
Isoefficiency

Isoefficiency provides a good performance metric for determining scalability of a parallel
program. It looks at the relationship between problem size and number of processes such that
the efficiency remains constant. So, as we increase the number of processes, how much do we
increase the problem size correspondingly to maintain the same efficiency.

In order to determine this relationship, let’s look at the formula for efficiency. If we factor in
overhead, total time in all processes (p x tp) is equal to useful computation (t1) plus overhead
(t0), p x tp = t1 + t0.

The efficiency formula is t1 / (tp x p), substitute tp x p with t1 + t0 as derived above and we get t1 /
(t1 + t0) = 1 / (1 + (t0 / t1)). By this formula, as long as t0 / t1 remains constant, our efficiency
remains constant. So, we want t0 / t1 to be some constant K, since t0 / t1 = K, t0 = K x t1.

Isoefficiency Analysis in Game of Life

Now let’s apply this analysis to the Game of Life to determine which out of the 1D
decomposition and 2D decomposition strategies scales better.

1D Decomposition

Suppose we have a square sqrt(n) by sqrt(n) board with a total of n cells. Starting with our 1D
decomposition, our useful computation (t1) consists of going through each cell and calculating its
new state based on the neighbors. There are a total of sqrt(n) rows and we divide these rows
among p processes, so the total number of rows each process has is sqrt(n) / p. We don’t divide
the columns at all, so each column is still of size sqrt(n). Thus, there are a total of (sqrt(n) / p) x
sqrt(n) = n / p cells to perform useful computations on.

Now onto our overhead (t0), this consists of the communication between the processes, i.e. the
sending and receiving of rows. Each process performs two sends of one row each, and they are
received correspondingly by the adjacent processes. Each row is of size sqrt(n), so in total,
each process sends 2 x sqrt(n) cells.

With t1 = n / p and t0 = 2 x sqrt(n), t1 = K x t0 can be rewritten as (n / p) = K x 2 x sqrt(n) and
sqrt(n) x k = 2 x p, for k = 1 / K. So how should we grow our problem size to keep efficiency
constant? As an example, suppose n = 64 and p = 4. If we increase our number of processes to
8, to keep k the same, we must multiply n by 4. As p increases by some factor c, n has to
increase by some factor c2. Thus we can see that our problem size varies quadratically with the
number of processes.

2D Decomposition

For 2D decomposition, each process gets a block of sqrt(n) / sqrt(p) by sqrt(n) / sqrt(p). This
means that there are (sqrt(n) / sqrt(p)) x (sqrt(n) / sqrt(p)) = n / p useful computations (t1) to be
done. Since each block has four boundaries, each process sends two rows and two columns to
the processes holding adjacent blocks. Each row/column is of length sqrt(n) / sqrt(p), 4 x sqrt(n)
/ sqrt(p) cells to send (t0).

With t1 = n / p and t0 = 4 x sqrt(n) / sqrt(p), t1 = K x t0 can be rewritten as (n / p) = K x 4 x sqrt(n) /
sqrt(p) and k x sqrt(n) = 4 x sqrt(p) for some k = 1 / K. Here we can see that the relationship
between p and n is linear, so increasing p by m units will also increase n by m units.

1D vs 2D Comparison

Which decomposition has better scalability? 2D decomposition does, because it has a smaller
isoefficiency function n = k * p for some constant k, vs the 1D decomposition’s isoefficiency
function of n = k * p2 for some constant k. (Isoefficiency: measuring the scalability of parallel
algorithms and architectures (umd.edu)).

With every process we add, we need to increase the problem size by a certain amount, or else
our overhead to useful computation ratio (t0 / t1) increases and the problem becomes less
efficient. This is the relationship that the isoefficiency function tells us. So, a smaller
isoefficiency function is more scalable because it tells us that smaller increases in the problem
size are enough to efficiently use a larger number of processes, while a large isoefficiency
function means that large increases in the problem size are required to efficiently use a larger
number of processes.

Empirical Performance Analysis

Empirical performance analysis can also be utilized to examine what is happening in parallel
programs. This consists of two main parts, measuring and analyzing data. Examples of the
simplest tools that may be used here are timers in the code and print statements.

Performance Tools

Tools can get much more complex than just timers and print statements. Performance tools can
be broken down into tracing tools and profiling tools.

Tracing tools

https://www.cs.umd.edu/class/fall2019/cmsc714/readings/Grama-isoefficiency.pdf
https://www.cs.umd.edu/class/fall2019/cmsc714/readings/Grama-isoefficiency.pdf

Tracing tools capture the entire execution trace, via instrumentation, which is additional code
added in order to allow for traces. Tracing records all events with timestamps where events
include functions, MPI calls, etc., providing an event timeline. Examples include VampirTrace,
Score-P, Tau, HPCToolkit, etc.

Profiling tools

Profiling tools use statistical sampling to provide aggregated information about the program.
Unlike tracing tools, profiling tools don’t show the event timeline including individual invocations
of a function, instead they only tell you the total time spent in a function. This is done by
sampling the program counter which contains the address of the current instruction. This is
correlated with the program code to determine how much time is being spent in what sections of
the code. Examples include Gprof, perf, caliper, HPCToolkit, etc.

Tracing vs Profiling

Between tracing and profiling tools, profiling tools are easier to use and require significantly less
overhead. Tracing tools have a higher performance impact and much higher overhead to keep
track of all events.

Metrics Recorded

Some of the metrics that may be recorded by performance tools include: counts of function
invocations, time spent in code, bytes sent, and hardware counters. Hardware counters can
include tracking special registers for cache hits and cache misses, floating point operations,
branching instructions, load/store instructions, etc. Once these metrics have been recorded,
they can be connected to the source code to determine where performance problems may
come from.

Output of Profiling Tools

Profiling tools can produce a number of different outputs. First is a flat profile which is simply
just a listing of functions with their counts and execution times. They can also output a call
graph profile or a calling context tree (CCT).

Calling Contexts, Trees, and Graphs

A calling context is a sequence of function invocations leading to the current sample.
Essentially, the context is the stack trace of all the parent calls of a function. A calling context
tree (CCT) is a dynamic prefix tree of all call paths in an execution. Finally, a call graph merges
nodes in a CCT with the same name into a single node, but keeps caller-callee relationships.
For example, in a CCT if a function main invokes functions foo and bar, main will have two

children, foo and bar. Suppose foo and bar each invoke a function baz, then both foo and bar
will each have a distinct child baz. However, suppose the same function invocations were
recorded in a call graph, then main would have two neighbors foo and bar, and foo and bar
would both have links to one neighbor baz, which would be one node vs the two distinct baz
nodes in the CCT.

Hatchet

Hatchet is a tool used for programmatic analysis after the profiling data from parallel programs
have been collected. Programmatic analysis (in this case, scripts in Python) makes performance
more flexible compared to using a GUI. Hatchet uses pandas which supports multidimensional
tabular datasets. A structured index is created to enable indexing Pandas DataFrames by nodes
in a graph along with a set of operators to filter, prune, and aggregate structure data.

What is a Pandas DataFrame? Pandas is an open source python library for data analysis. It
uses data frames which are 2D tabular data structures. Pandas has the ability to create multi
indices which enables working with high dimensional data in a 2D form.

Now we have the question of how do we convert the tree/graph in our profiling data to
structured table data in Pandas? Hatchet’s central data structure, a GraphFrame, addresses
this question. GraphFrames consist of a structured index graph object and a Pandas
DataFrame. The graph stores caller-callee relationships while the DataFrame stores all
numerical and categorical data about the nodes. This preserves the graph relationships while
porting the data into a tabular dataset.

An example of an operation that can now be performed on the dataset is filter. The DataFrame
operation filter allows for filtering of the profiling data based on certain conditions. For example,
we can filter the dataset to see which functions ran for longer than ten seconds.

