
CMSC416: Introduction to Parallel Computing

Topic: GPGPUs and CUDA
Date: March 26, 2024

● GPGUs (General Purpose Graphics Processing Unit)

○ It was originally developed to handle computation related to graphics processing
○ useful for scientific computing
○ It is currently used for AI training, bitcoin mining, and high performance parallel

computing, etc.
● Types of Accelerators

○ IBM’s Cell processors
■ Used in playstation 3

○ GPUs: NVIDIA, AMD, Intel
○ FPGAs (Field Programmable Gate Arrays)

● Uses for mainstream High Performance Computing
○ 2013: NAMD, used for molecular dynamics simulations on a supercomputer with

3000 NVIDIA Tesla GPUs
■ They were able to simulate the Aids virus

● CPU Hardware
○ Each core has its own L1 cache
○ The L2 caches are shared across multiple cores
○ The L3 cache shared across all cores

● GCGPU Hardware
○ It has Many more cores
○ The L1 caches share multiple cores
○ The L2 cache shares all cores
○ Has higher instruction throughput and hides memory access latency with

computation
● GPU vs CPU

○ GPU has many more cores
○ CPU has higher Clock Speed(GHz)

■ This is caused by heating
● Volta GV100

○ Cuda Core
■ Single serial execution unit

● Can execute instructions
○ Many cores are divided into Streaming Multiprocessors
○ Streaming Multiprocessor (SM)

■ 64 FP32 cores (single precision)
■ 64 INT32 cores
■ 32 FP64 cores (double precision)
■ 8 Tensor cores

● Used for matrix multiply

○ A CUDA capable device or GPU is a Collection of SMs
● NVLink - Sends messages very fast between GPUs

● CUDA

○ Allows developers to use C++ as a high-level programming language
○ Built around threads, blocks and grids
○ Terminology:

■ Host: CPU
● Where you start computation

■ Device: GPU
● This is where you offload computation to

■ CUDA Kernel: a function that gets executed on the GPU
○ You have to figure out as programmer which threads should do what

● Cuda Software abstraction
○ Thread - One serial unit of abstraction
○ Block - A Collection of threads

■ Number of threads in block <= 1024
○ Kernel Grid - A Collection of blocks
○ A Thread is executed in a CUDA core
○ A Block of threads is executed by a CUDA SM
○ A Grid is executed by the entire GPU

● Three steps to writing a CUDA kernel
○ Copy input data from host to device memory (CPU to GPU)
○ Load the GPU program (kernel) and execute it
○ Copy the results back to host memory

Example Code Copying data to GPU and then back

● CudaMalloc - Allocates memory on the gpu
● CudaMemcpy - Copies data to and from different places (host to device, device to host,

device to device, host to host, default)
● cudaFree - frees memory allocated

● CUDA Syntax

● __Global__ is required
● In this case there is 1 block with N threads
● Parameters for saxpy are Array x, array y, scalar alpha
● The top block of code(saxpy) specifies what happens for a single thread
● Calling “saxpy” in main is caled the “kernel call”

● What happens if array has > 1024 elements (A Block has a max of 1024 elements)
○ You will have each thread work on multiple parts of array

● What happens when the size of array < number of threads provided in launch parameter
○ There is an out of bounds error
○ You should put a check inside that checks if the amount of threads is <= size of

array
● Compiling code

○ nvcc -o saxpy --generate-code arch=compute_80,code=sm_80 saxpy.cu
○ ./saxpy
○ saxpy.cu is the file name
○ This Compiles host and gpu code at same time

Multiple blocks

Threads per block and numblocks get passed into the kernel call

● Each thread has an Id. threadId.x gives the Id of the current thread
● Each block has a block id. BlockId.x gives the Id of the current block
● Int i = blockdim.x * blockDim.x * blockDimId.x + threadId.x;

○ This line stores the global threadID in i

