
CMSC416: Introduction to Parallel Computing

Topic: Parallel Networks
Date: April 23, 2024

N-dimensional mesh / torus networks
Mesh and torus networks are commonly used to interconnect processors or nodes with a
supercomputer. These networks are typically characterized by their arrangement of nodes and
switches, which is essential to minimizing latency and maximizing bandwidth across the
network.

N-dimensional Mesh Networks:
Switches are arranged in an N-dimensional grid and each switch typically encompasses a single
node or a small group of nodes. The switches are responsible for routing data between nodes
across the network, and each switch is connected to 2N other switches, where N is
representative of the number of dimensions here. For example, in a 2D mesh, each switch has
4 connections (up, down, left, right). Messages are routed through dimensions one at a time and
this network architecture scales linearly as well with the number of nodes.

N-dimensional Torus Networks:
A torus network extends the mesh by adding wraparound links. The edges here form a
continuous loop in each dimension. Each switch in an N-dimensional torus is also connected to
2N switches, but this offers an advantage in the form of a reduced network diameter due to the
loop-around conditions.

Fat-tree networks
A fat-tree network is a layered, hierarchical framework that has multiple paths between any two
nodes to prevent bottlenecks. As you move up the hierarchy, the switches have more bandwidth
to accommodate the total traffic across the loyal layers. “Router radix” refers to the number of
ports on a router or switch, and in a fat-tree network has a radix of k. The number of nodes
connected to each router or switch is typically k / 2, which means that each switch can handle
traffic from k / 2 compute nodes. A pod is a subsection of the network consisting of a set of
switches that connect a group of compute nodes, and each pod includes k/2 switches at each
level within the pod. The maximum number of pods is k, as the “router radix” is k per switch.
Pods are designed to be self-sufficient and can handle internal traffic efficiently while also
connecting to the larger network. In the fat-tree hierarchy, there are usually three levels of
switches:

Level 1 (Edge Level): The switches connect directly to the compute nodes.
Level 2 (Aggregation Level): The switches connect the edge switches to the core layer.
Level 3 (Core Level): The top-level switches interconnect all the pods and handle traffic that
needs to travel between pods.

The bandwidth is typically much “fatter” near the top of the tree, which ensures that as multiple
paths from the lower levels converge, the network can still handle the increased traffic without
becoming a potential bottleneck. In regards to scalability, fat-tree networks can scale by adding
more pods or increasing the radix k and due to the presence of multiple redundant paths, the
network can continue to function even if some switches or links fail, which makes it a very
scalable and robust architecture for HPC environments.

Dragonfly network
The dragonfly network is a two-level hierarchical network composed of groups of routers. Each
group at the lower level is interconnected with itself, often in the form of a complete graph of
nodes, meaning that every router has a direct connection to every other router within the same
group. The groups are then sparsely connected at the higher level. High-radix routers are used,
meaning each router has a large number of ports, allowing for a significant number of
connections within a group. This in turn enables a low network diameter, as there are less
routers for data to pass through before reaching its destination due to the dense architecture of
supernodes in this network. A supernode in this context refers to a collection of routers that
likely function as a single cohesive unit within the network architecture.

Message life-cycle
The source in this life-cycle is where the message begins, and this could be a computer or a
server, for example. The messages are determined by the application generating the message,
and destination, how often messages are sent (frequency), and the size of the messages are
also sent. The generation of messages can range widely in time as well, from microseconds to
tens of seconds. The NIC (Network Interface Card) receives data from the source, and prepares
it for transmission by packetizing the data, or breaking the data into packets. This step typically
involves some delay involving hundreds of nanoseconds. As packets enter the network, the
routers/switches determine the best path for them to reach their destination, and this step incurs
a delay of approximately 100 nanoseconds. Packets may temporarily be stored in buffers if they
cannot move forward immediately due to network congestion, for example. The packets travel
through various links between routers/switches and these links can become congestion points if
many packets are trying to simultaneously traverse the same paths, ranging in time from 1 to 50
nanoseconds. Once the packets reach the destination’s local network, they are received by the
NIC and correspondingly assembled back into the original message to deliver to the destination
application. The time taken for the destination to process the received message can vary from
microseconds to tens of seconds.

Network congestion
Network sharing occurs when multiple data flows, originating from different programs or
processes, use the same network infrastructure, such as switches, routers, and physical links.

In a network, shared resources typically include the physical transmission media, along with the
switches and routers that direct traffic from one point to another. Congestion on these shared
links happens when too much data is sent through the network at once, and can cause delays
and potential packet loss. For example, congestion can be caused if two programs send data
over a network simultaneously, filling the bandwidth of the shared links. The subsequent
programs that are trying to communicate through these congested links will then also
experience delays, resulting in increased latency.

