
 

 

CMSC416: Introduction to Parallel Computing 
 

Topic: OpenMP 
Date: March 05, 2024 

Updates 
● Project 1: 

○ Deadline extended until Friday, March 8th 
○ Do not merge nodes with the same name (using groupby i.e.) before tallying your values. 

You’ll get different answers and output. 
○ Don’t need to add the shebang #!/usr/bin/python3 to our scripts, they’ll run python on the 

files 
● Some student notes are formatted and up on the class website. Slides are still the primary (and 

trusted) source of information, but the student notes are available for reference, taken with a grain 
of salt. 

 

Quiz 1 Clarification(s) 
MPI can indeed be run on shared memory architectures. That’s what we do on Zaratan – each MPI 
process shares a fraction of the shared memory pool, even though it only has 128 cores. 

OpenMP 
The OMP reduction minus (-) operator just does a plus sum operation, according to the OMP 
documentation. 
 
Q: Why can’t we share a local variable across all OMP threads? 
A: It causes a data race, which can cause values to become mangled and take on older / out-of-date 
values depending on the random timing of the threads 

Loop Scheduling 
Loop scheduling can be used to assign different loop iterations to different OMP threads.  
 
Static scheduling dictates to OMP that it should try to divide the work as evenly as possible (so think # 
iterations / # threads) 
 
Dynamic scheduling queues blocks of data internally for threads to work through. Once a thread finishes 
processing its block, it’ll pick up the next block from the internal queue. This means that faster threads 
can pick up more work 
 
Guided scheduling is similar to dynamic, but we start with a larger chunk size and decrease it gradually 
as the workload decreases over time 
 
Auto scheduling is up to the compiler’s discretion 
 



 

 

We can use the OMP_SCHEDULE environment variable to dynamically control all non-hardcoded schedule 
loops in our program. This means that we don’t have to recompile our code if we want to test different 
schedulers, which can be useful for performance testing. 
 

Parallelization 
When parallelizing loops, ask yourself: are there going to be race conditions between any of the local 
variables? 
 
 

 
 
Most variables in an OMP program are shared by default, unless we make it private! In this example, the i 
variable doesn’t need to be bothered, since loop variables are private by default in OMP. 
 
#pragma omp parallel for firstprivate(h) private(x) reduction(+: sum) 
 
This OMP directive sums up all of the individual values of sum (from each thread private sum), and stores 
the sum in the master thread sum variable.  
 
x should be a local variable to each thread. We have to tell OMP that, otherwise our threads will treat it as 
a shared variable and start overwriting it 
 
firstprivate(h) is not required in this example, since it’s constant and exists already before the thread 
is dispatched. But if we wanted to copy over some value before our thread logic begins, we can still use 
firstprivate(h) 
 



 

 

#pragma omp parallel [cluse [clause] …] 
structured block 
 

This directive is very similar to #pragma omp parallel for, but we have to manually specify more 
clauses. If we’re doing just simple things (like prints) we don’t really have to specify, but if we have a 
complex block of code, we will usually have to manually parallelize the code block.  
 
Braces & functions are considered code blocks. We’ll generally be using parallel for, less of the generic 
parallel directive.  

Synchronization 
We need synchronization when there are shared accesses to shared data (that could be inconsistent) 
 
#pragma omp critical [(name)] 

structured block 
 
This block marks a region as mutually exclusive, which specifies that the code block should only be ran 
one thread at a time. This inherently makes our code more sequential, so use it sparingly. We should do it 
on smaller chunks of code. If we use it on bigger chunks of code we end up losing out on parallelization. 
 
#pragma omp atomic 

expression 
 
Same as the critical directive above, but for one specific variable / expression 
 

GPU Support 
OpenMP can now operate on GPU cores. GPUs tend to have a large number of low compute power 
cores, meaning they have a lot more parallelization potential compared to standard CPU architectures 
 
#pragma omp target teams distribute parallel for 

for loop 
 
target specifies we should run on an accelerator / device. teams distribute creates a team of worker 
threads and distributes work amongst them. 

Parallelizing Matrix Multiplication 
Big use case in AI & ML – often done on “tensors”. We have 3 2D vectors: 2 input matrices, A and B, 
followed by 1 output matrix, C. 
 
The dimensions have to match up. So the number of rows in A == number of cols in B, and the number of 
cols in A == number of rows in B. 
 
Since our systems are usually either row-major or col-major, one of the arrays will result in terrible cache 
performance. For rows in A, if we have long rows, they might not fit entirely in cache, requiring more 



 

 

memory usage. For cols in B, we have to access all the different rows, which may not be able to fit in 
cache entirely 
 
Optimization: chunk matrices into blocks to improve cache performance. Each block has smaller 
dimensions, which allows for the rows and cols to be stored in cache. When we back out to the outer 
block logic, we can bring in chunked entries from each row in B when multiplying with A, which reduces 
the overall number of cache misses in this kind of complex calculation 
 
As such, choosing the right block size is very important! 


