Introduction to Parallel Computing (CMSC416 / CMSCé16)

Shared Memory and OpenMP

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Announcements

® Reminder:Assignment | is due on: Feb 28, | 1:59 pm ET

o (Good-faith attempt of each assighment is required

e Assignment 2 is posted and due on: March 6 at | |:59 pm ET
o Quiz | is posted on ELMS, due on March | at 11:00 am ET

e Reminders:

e How to contact course staff: cmsc4 | 6-bhatele@cs.umd.edu

* Do not run/execute code on the login node

* Best way to report issues:¥What command did you run, and the full error

SAE DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

mailto:cmsc416-bhatele@cs.umd.edu

Shared memory programming

o All entities (threads) have access to the entire address space
® Threads “communicate” or exchange data by directly accessing shared variables

® Programmer has to manage data conflicts |
NUMA Multi-core Node

Bus Interconnect

LSy

S DEPARTMENT OF -
"-;,,,,)" COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 3

Lyihy

OpenMP

® OpenMP is an example of a shared memory programming model
® Provides within-node parallelization

® Meant for certain kinds of programs/computational kernels

o Specifically ones that use arrays and loops

® Potentially easier to implement programs in parallel using OpenMP with small code
changes (as opposed to distributed memory programming models)

e DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP

e OpenMP is a language extension (and library) that enables parallelizing C/C++/
Fortran code

® Programmer uses compiler directives and library routines to indicate parallel regions
in the code and how to parallelize them

o Compiler converts code to multi-threaded code

o OpenMP uses a fork/join model of parallelism

RYALS 152

AR DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Fork-join parallelism

® Single flow of control
Parallel Task | Parallel Task Il Parallel Task Il

® Master thread spawns worker threads _._.- -.
B B —

Master Thread

https://en.wikipedia.org/wiki/OpenMP

ALELES

S DEPARTMENT OF :
:'4:,:--‘:,.@5: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 6

https://en.wikipedia.org/wiki/OpenMP

Fork-join parallelism

® Single flow of control
Parallel Task | Parallel Task Il Parallel Task Il

® Master thread spawns worker threads _._.- -.-
B B —

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread / 3
S ?

https://en.wikipedia.org/wiki/OpenMP

ALELES

S DEPARTMENT OF :

https://en.wikipedia.org/wiki/OpenMP

Race conditions when threads interact

¢ Unintended sharing of variables can lead to race conditions

® Race condition: program outcome depends on the scheduling order of threads

* More than one thread access a memory location and at least one of them writes to it (without proper
synchronization)

® VWe want program outcome to be deterministic and same as serial program

® How can we prevent data races!

e Use synchronization

e Change how data is stored

RYALS 152

AR DEPARTMENT OF ,
'f"éff‘,::.,b%?i: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

OpenMP pragmas

® Pragma:a compiler directive in C or C++
® Mechanism to communicate with the compiler

e Compiler may ignore pragmas

#pragma omp construct [clause [clause] ...]

RYALS 152

AR DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Hello World in OpenMP

#include <stdio.h>
#include <omp.h>

int main(void)

{
#pragma omp parallel
printf("Hello, world.\n");
return 0;

}

¢ Compiling: gcc -fopenmp hello.c -o hello

e Setting number of threads: export OMP_NUM THREADS=2

S DEPARTMENT OF ,
i;, COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Parallel for

® Directs the compiler that the immediately following for loop should be executed in
parallel

® Only applies to the immediately following for loop even if you have nested for
loops

#pragma omp parallel for [clause [clause] ...]
for (1 1nit; test expression; 1ncrement expression) {

do work

s DEPARTMENT OF .
‘:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

10

Parallel for example

int main(int argc, char **argv)

1 < 100000; 1++) {
1;

{
int a[1000007;
#pragma omp parallel for
for (int 1 = 0;
a[i1] = 2 *
}
return 0;
}

%) COMPUTER SCIENCE

Abhinav Bhatele (CMSC416 / CMSC616)

Parallel for execution

e Master thread creates worker threads

e The OpenMP runtime distributes iterations of the loop to different threads

parallel for synchronize

Master thread l _ l
Worker thread | _
Worker thread 2 _
Worker thread 3 _

Time Y Sy S W S N W u—

;"M%”i DEPARTMENT OF .
l"ﬂ;,;r,wéi"; COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

Number of threads

® You can set it using this environment variable before executing the program:
export OMP NUM THREADS=X
® From within the program, you can call this library routine:

® void omp set num threads(int num threads)

e Set the number of OpenMP threads to be used in parallel regions

® [his returns the number of available hardware cores on the node:

® int omp get num procs(void);

e Can be used to decide the number of threads to create

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|3

Data sharing defaults

® Most variables in an OpenMP program are shared by default
® Global variables are shared
® Exception: loop index variables are private by default

® Exception: Stack variables in function calls from parallel regions are also private to
each thread (thread-private)

s DEPARTMENT OF :
".‘,,ﬁw{;;"‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) | 4

saxpy (single precision a*x+y) example

0; 1 < n; 1++) {
* x[1] + y[1];

S DEPARTMENT OF :
".‘,ﬁ}?;.‘b{j;;"' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|5

saxpy (single precision a*x+y) example

#pragma omp parallel for
for (int 1 = 0; 1 < n; 1++) {
z[1] = a * x[1] + y[1];

}

S DEPARTMENT OF :
".‘,ﬁ}?;.‘b{j;;"' COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|5

Overriding defaults using clauses

e Specify how data is shared between threads executing a parallel region
® private(list)

® shared(list)

® default(shared | none)

® reduction(operator: list)

@ firstprivate(list)

® lastprivate(list)

https://www.openmp.org/spec-html/5.0/openmpsu | 06.html#x139-5540002.19.4

SHE DEPARTMENT OF ,
";,f»i;;m{;;“ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

private clause

® Each thread has its own copy of the variables in the list
® Private variables are uninitialized when a thread starts

® The value of a private variable is unavailable to the master thread after the parallel
region has been executed

RYALS 152

3 * DEPARTMENT OF .
".‘,,ﬁw{;;"‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

|7

default clause

® Determines the data sharing attributes for variables for which this would be implicitly
determined otherwise

® Possible values: shared or none

S DEPARTMENT OF ,
".‘,,ﬁw{;;"‘ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 18

Anything wrong with this example?

val = 5;

#pragma omp parallel for private(val)
for (int 1 = 0; 1 < n; 1++) {
. = val + 1;

}

s DEPARTMENT OF .
;}}TM;’J COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

19

Anything wrong with this example?

val = 5;
#pragma omp parallel for private(val) The value of val will not be available
for (int 1 = 0; 1 < n; 1++) { to threads inside the loop
= val + 1; ~
Y

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

19

Anything wrong with this example?

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
val = 1 + 1;

}

printf(“%d\n”, val);

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

20

Anything wrong with this example?

#pragma omp parallel for private(val)
for (int 1 = 0; 1 < n; 1++) {

. The value of val will not be available
val = 1 + 1;

to the master thread outside the
loop

}

printf(“%d\n”, val);

S DEPARTMENT OF ,
i;, COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

20

firstprivate clause

® |nitializes each thread’s private copy to the value of the master thread’s copy upon
entry to the parallel section

val = 5;

#pragma omp parallel for firstprivate(val)
for (int 1 = 0; 1 < n; 1++) {
.. = val + 1;

}

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

21

lastprivate clause

® Writes the value belonging to the thread that executed the last iteration of the loop
to the master’s copy

e |ast iteration determined by sequential order

S DEPARTMENT OF ,
";,f»i;;m{;;“ COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

22

lastprivate clause

® Writes the value belonging to the thread that executed the last iteration of the loop
to the master’s copy

e |ast iteration determined by sequential order

#pragma omp parallel for lastprivate(val)
for (int 1 = 0; 1 < n; 1++) {
val = 1 + 1;

}

printf(“sd\n”, val);

S DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

22

reduction(operator: list) clause

® Reduce values across private copies of a variable

¢ Operators: +,-,* &, |, A, &&, ||, max, min

#pragma omp parallel for
for (int 1 = 0; 1 < n; 1++) {
val += 1i:

printf(“%d\n”, val);

https://www.openmp.org/spec-html|/5.0/openmpsu | 07.htmI#x 140-5800002.19.5

\-‘"'_ 0Sry

A DEPARTMENT OF :
;ﬁ.“;i:- COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

::::

23

reduction(operator: list) clause

® Reduce values across private copies of a variable

¢ Operators: +,-,* &, |, A, &&, ||, max, min

Identifier _Initializer “Combiner

+ omp_priv = 0 omp_out += omp_in
- omp_priv = 0 omp_out += omp_in
. % omp_priv = 1 omp_out %= omp_in
#pragma omp parallel for reduction(+: val) & omp_priv = ~ 0 omp_out &= omp_in
: S . - . - | omp_priv = 0 omp_out |= omp_in
for (lnt 1 O' 1 < nj l++) { n omp_priv = 0 omp_out ~= omp_in
val += 1; && omp_priv =1 omp_out = omp_1n

&& omp_out
} | | omp_priv = 0 omp_out = omp_in

| | omp_out
max omp_priv = Least omp_out = omp_in

: 1o " . representable number in the > omp_out ?
prlntf(Od\n / Val) 4 reduction list item type omp_in : omp_out
min omp_priv = Largest omp_out = omp_in

representable number in the < omp_out ?
_reduction list item type omp_in : omp_out

https://www.openmp.org/spec-html|/5.0/openmpsu | 07.htmI#x 140-5800002.19.5

ALY r

\\
3

: * DEPARTMENT OF ,
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 73

Loop scheduling

e Assignment of loop iterations to different worker threads
® Default schedule tries to balance iterations among threads

e User-specified schedules are also available

RYALS 152

AR DEPARTMENT OF ,
'f"éff‘,::.,b%?i: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

24

User-specified loop scheduling

e Schedule clause

schedule (type[, chunk])

® type: static, dynamic, guided, runtime

® static: iterations divided as evenly as possible (#iterations/#threads)

e chunk < #iterations/#threads can be used to interleave threads

® dynamic: assign a chunk size block to each thread

* When a thread is finished, it retrieves the next block from an internal work queue

e Default chunk size = |

SAEC DEPARTMENT OF .
";,f»h,;w{;’;" COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 25

Other schedules

® guided: similar to dynamic but start with a large chunk size and gradually decrease it
for handling load imbalance between iterations

® auto: scheduling delegated to the compiler

® TJo set schedule at runtime: use the OMP SCHEDULE environment variable

https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-scheduling.html

RYALS 152

AR DEPARTMENT OF :
‘fr COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

26

Calculate the value of 7=

int main(int argc, char *argv[])

{
n = 10000;
h = 1.0 / (double) n;
sum = 0.0;
for (1 =1; 1 <=n; 1 += 1) {
Xx = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x * X));
}
pli = h * sum;
}

S DEPARTMENT OF ,
""‘f.if,;.m-ii: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

g

o 1 +x7

27

Calculate the value of == A

2
o 1 +x
int main(int argc, char *argv[])
{
n = 10000;
h = 1.0 / (double) n;
sum = 0.0;
#pragma omp parallel for firstprivate(h) private(x) reduction(+:
for (1 =1; 1 <=n; 1 += 1) {
X = h * ((double)i1 - 0.5);
sum += (4.0 / (1.0 + x * X));
}
pli = h * sum;
'

AR DEPARTMENT OF

)° COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

sum)

28

Parallel region

e All threads execute the structured block

#pragma omp parallel [clause [clause] ...]
structured block

e Number of threads can be specified just like the parallel for directive

s DEPARTMENT OF .
‘:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

29

Synchronization

e Concurrent access to shared data may result in inconsistencies
e Use mutual exclusion to avoid that

e critical directive

® atomic directive

e |ibrary lock routines

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/replacing-annotations-with-openmp-code/adding-openmp-code-to-
synchronize-the-shared-resources.html

RYALS 152

MG DEPARTMENT OF ,
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 30

critical directive

e Specifies that the code is only to be executed by one thread at a time

#pragma omp critical [(name)]
structured block

s DEPARTMENT OF .
‘:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

31

atomic directive

® Specifies that a memory location should be updated atomically

#pragma omp atomic
expression

RYALS 152

AR DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

32

GPGPUs

o GPGPU: General Purpose Graphical Processing Unit

® Many slower cores

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache
L2 Cache

DRAN

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

A DEPARTMENT OF .
.;Mme: COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616) 33

OpenMP on GPUs

® target: run on accelerator / device

for (int i = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

® teams distribute: creates a team of worker threads and distributes work amongst
them

SAE DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

34

OpenMP on GPUs

® target: run on accelerator / device

#pragma omp target teams distribute parallel for

for (int i = 0; i < n; i++) {
z[1] = a * x[1] + y[1];

® teams distribute: creates a team of worker threads and distributes work amongst
them

SAE DEPARTMENT OF .
:r COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC616)

34

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

