
CMSC416 Introduction to Parallel Computing

Topic: Collective Operations

Date: 2/15/2024

Started with general announcements about Project1 & updates to the slides.

Definition: point-to-point operations occur between two individual processes.

Definition: collective operations occur between all processes within a given communicator.

At the base level, all collective operations are made up of many point-to-point operations. For

example, with MPI_Bcast it is comprised of many process to process sends and receives.

MPI_Barrier(MPI_Comm comm)

This function can be used to synchronize processes if they are out of sync. Once a process

reaches the barrier (executes the MPI_Barrier call), it will block until every other process within

the communicator reaches and enters the barrier. At this point, the call is finished and

processes will continue operating.

Question: can two processes have the same MPI barrier?

Answer: An MPI barrier call takes in a communicator. This barrier is shared among all

processes in the communicator. If these two processes are within the same communicator then

they will be using the same barrier.

MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm)

This function can be used to send data from a root process to all of the other processes in the

communicator.

The buffer is used to transmit and spread the same piece of data to each process within the

communicator. The sending process will first write data into its buffer. Then this data will appear

in the receiving process’s copy of the buffer.

MPI Reduce(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

This function is used to collect and reduce data from all processes in the communicator and

send it to the root process. It will reduce the data according to whatever operation was passed

in through the ‘op’ parameter. For example, if I used a reduce call with the sum operation then

each piece of data will get summed together with the end result being passed to the root

process.

The sendbuf parameter should be valid for all processes involved. Each process can write their

own unique data to this buffer. The recvbuf parameter must be valid for the root process that

receives the data.

Similarly, the MPI_Allreduce function will collect and reduce data from processes to a root node,

then it will redistribute this value back to all processes in the communicator.

MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

This function also acts as a way to send data. The difference between scatter and broadcast is

that instead of sending one value to all processes, scatter will take an array of values and

distribute them evenly between processes.

The amount of data to send from the root process is specified by the sendcount parameter.

Similarly, all receiving processes will specify how much data it will accept through the recvcount

parameter. The scatter call will see these counts and distribute the data points accordingly.

For each process that accepts data, including the root, the data will appear in the recvbuf buffer.

MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

This function acts as another way to gather data. Instead of reducing all data points into a single

value, this function will append the data together into an array. The data will be appended in

order of the processes’s rank and will be sent to the root process.

MPI_Wtime(void)

This function returns the elapsed time between two points in time. It starts timing at the first

wtime call, and ends at the next wtime call.

