
CMSC416: Introduction to Parallel Computing 
 
Topic: Performance Issues 
Date: April 4th, 2024 
 

Performance Metrics 
People use the following metrics to measure how fast the program runs.  

• Time to solution: Time the whole program. Sometimes it might take a very long time for 
some physics or chemistry simulation to reach the solution, so instead people look at time 
per step.  

• Time per step (iteration): If the program is designed with multiple iterations (steps), it is 
more efficient to record the time per iteration. For example, run 10 iterations and take the 
average.  

• Science progress: Measure the specific quantity of interest per unit time, usually in 
science fields. For example, how much time does it take for a biomolecule to be 
simulated, or in epidemic simulations, how the number of days that can be simulated in a 
computer time (second). 

• Floating point operations per second (flop/s): Many HPCs are doing floating point 
intensive jobs for most of their lives. Then how many floating-point operations per 
second will be a good metric for their performance, like how intensive the floating-point 
operation is, or is the program bounded by memory.  

• Comparing multiple data points: Theoretically we use speedup and efficiency to compare 
the performance of different programs. Empirically we run the programs with different 
number of processes and compare the time to see whether we are scaling well.  

Best performance  
The following parameters are called by the professor as peak advertised numbers because they are 
usually given by the producers to advertise how good their products are. The numbers are 
theoretical upper bounds, in practice, reaching 20%-40% of them can already be reasonable for 
scientific computing jobs. For NN tasks involving simpler computations, 60% or more can be 
reached.  

• Peak flop/s: For example, the world’s top 2 HPC has the parameters:  
(Rmax = maximum performance, Rpeak = theoretical maximum performance) 
Frontier: Rmax = 119400 flop/s , Rpeak = 167982 flop/s 
Aurora: Rmax = 58534 flop/s, Rpeak = 109000 flop/s 
Even the top 2 super computers can only have 60% performance compared to the 
theoretical bounds.  

• Peak memory bandwidth 
• Peak network bandwidth 

 
Why can’t we reach the theoretical bounds? Because there are performance issues. Before 
knowing the issues, we first need to know what is happening in a program. 

• Integer operations 
• Floating-point operations 
• Conditional instructions: if else statements.  
• Loads/stores: load data from memory to registers.  
• Data movement across the network (communications of messages + I\O): For example, in 

cuda, sending messages from GPU to GPU, or from CPU to GPU. In MPI, 
communications across processes. I/O: file reads/writes.  

 



Best performance  
After knowing what happens inside the computer, now we are going to see what issues we might 
meet.  

• Serial code performance issues: Every problem that happens in the serial part that slows 
down the program.  

• Load imbalance: Processes which run fast need to wait for those run slow.  
• Communication issues / parallel overhead: More processes used will cause more 

communication overhead. I/O overhead can also happen.  
• Algorithmic overhead / replicated work: The design of parallel algorithm might let each 

process do more additions (operations) than the serial case and thus produce overhead. 
• Speculative loss: This is also replicate work but is labelled differently here in terms of 

classification. Speculative executions are something related to hardware which can help 
the programs perform well. If the program really needs it, then the program performs 
better. However sometimes the program doesn’t need it, then it becomes excessive work.  

• Critical paths: When you see a thread (process) is slow, it might not be the problem in 
itself. For example, it waited for another thread to send messages for a long time. Critical 
path just describes the long path of dependencies across threads/processes.  

• Insufficient parallelism: Program has too many sequential part but very little parallel part.  
• Bottlenecks: For example, all processes need to wait for the root to load and distribute 

data. 
 

 

Serial code performance issues 
People can use many performance tools to check the serial code performance issues. They can 
provide people with hardware metrics like floating-point operation, caches to tell you in different 
part of the hardware (cache, memory, floating-point unit), whether you are using them properly or 
not.  
Solutions:  

• Minimize data movement: Minimize the movement in data hierarchy. Bring data into 
registers and use them multiple times.  

• Maximize data reuse: For example, using blocking in matrix multiplication. 
• Optimize floating-point calculations: For example, calculating *0.2 will be faster than 

calculating /5.  
 

 Communication performance issues 
• Overhead and grainsize: Decide how to divide data into processes.  

Corse grain: Send few large messages. This might cause overhead.  
Fine grain: Send many small messages. This needs better bandwidth.  

• No overlap between communication and computation: The advantage of Isend and Irecv 
is that the processes can utilize the waiting to do computation. If a program does not have 
such techniques, then it is not efficient.  

• Increasing amounts of communication as we run with more processes/threads: If the 
number of processes increase, it will be less efficient to let a process to still communicate 
with all the processes. A better way is to communicate within smaller groups of 
processes.  

• Frequent global synchronization: Each global synchronization function will force every 
process to wait, e.g., Reduce. If these functions are called frequently, the waiting time 
will be long.  



 

Critical paths 
People want to find out what is the first bottleneck in a critical path, but this is difficult if the path 
is long.  
Solutions: 

• Eliminate the critical path with as few dependencies as possible, but usually this is not 
practical because communications are needed.  

• Shorten the critical path: Try to compute asynchronously by using Isend and Irecv.  
• Removing work: Optimize the number of processes involved.    
 

Serial Bottleneck 
• Use only one process for file I/O. Root 0 read and send messages to 999 processes. This 

can be solved by using parallel I/O.  
 

Performance variability 
While running the same executable many times, it performs differently. 
This can lead to several problems: 

• More time to complete science simulations: Usually it takes 3 months to complete, but 
now it takes 5-8 months, but people don’t know.  

• All the users are waiting in job queues. A slow task will force all the following jobs to be 
delayed.  

• Inefficient use of machine time allocation: The number of jobs per computer time 
decreases, then some concern of energy usage or costs need to be considered.  

• Debugging performance issues: If people revise the code and want to see an increase in 
performance, but there is no because of variability, then they will be confused.  

• Cannot quantify the effect of various software changes on performance. For example, to 
check the changes made by using new software to calculate matrix multiplication.  

• There is no reliable estimate time for running executables, so it is difficult to estimate 
time for a batch job or simulation.  

 

Sources of performance variability 
• Operating system (OS) noise/jitter: As OS runs, some daemons must tun. When daemons 

are running, all the other executables must stop and wait for them to finish. For example, 
a daemon checking whether there are new messages to process.   
If looking at the graph returned by measuring tools Fixed Work Quanta and Fixed Time 
Quanta, there are equal-space gaps between execution time. This phenomenon is just 
caused by daemon because the time for daemon to run is constant.  

• Contention for shared resources 
 


