
CMSC416 Instructor Notes Spring 2024
Topics: Parallel Algorithms

1 Matrix Multiplication
1.1 Blocking (Tiling) in Matrix Multiplication

Blocking or tiling is a technique used to optimize matrix multiplication by dividing the matrices into
smaller sub-matrices or blocks. This approach improves cache utilization and reduces cache misses by
ensuring that data used in computations is more likely to be held in the cache.

The lecture emphasized the importance of understanding the memory hierarchy to improve matrix
multiplication efficiency. It described a simplified memory model consisting of a larger, slower memory
(e.g., RAM) and a smaller, faster memory (cache). The process of computing matrix multiplication involves
moving data from the larger memory to the cache. However, due to the limited size of the cache, it is crucial
to manage the data efficiently to avoid frequent evictions and reloads, which slow down computation.

Blocking is a technique used to optimize matrix multiplication by dividing matrices into smaller sub-
blocks. This approach allows for more efficient use of the cache by bringing smaller portions of the data
into the cache and performing computations on these subblocks. The lecture explained that by working on
smaller subblocks, it is possible to keep the necessary data in the cache longer, reducing the need to reload
data from the larger memory. The process involves dividing matrices A, B, and C into subblocks and then
computing the multiplication of these subblocks to obtain partial results for matrix C.

1.2 Parallel Matrix Multiplication
Sequentially, matrix multiplication involves three nested loops iterating over the rows and columns

of the input matrices. Parallel matrix multiplication involves dividing the computation across multiple
processes or threads, each handling a portion of the data.

The principle of blocking can be applied to parallel matrix multiplication by assigning specific blocks of
matrices to different threads or processes.

In a distributed memory setting, the input matrices are divided among different processes, each comput-
ing a portion of the result matrix. This requires careful distribution of data and potentially communication
between processes to gather necessary parts of the input matrices for local computation.

Canon’s 2D Matrix Multiply: This algorithm arranges processes in a 2D virtual grid and divides ma-
trices A and B into subblocks distributed among the processes. It involves an initial displacement of sub-
blocks (skew) and subsequent phases of data movement and computation to ensure each process gets the
necessary subblocks for computation. The algorithm effectively reduces the communication overhead by
structuring data movement and computation in a coordinated manner.

Agrawal’s 3D Matrix Multiply: This more sophisticated algorithm arranges processes in a 3D virtual
grid and requires multiple copies of matrices A and B across different planes. Each process computes a
portion of the result matrix C, and a final reduction step combines these partial results. The 3D arrangement
and initial distribution of data reduce the need for extensive data movement during computation, focusing
on optimizing communication.

2 Communication Algorithms
Communication algorithms are crucial for parallel processing, enabling efficient data sharing and coor-

dination among processors. Two main topics covered include MPPI reduction and all-to-all communica-
tion.

2.1 Reduction
Reduction involves aggregating data from multiple processors to a single value. A naive approach

would have all processors send their data to a single root processor, causing a bottleneck. A more efficient
method uses a spanning tree structure, distributing the aggregation workload among several processors
and reducing communication overhead.

1



2.2 MPI All-to-All
MPI All-to-All communication is more complex, requiring each processor to send unique data to every

other processor.
Naive Approach: The straightforward method would have each processor directly send data to all oth-

ers, resulting in a high number of messages and potential network congestion.
Optimized Approach: By arranging processors in a 2D grid, communication can be split into two phases:

row-wise and column-wise. This reduces the total number of messages sent and avoids network congestion.
Hypercube Topology: Processes can also be arranged in a hypercube topology, allowing for even more

efficient communication patterns. This method is suitable for very large numbers of processors.

2


	Matrix Multiplication
	Blocking (Tiling) in Matrix Multiplication
	Parallel Matrix Multiplication

	Communication Algorithms
	Reduction
	MPI All-to-All


