients) between processes/GPUs
managing different layers

10

Abhinav Bhatele (CMSC416 / CMSC616)

Pipelining in Inter-Layer Parallelism
• Layers have sequential dependencies, so only one GPU would be active at a

time.

• Break batch into multiple shards (microbatches) and process them in a pipelined
fashion.

Batch broken
into 8 shards

11

Abhinav Bhatele (CMSC416 / CMSC616)

Intra-layer Parallelism

• Divide the work of each individual layer
across multiple GPUs.

• Compute intensive layers involve large
matrix multiplications.

• Intra-layer parallelism = Parallel Matrix
multiplication.

12

Abhinav Bhatele (CMSC416 / CMSC616)

Hybrid parallelism

• Using two or more approaches together in the same parallel framework

• 3D parallelism: use all three

• Popular serial frameworks: pytorch, tensorflow

• Popular parallel frameworks: DDP, FSDP, ZeRO, Megatron-LM

13

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel Deep Learning @ PSSG

Thrust 1: Designing
Communication Efficient
Algorithms for Parallel

Training on 1000s of GPUs!

14

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel Deep Learning @ PSSG

Thrust 2: Designing User-Friendly
Parallel DL Algorithms for Non-

HPC Experts

Serial Model Declaration Tensor Parallel Model Declaration

net = MyFavModel()
with axonn.auto_parallelize:

net = MyFavModel()

15

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

16

