
Isoefficiency 
 
Isoefficiency provides a good performance metric for determining scalability of a parallel 
program. It looks at the relationship between problem size and number of processes such that 
the efficiency remains constant. So, as we increase the number of processes, how much do we 
increase the problem size correspondingly to maintain the same efficiency. 
 
In order to determine this relationship, let’s look at the formula for efficiency. If we factor in 
overhead, total time in all processes (p x tp) is equal to useful computation (t1) plus overhead 
(t0), p x tp = t1 + t0.  
 
The efficiency formula is t1 / (tp x p), substitute tp x p with t1 + t0 as derived above and we get t1 / 
(t1 + t0) = 1 / (1 + (t0 / t1)). By this formula, as long as t0 / t1 remains constant, our efficiency 
remains constant. So, we want t0 / t1 to be some constant K, since t0 / t1 = K, t0 = K x t1.  
 
 

Isoefficiency Analysis in Game of Life 
 
Now let’s apply this analysis to the Game of Life to determine which out of the 1D 
decomposition and 2D decomposition strategies scales better.  
 

1D Decomposition 
 
Suppose we have a square sqrt(n) by sqrt(n) board with a total of n cells. Starting with our 1D 
decomposition, our useful computation (t1) consists of going through each cell and calculating its 
new state based on the neighbors. There are a total of sqrt(n) rows and we divide these rows 
among p processes, so the total number of rows each process has is sqrt(n) / p. We don’t divide 
the columns at all, so each column is still of size sqrt(n). Thus, there are a total of (sqrt(n) / p) x 
sqrt(n) = n / p cells to perform useful computations on.  
 
Now onto our overhead (t0), this consists of the communication between the processes, i.e. the 
sending and receiving of rows. Each process performs two sends of one row each, and they are 
received correspondingly by the adjacent processes. Each row is of size sqrt(n), so in total, 
each process sends 2 x sqrt(n) cells. 
 
With t1 = n / p and t0 = 2 x sqrt(n), t1 = K x t0 can be rewritten as (n / p) = K x 2 x sqrt(n) and 
sqrt(n) x k = 2 x p, for k = 1 / K. So how should we grow our problem size to keep efficiency 
constant? As an example, suppose n = 64 and p = 4. If we increase our number of processes to 
8, to keep k the same, we must multiply n by 4. As p increases by some factor c, n has to 
increase by some factor c2. Thus we can see that our problem size varies quadratically with the 
number of processes. 
 



2D Decomposition 
 
For 2D decomposition, each process gets a block of sqrt(n) / sqrt(p) by sqrt(n) / sqrt(p). This 
means that there are (sqrt(n) / sqrt(p)) x (sqrt(n) / sqrt(p)) = n / p useful computations (t1) to be 
done. Since each block has four boundaries, each process sends two rows and two columns to 
the processes holding adjacent blocks. Each row/column is of length sqrt(n) / sqrt(p), 4 x sqrt(n) 
/ sqrt(p) cells to send (t0).   
 
With t1 = n / p and t0 = 4 x sqrt(n) / sqrt(p), t1 = K x t0 can be rewritten as (n / p) = K x 4 x sqrt(n) / 
sqrt(p) and k x sqrt(n) = 4 x sqrt(p) for some k = 1 / K.  Here we can see that the relationship 
between p and n is linear, so increasing p by m units will also increase n by m units.  
 

1D vs 2D Comparison 
 
Which decomposition has better scalability? 2D decomposition does, because it has a smaller 
isoefficiency function n = k * p for some constant k, vs the 1D decomposition’s isoefficiency 
function of n = k * p2 for some constant k. (Isoefficiency: measuring the scalability of parallel 
algorithms and architectures (umd.edu)).  
 
With every process we add, we need to increase the problem size by a certain amount, or else 
our overhead to useful computation ratio (t0 / t1) increases and the problem becomes less 
efficient. This is the relationship that the isoefficiency function tells us. So, a smaller 
isoefficiency function is more scalable because it tells us that smaller increases in the problem 
size are enough to efficiently use a larger number of processes, while a large isoefficiency 
function means that large increases in the problem size are required to efficiently use a larger 
number of processes. 
 
 

Empirical Performance Analysis 
 
Empirical performance analysis can also be utilized to examine what is happening in parallel 
programs. This consists of two main parts, measuring and analyzing data. Examples of the 
simplest tools that may be used here are timers in the code and print statements. 
 

Performance Tools 
 
Tools can get much more complex than just timers and print statements. Performance tools can 
be broken down into tracing tools and profiling tools.  
 

Tracing tools  
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Tracing tools capture the entire execution trace, via instrumentation, which is additional code 
added in order to allow for traces. Tracing records all events with timestamps where events 
include functions, MPI calls, etc., providing an event timeline. Examples include VampirTrace, 
Score-P, Tau, HPCToolkit, etc. 
 

Profiling tools 
 
Profiling tools use statistical sampling to provide aggregated information about the program. 
Unlike tracing tools, profiling tools don’t show the event timeline including individual invocations 
of a function, instead they only tell you the total time spent in a function. This is done by 
sampling the program counter which contains the address of the current instruction. This is 
correlated with the program code to determine how much time is being spent in what sections of 
the code.  Examples include Gprof, perf, caliper, HPCToolkit, etc. 
 

Tracing vs Profiling 
 
Between tracing and profiling tools, profiling tools are easier to use and require significantly less 
overhead. Tracing tools have a higher performance impact and much higher overhead to keep 
track of all events.  
 

Metrics Recorded 
 
Some of the metrics that may be recorded by performance tools include: counts of function 
invocations, time spent in code, bytes sent, and hardware counters. Hardware counters can 
include tracking special registers for cache hits and cache misses, floating point operations, 
branching instructions, load/store instructions, etc. Once these metrics have been recorded, 
they can be connected to the source code to determine where performance problems may 
come from.  
 

Output of Profiling Tools 
 
Profiling tools can produce a number of different outputs. First is a flat profile which is simply 
just a listing of functions with their counts and execution times. They can also output a call 
graph profile or a calling context tree (CCT).  
 

Calling Contexts, Trees, and Graphs 
 
A calling context is a sequence of function invocations leading to the current sample. 
Essentially, the context is the stack trace of all the parent calls of a function. A calling context 
tree (CCT) is a dynamic prefix tree of all call paths in an execution. Finally, a call graph merges 
nodes in a CCT with the same name into a single node, but keeps caller-callee relationships. 
For example, in a CCT if a function main invokes functions foo and bar, main will have two 



children, foo and bar. Suppose foo and bar each invoke a function baz, then both foo and bar 
will each have a distinct child baz. However, suppose the same function invocations were 
recorded in a call graph, then main would have two neighbors foo and bar, and foo and bar 
would both have links to one neighbor baz, which would be one node vs the two distinct baz 
nodes in the CCT. 
 
 

Hatchet  
 
Hatchet is a tool used for programmatic analysis after the profiling data from parallel programs 
have been collected. Programmatic analysis (in this case, scripts in Python) makes performance 
more flexible compared to using a GUI. Hatchet uses pandas which supports multidimensional 
tabular datasets. A structured index is created to enable indexing Pandas DataFrames by nodes 
in a graph along with a set of operators to filter, prune, and aggregate structure data.  
 
What is a Pandas DataFrame? Pandas is an open source python library for data analysis. It 
uses data frames which are 2D tabular data structures. Pandas has the ability to create multi 
indices which enables working with high dimensional data in a 2D form.   
 
Now we have the question of how do we convert the tree/graph in our profiling data to 
structured table data in Pandas? Hatchet’s central data structure, a GraphFrame, addresses 
this question. GraphFrames consist of a structured index graph object and a Pandas 
DataFrame. The graph stores caller-callee relationships while the DataFrame stores all 
numerical and categorical data about the nodes. This preserves the graph relationships while 
porting the data into a tabular dataset.  
 
An example of an operation that can now be performed on the dataset is filter. The DataFrame 
operation filter allows for filtering of the profiling data based on certain conditions. For example, 
we can filter the dataset to see which functions ran for longer than ten seconds.  
 
 
 


