Introduction to Parallel Computing (CMSC416 / CMSCé16)

Task-based Prog. Models and Charm++

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

e Assignment 4 (CUDA) has been pre-released

* Will be updated tonight with potential clarifications

® Due onApril 17 at | 1:59 pm

s DEPARTMENT OF ,
"_‘%&bé:‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Task-based programming models

® Describe program / computation in terms of tasks

® A task can be defined as a code region that can be executed concurrently by multiple
processes or threads, and along side other tasks

® Notable examples: Charm++, StarPU, HPX, Legion

e Attempt at classification of task-based programming models: https://link.springer.com/
article/10.1007/s11227-018-2238-4

SHE DEPARTMENT OF ,
";,f»i;;m{;;“ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 3

https://link.springer.com/article/10.1007/s11227-018-2238-4
https://link.springer.com/article/10.1007/s11227-018-2238-4

Task-based programming models

® Enable exposing high degree of parallelism
® Number of tasks independent of the number of processors
e Tasks might be short-lived or persistent throughout program execution

e Runtime handles distribution and scheduling of tasks

S DEPARTMENT OF ,
"_‘%&bé:‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Charm++: Key principles

® Programmer decomposes data and work into objects (called chares)

* Decoupled from number of processes or cores

e Runtime assigns objects to physical resources (cores and nodes)

® Each object can only access its own data

* Request data from other objects via remote method invocation: foo.get data()

® Asynchronous message-driven execution

s DEPARTMENT OF .
;}}TM;’J COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Hello World in Charm++

mainmodule hello {

array [1D] Hello {
entry Hello();
entry void sayHi();

Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

\-"'. 03y r

AR DEPARTMENT OF ,
:;' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

http://charmplusplus.org/tutorial/ArrayHelloWorld.html

Hello World in Charm++

mainmodule hello {

array [1D] Hello {

entry Hello();
entry void sayHi();

}

vold Hello ::sayHi() {

CkPrintf("Hello from chare %d on processor %d.\n”, thisIndex,

CkMyPe());

Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

COMPUTER SCIENCE

@; DEPARTMENT OF Abhinav Bhatele (CMSC416 / CMSC616)

http://charmplusplus.org/tutorial/ArrayHelloWorld.html

Hello World in Charm++

mainmodule hello { Main: :Main(CkArgMsg* msg) {
numObjects = 5; // number of objects
array [1D] Hello {
entry Hello(); CProxy Hello helloArray =
entry void sayHi(); CProxy Hello::ckNew(numObjects);
}i

helloArray.sayHi();

void Hello ::sayHi() {
CkPrintf("Hello from chare %d on processor %d.\n”, thisIndex,

CkMyPe());
}

Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

"”" DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

http://charmplusplus.org/tutorial/ArrayHelloWorld.html

Compiling a charm program

® Charm translator for .ci (Charm++ interface) file

e Generates charm_hello.decl.h and charm_hello.def.h

e C++ code:

. 'é_l'k.; e
\\

é
-3

: DEPARTMENT OF
s »,;;i# COMPUTER SCIENCE

charmc hello.ci

charmc -c¢ hello.C

el
++ Campyer)
PP

charmc -o hello hello.o
declhf L
temp. . m ")
file #include "xxx.decl.h #include “xxx.h"
mt.eS!ce h
e ; Cor.c
e header file —
def.h
temp.
file #include “xxx.def.h”

Abhinav Bhatele (CMSC416 / CMSC616)

O

object
file

Chare arrays

® User can create indexed collection of data-driven objects

CProxy Hello helloArray CProxy Hello::ckNew(numElements);

e Different kinds: I D, 2D, 3D, ...

® Mapping of array elements (objects) to hardware resources handled by the runtime
system (RTYS)

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Object-based virtualization

e User programs in terms of chares or objects

Global Object Space

User View System View

s DEPARTMENT OF ,
.,_;%{mg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Over-decomposition

® Create lots of “small” objects per physical core

e Obijects grouped into arrays: |1 D, 2D, ...

® System assigns objects to processors and can migrate objects between physical
resources

e Facilitates automatic load balancing

s DEPARTMENT OF ,
";,f»i;;m{;;“ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

10

Message-driven execution

® An object is scheduled by the runtime scheduler only when a message for it is
received

® Facilitates adaptive overlap of computation and communication

Processor 0 Processor 1 Processor N-1

Charm++ RTS/Converse

(e fm7s

Machine Layer

Charm++ RTS/Converse Charm++ RTS/Converse

e s || || (o] sz

Machine Layer Machine Layer

nierconne

SEBSIE

A8 DEPARTMENT OF ,
':’fn{m*: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Cost of creating more objects?

e Context switch overhead
® Cache performance
e Memory overhead

® Fine-grained messages

S DEPARTMENT OF .
".‘,ﬁ}?;.‘b{j;;"' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 12

Hello world: .ci file

mainmodule hello {

readonly CProxy MyMain myMainProxy;
readonly int numChares;

malnchare MyMain {
entry MyMain(CkArgMsg *msqg);
entry void done(void);

}7

array [1D] Hello {
entry Hello(void);
entry volid sayHi(int);

}i
}7

B DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|3

Hello world: MyMain class

/*readonly*/ CProxy MyMain myMainProxy;
/*readonly*/ int numChares;

class MyMain: public CBase MyMain {

public:
MyMain (CkArgMsg* msg) {
numChares = atoi(msg->argv[l]); // number of elements

myMainProxy = thisProxy;
CProxy Hello helArrProxy = CProxy Hello::ckNew(numChares);

helArrProxy[0].sayH1(20);
}

volid done(void) {
ckout << ”“All done” << endl;
CKExit();

}
};

B DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

~~~~~~

| 4



Hello world: Hello class

#include “hello.decl.h”
extern /*readonly*/ CProxy MyMain myMainProxy;

class Hello: public CBase Hello {
public:
Hello(void) { }

volid sayHi(int num) {
ckout << “Chare " << thisIndex << *“says Hi!” << num << endl;

1f(thisIndex < numChares-1)
thisProxy[thisIndex+l].sayHi(num+l);
else
myMainProxy.done();

}i
#include “hello.def.h”

’u"' DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

~~~~~~

|5

Proxy class

e Runtime needs to pack/unpack data and also figure out where the chare is

® Proxy class generated for each chare class

* Proxy objects know where the real object is

e Methods invoked on these proxy objects lead to messages being sent to the destination node/core where the
real object resides

RYALS 152

3 * DEPARTMENT OF -
‘:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

16

Broadcast, barrier, and reduction

® Entry method called on a chare proxy without subscript is essentially a broadcast:

chareProxy.entryMethod()

® Barrier: reduction without arguments:

contribute();

e Reduction with arguments:

void contribute(int bytes, const void *data, CkReduction::reducerType type);

RYALS 152

AR DEPARTMENT OF :
‘fr COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|7

Callback for reduction

® Where does the output of the reduction go?

® Use a callback object known as a reduction client

CkCallback* cb = new CkCallback(CkIndex myType::myReductionFunction(NULL), thisProxy);
contribute(bytes, data, reducerType, cb);

e Use the reduction data in the callback:

volid myType::myReductionFunction(CkReductionMsg *msg) {
int size = msg->getSize() / sizeof(type);
type *output = (type *) msg->getData();

https://charm.readthedocs.io/en/latest/charm++/manual.html#collectives

SAE. DEPARTMENT OF ,
@ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 18

2D Stencil in Charm++

® Data decomposition
® Work decomposition

¢ Communication?

s DEPARTMENT OF ,
"_‘%&b{;;"' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

19

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

